
XYDeblur: Divide and Conquer for Single Image Deblurring

Seo-Won Ji* , 1 Jeongmin Lee*, 1 Seung-Wook Kim*, 2

Jun-Pyo Hong1 Seung-Jin Baek1 Seung-Won Jung† , 1 Sung-Jea Ko1

1Korea University, 2Pukyong National University

Abstract

Many convolutional neural networks (CNNs) for single
image deblurring employ a U-Net structure to estimate la-
tent sharp images. Having long been proven to be effec-
tive in image restoration tasks, a single lane of encoder-
decoder architecture overlooks the characteristic of deblur-
ring, where a blurry image is generated from complicated
blur kernels caused by tangled motions. Toward an ef-
fective network architecture for single image deblurring,
we present complemental sub-solution learning with a one-
encoder-two-decoder architecture. Observing that multi-
ple decoders successfully learn to decompose encoded fea-
ture information into directional components, we further
improve both the network efficiency and the deblurring per-
formance by rotating and sharing kernels exploited in the
decoders, which prevents the decoders from separating un-
necessary components such as color shift. As a result, our
proposed network shows superior results compared to U-
Net while preserving the network parameters, and using the
proposed network as the base network can improve the per-
formance of existing state-of-the-art deblurring networks.

1. Introduction

Image deblurring is a fundamental image restoration
problem in image processing and computer vision, which
aims to recover a sharp image from a blurry image caused
by a camera or objects in motion. Blurry images affect not
only the perceptual image quality but also the performance
of various applications such as object detection, image seg-
mentation, and visual odometry. Therefore, despite it being
a classical restoration task, image deblurring is still being
actively researched.

In general, the degradation model is formulated as fol-
lows:

x = y ∗ k+ n, (1)

*Equal contribution
†Corresponding author: Seung-Won Jung (swjung83@korea.ac.kr)

where x, y, k, n, and ∗ denote the blurry image (ob-
servation), sharp image (latent image), blur kernel, addi-
tive random noise, and 2D convolution operation, respec-
tively. Since only the blurry image x is given and the
other terms unknown, solving Eq. (1) is considered to be
ill-posed, having multiple solutions to a problem. In tra-
ditional studies, researchers employed blur kernel estima-
tion followed by deconvolution or regularization using nat-
ural image priors in attempts to handle the ill-posedness of
the deblurring problem [8, 18, 28, 30, 32]. Thanks to the
tremendous advances in deep learning and large-scale data
accessibility, numerous methods using convolutional neu-
ral networks (CNNs) have recently been proposed and have
achieved great success [2,9,10,16,27,29,31,33,34]. Many
deblurring methods adopt U-Net [25] as their base archi-
tecture, which has achieved state-of-the-art performance.
U-Net consists of a common CNN-based encoder, succes-
sively decreasing the feature resolution to extract high-level
image context, and a symmetrically structured decoder, in-
creasing the feature resolution back to the input resolution
to generate a restored image. Since the local information at
each feature resolution in the encoder is transferred to the
one at the corresponding resolution in the decoder via skip
connection, U-Net can effectively handle multi-scale degra-
dation of images.

Motion blur is originated from multiple tangled motions
of moving objects in the scene and/or camera shakes. We
claim that the common standard of using the unitary lane of
U-Net is insufficient for handling the complicated nature of
image blurs. We thus propose a simple but effective solution
to this problem by dividing the original problem into mul-
tiple sub-problems [21]. In terms of network design objec-
tive, splitting a decoder can divide the deblurring problem
into sub-problems; in other words, the solution space re-
quired for deblurring can be decomposed by explicitly sep-
arated decoder networks. The proposed network consists
of a single encoder and two decoders as shown in Fig. 1,
which induces two decoders to separately solve two sub-
problems of deblurring. One decoder implicitly generates a
principal residual in the given 2D scene, and the other one
generates the complement residual of its separated decoder.
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Figure 1. Detailed architecture of XYDeblur.

We observe that without any explicit supervision, the prin-
cipal and its complement residuals contain blurred edges
along the direction of horizontal and vertical axes in an im-
age plane, respectively, which is why we call the proposed
network XYDeblur. Based on this observation, we further
improve the one-encoder-two-decoder structure of XYDe-
blur by spatially rotating the convolutional kernels in one
decoder and sharing the parameters with the other decoder.
Unlike conventional parameter sharing approaches in CNN
that sacrifice the performance for network efficiency [1,17],
the separated decoders with shared and rotated parameters
not only reduce the number of parameters but also improve
the performance by eliminating undesired disentanglement
of features that are irrelevant to the deblurring task.

We demonstrate the effectiveness of XYDeblur as com-
pared to U-Net while consuming the same network param-
eters. We also show the extensibility of the proposed ap-
proach by substituting the base structure in state-of-the-art
deblurring networks with the proposed architecture. Ex-
perimental results validate that the proposed approach suc-
cessfully guides the network to learn complementary sub-
solutions and improves the deblurring performance. The
contribution of the proposed method can be summarized as
follows:

1. To the best of our knowledge, we are the first to intro-
duce a one-encoder-two-decoder architecture in image
deblurring that derives each output from two decoders
to have complementary sub-solutions, which are visu-
ally orthogonal in the spatial domain.

2. XYDeblur shares rotated convolutional kernels from
one decoder with the other, thereby substantially im-
proving the deblurring performance while using the

same number of parameters as the standard U-Net ar-
chitecture.

3. The proposed network can be implemented in many
U-Net-based state-of-the-art networks without increas-
ing the model size, and extensive experimental results
show that substituting the U-Net with our proposed
network can improve the deblurring performance.

2. Related Works
2.1. Image deblurring using U-Net

Most image restoration methods consider the multi-scale
representation of image degradation as their key prob-
lem [5, 12, 16, 19, 35]. With a U-Net architecture, several
image restoration models estimate a latent image iteratively
as follows:

{ŷk+1,hk+1} = Fk+1(x, {ŷk,hk}; Θk+1)
for k ∈ [0,K − 1],

(2)

where yk+1, hk+1, and x denote the estimated image at the
(k+1)-th iteration, the hidden features at the (k+1)-th iter-
ation to be transferred to the next stage, and the input blurry
image, respectively, and Fk+1(·) is the U-Net-based model
with the parameter set Θk+1 at the (k + 1)-th iteration.

Many works on image deblurring also follow such
trends [2, 16, 27, 29, 33, 34], in which the difference be-
tween the estimation and the ground-truth image is grad-
ually predicted by applying U-Nets from the small-to-large
scale, or vice versa. In [2,16,29], a coarse-to-fine approach
is adopted by transferring the deblurred information for the
down-sampled image resolution to the larger scale image
input. In [27, 33, 34], the deblurring networks take finely-
split multi-patch hierarchy as their inputs and transfer the
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sharpened information to the next stage. At the next stage,
wider patches, which are made up of several patches from
the previous stage, are recovered.

2.2. One-Encoder-Multiple-Decoder architecture

In multi-task learning, a multi-head decoder with a sin-
gle encoder is a common network architecture. The single
encoder extracts feature embedding having jointly tangled
information of the input, and the multiple decoders perform
their assigned tasks, which are supervised by given labels.
For example, an image decomposition problem, which is
one of the multi-task learning problems, can be dealt with
the one-encoder-multiple-decoder architecture [6, 13]. To
train those multiple decoders, the labels for each task are
given [6] or the complicated loss functions are designed us-
ing the given data and prior knowledge [13]. In generative
models, an additional decoder to a single encoder-decoder
network is often employed to guide the encoder [11] or the
other decoder [26]. Unlike our proposed method, those
methods temporarily adopt a one-encoder-two-decoder ar-
chitecture to regulate the learning process and utilize the
conventional U-Net structure for test.

3. Proposed Method
3.1. Architecture of the proposed XYDeblur

Fig. 1 illustrates the proposed one-encoder-two-decoder
architecture. We design our network to estimate the resid-
ual image r = y − x from the blurry image. Formally, the
residual estimation, r̂, can be obtained via the proposed net-
work F with the learnable parameters Θ as follows:

r̂ = F(x; Θ). (3)

We obtain the residual estimation using two separate de-
coder networks Dhor and Dver as follows:

r̂ = Dhor(z; Θhor) +Dver(z; Θver), (4)

where Θhor and Θver are the network parameters of Dhor

and Dver, respectively, and z represents the encoded image
feature. Here, the encoded image feature is obtained by

z = E(x; Θe), (5)

where E denotes the encoder with the parameter of Θe. It is
worth noting that the two decoders Dhor and Dver have the
same structure. If we use the encoder and only one of the
decoders, the network structure reduces to a common U-Net
structure.

3.2. Separated decoders: 2D blur decoupling

The proposed network forces the information of the blur
degradation in the encoded feature z to be divided through

(a) (b) (c)

Figure 2. Sample images and sub-solutions for each decoder: (a)
Blurry images; (b) results of the first decoder (r̂1); (c) results of
the second decoder (r̂2).

the two separated decoders. According to the linear span
theory [14, 15], the linear reconstruction composed of mul-
tiple independent regression outputs can encompass a larger
output space because the independent regression networks
learn the complementary features to span a whole output
space. Ideally, it is desired that the two decoders result
in independent regression outputs to maximize the solu-
tion space. In other words, it is expected that one decoder
produces the blur residual along the principal axis, i.e., the
degradation components with the largest variation, and the
other one generates the complementary residual to complete
the linear reconstruction.

Fig. 2 depicts an example of the estimated residuals from
the two decoders, Dhor and Dver.1 Interestingly, the two
residuals obtained using the separated decoders contain the
horizontal and vertical motion components. This example
implies that the proposed design enables the network to de-
compose the information inherent in the encoded features
into the ones along the x- and y-axes without applying any
explicit constraint. This motivates us to propose the scheme
to share the parameters of the decoders for more efficient
deblurring.

3.3. Spatial kernel rotation for parameter sharing

Even though the separated decoders can successfully de-
couple features related to deblurring along x- and y-axes,
there is also a possibility that undesirable information de-
coupling could occur since we do not give any supervision
to the network. This is problematic in terms of network ca-
pacity [3] and solution space [14,15] of the network because
the undesired division of complementary features limits the
potential solution space and degrades the network perfor-
mance. For example, Figs. 3(a)-(c) illustrate the color shift
caused by the two separated decoders. Specifically, the two
decoders, U-Net2D, produce the results with the color tem-
peratures shifted to the lower and higher levels, respectively.
Such color shift hinders the network from fully exploring
the solution space and does not provide any clues for deblur-

1The network was trained on the GoPro dataset [16]. More detailed
experimental setup can be found in Sec. 4.1.
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(a)

(b) (c)

(d) (e)

Figure 3. Input ColorChecker image and resultant images. The
magnified color white of the chart and its color temperature are
shown in the bottom row. (a) ColorChecker image; (b) input + r̂1
of U-Net2D; (c) input + r̂2 of U-Net2D; (d) input + r̂1 of XYDeblur;
(e) input + r̂2 of XYDeblur.

ring (the color shift will be compensated when the residuals
are combined).

To solve this problem, we employ the properties of the
separated decoders. Since the two decoders can learn the in-
herent information along the axes at a right angle, we share
the network parameter of the two decoders as follows:

r̂ = Dhor(z; Θd) +Dver(z; Θrd), (6)

where Θrd is the network parameter of Θd rotated 90 de-
grees counterclockwise. We select Dhor as a primary de-
coder. On average, the resultant residual from Dhor has
more signal power than that from Dver, which means that
the larger variations occur along the horizontal axis as com-
pared to the vertical axis. This is natural as a camera can
rotate full 360 degrees around the yaw axis but the pitch ro-
tation is rather limited while photographing. The proposed
network design with Eq. (6) has two advantages. First, the
decoders are forced to share the other information except
for the one along the axial directions, which regularizes the
learning process of the network. Thus, the network can
focus only on eliminating blur components. As shown in
Figs. 3(d) and (e), sharing the rotated kernels guides the
network to learn complementary features related to the hor-
izontal and vertical axes and no longer yields unnecessary
color shifts. Second, the required parameters for the two
separated decoders are halved. Consequently, XYDeblur
not only improves the efficiency but also the deblurring per-
formance, which can be seen in Table 1.

3.4. Extension to existing deblurring networks

XYDeblur can be applied to any conventional networks
based on U-Net such as [2, 34]. For example, if we extend
the proposed network to the iterative deblurring method ex-
plained in Eq. (2), the estimation at the (k + 1)-th iteration
can be obtained as follows:

ŷk+1 = x+D(k+1)
hor (z̄k+1; Θ

(k+1)
d )

+D(k+1)
ver (z̄k+1; Θ

(k+1)
rd ),

(7)

z̄k+1 = T (z̄k, zk+1), (8)

zk+1 = E(k+1)(ŷk; Θe), (9)

where T (·, ·) is a combining function that aggregates the
encoded feature at the current iteration, zk+1, and the trans-
ferred features from the previous iteration, z̄k. In the fol-
lowing section, we compare the U-Net and XYDeblur us-
ing several top-performing deblurring methods to confirm
the efficiency and effectiveness of the proposed method.

4. Experiments
In this section, we first describe the implementation de-

tails of XYDeblur. We validate the effectiveness of the pro-
posed method by conducting experiments on the following
two scenarios: 1) the vanilla proposed network; 2) substitut-
ing the U-Net in top-performing methods with XYDeblur.
Extensive experimental results for the proposed method can
be seen in the supplemental material.

4.1. Experimental setting

Datasets. For training of the networks, GoPro training
dataset [16] was used. GoPro dataset is a realistic dataset
with blurry images generated by averaging consecutive im-
age frames. It contains 2,103 pairs of blurry and sharp im-
ages from 22 different scenes. The images were randomly
cropped into 256×256 patches for training. For testing, Go-
Pro test dataset with 1,111 image pairs was used, and 980
pairs of RealBlur test dataset [24], which is a dataset with
real blurred images, was also used.

Implementation details. The detailed architecture of
XYDeblur is described in Fig. 1. Each ResModule consists
of six residual blocks with batch normalization excluded
from the original residual block [16]. The number of chan-
nels in the feature map starts at 32 and is doubled (halved)
every time the resolution of the feature map is halved (dou-
bled). All the experiments were conducted on a PC with an
Intel i7-8700 CPU, 32GB of RAM, and an NVIDIA Titan
Xp GPU. We used the PyTorch [20] to implement the pro-
posed method. For training, we adopted the Adam [7] op-
timizer with a batch size of four. The learning rate was ini-
tialized as 10−4, which was halved after every 500 epochs.
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Figure 4. Signal power of r̂1 and r̂2 for different degrees of blur:
from 0◦ (horizontal) to 90◦ (vertical).

The ℓ1 criterion was applied as a loss function, which is
formulated as

L =
1

N

N∑
n=1

∥∥∥ŷ(n) − y(n)
∥∥∥
1
, (10)

where y(n) is the nth target sharp image, ŷ(n) is the cor-
responding estimation, and N is the number of samples in
a mini-batch. The proposed network was trained for 1,300
epochs and took about 65 hours. For state-of-the-art net-
works, each network and its variations were trained until the
peak signal-to-noise ratio (PSNR) of their baseline network
reached its reported rate.

4.2. Proposed network - standalone

To analyze the effectiveness of the proposed approach,
three experiments were conducted as follows: 1) the anal-
ysis of sub-solutions to confirm whether the proposed net-
work learns complementary solutions as intended, 2) the in-
vestigation for a suitable number of decoders and the veri-
fication of the rotated-parameter sharing, and 3) the exam-
ination to ensure that the proposed approach solves the de-
blurring problem in a stable and robust manner in different
cases.

The impact of the one-encoder-two-decoder architec-
ture. We attempt to validate that the proposed approach
induces the network to regress two complementary sub-
solutions as intended. To this end, the synthetically blurred
images with varying blur directions from 0◦ (horizontal) to
90◦ (vertical) were used for test. To quantitatively measure
how much high-frequency components are restored by the
two decoders, Dhor and Dver, the signal power [22] is com-
puted as follows:

Power =
1

M
∥s∥22 , (11)

where s and M are the vector/matrix form of discrete signal
and the number of elements in s, respectively. Fig. 4 shows

Table 1. Performance of various number of decoders

Method GoPro Complexity∗

PSNR SSIM Params GMACs
U-Net 30.61 0.9458 4.92 687.93

U-Net2D 30.90 0.9489 7.42 1059.77
U-Net3D 30.99 0.9496 9.92 1431.61
U-Net4D 31.04 0.9506 12.42 1803.45

XYDeblur 30.97 0.9502 4.92 1059.77
∗ The number of parameters is measured in million.
∗ GMACs is estimated for the input size of 720P.

Figure 5. Various number of decoders and their performance. The
radius of the circle indicates GMACs of the network.

the signal power of r̂1 and r̂2 for the images blurred in seven
different directions. As expected, the closer the blur direc-
tion is to the horizontal direction, the signal power of r̂1
increases; and the closer to the vertical direction, the signal
power of r̂2 increases. The input blurry images with blur di-
rection of 0◦, 45◦, and 90◦ and their corresponding r̂1 and
r̂2 results are depicted in the last three columns of Fig. 4.
This result shows that the two decoders successfully decou-
ple the blur components according to the direction of the
blur.

The proper number of decoders and the impact of shar-
ing the rotated parameters. Increasing the number of
decoders leads to the division of a problem into multiple
sub-problems and potentially expands the coverage of the
solution space of the network. To justify that the use of two
decoders is sufficient for the proposed network, we trained
U-Nets with one to four decoders referred to as U-Net, U-
Net2D, U-Net3D, and U-Net4D, respectively.

As shown in Table 1 and Fig. 5, the deblurring perfor-
mance improves as the number of decoders used in the
network increases. However, unlike the network complex-
ity, which linearly increases as the number of decoders in-
creases, the deblurring performance improvement is abated
rapidly after the point when there are two decoders.

In addition, despite the proposed network having the
same network structure as U-Net2D, Table 1 shows that shar-
ing the rotated parameters in the proposed network reduces
the network complexity almost by half and even enhances
the performance. According to [15], when each branch of
a network occupies a feature space (or solution space) that
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(a)

(b) (c)

Figure 6. Statistics to certify the consistency of the proposed ap-
proach. (a) Signal power of r̂1 and r̂2 of different 18 models; (b)
correlation between the power of r̂1 and the degree of blur; (c)
correlation between the power of r̂2 and the degree of blur.

is complementary to each other, it can be regarded that the
capacity of the network is most efficiently exploited. In this
sense, both U-Net2D and the proposed XYDeblur employ
two decoders that learn complementary features and ulti-
mately expand the solution space of the networks. How-
ever, while the two networks use the same number of de-
coders, Figs. 3 shows that sharing the rotated parameters
guides the network to eliminate the division of complemen-
tary features other than directional components related to
the rotation of parameters, which is the most relevant to de-
blurring. As a result, each decoder in XYDeblur can uti-
lize the same amount of network capacity as decoders in U-
Net2D but use the network space solely on deblurring. The
positive effects brought by sharing of the rotated parameters
are reflected in the performance between the two networks.

The consistency of the proposed approach. To ensure
that the proposed model learn the complementary residu-
als in a stable and robust manner, we randomly divided the
GoPro training DB into three and trained 18 models (six
models for each divided DB) for 900 epochs using random
initial weights with different seeds. Using the same sample

image shown in Fig. 4, we measured the signal power of r̂1
and that of r̂2 for different motion blur along with the seven
directions. Through this experiment, it can be confirmed
that even if the model is initialized with different weights
and trained on different DB, the network consistently learns
to solve the deblurring problem in the complementary man-
ner that divides the problem along the vertical and horizon-
tal axes, as shown in Fig. 6 (a). The Pearson’s R values of
the signal power of the decoder r̂1 (-0.97) and the decoder
r̂2 (0.98) with respect to the blur angle further support our
claim, as shown in Figs. 6 (b) and (c).

4.3. State-of-the-Art deblurring networks with XY-
Deblur architecture

To further validate the applicability and extensibility, we
applied the proposed network to more complicated state-
of-the-art image deblurring networks. Among the top-
performing single image deblurring networks in which the
authors released the source code, PSS-NSC [2] and DM-
PHN [34] were chosen, and the first end-to-end deblurring
method MSCNN [16] was also used for the experiment.
For each network, the original network and the follow-
ing three network variations were tested: NetworkChannel↑,
NetworkLayer↑, and NetworkOurs. In the case of the DMPHN
in which various network candidates exist, the one with
the lowest complexity was used. Based on the VRAM us-
age of the NetworkOurs, NetworkChannel↑ and NetworkLayer↑

were constructed to occupy similar VRAM by increasing
the number of channels in the feature maps and the number
of the convolutional layers located in the decoders, respec-
tively.2 Each baseline network was trained until it reached
its reported PSNR, and the three network variations were
trained using the same number of epochs of their baseline
network.

GoPro. The results are listed and visualized in Table 2
and Fig. 7 (a). NetworkOurs required the fewest num-
ber of parameters along with the baseline network, but it
showed the highest performance in comparison with the
other network variations. On the contrary, despite a sig-
nificant increase of network parameters, NetworkChannel↑

and NetworkLayer↑ did not show consistent performance im-
provements over the baseline networks. For DMPHN and
MSCNN, DMPHNChannel↑ and MSCNNLayer↑ recorded de-
creased PSNR compared to its baseline model. The results
indicate that simply increasing the number of convolutions
or feature channels in the decoders cannot effectively utilize
the information in the encoded features, primarily due to
over-fitting caused by over-parameterization. On the other
hand, XYDeblur consistently improves the baseline deblur-
ring networks while maintaining the number of network pa-

2More detailed experimental settings can be found in the supplemental
material.
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(a) (b)

Figure 7. Effectiveness of the proposed approach on the state-of-the-art networks. The radius of the circle indicates GMACs of the network.
(a) Performance changes in GoPro test datasets; (b) performance changes in RealBlur test datasets.

Table 2. The proposed approach in the top-performing networks

Method Variations GoPro RealBlur Complexity†

PSNR SSIM PSNR SSIM Params GMACs VRAM

PSS-NSC

Baseline∗ 30.94(30.92) 0.9494 28.78 0.8716 6.98 1167.24 3.79
Channel↑ 31.06 0.9509 28.63 0.8667 17.89 3020.81 5.97

Layer↑ 31.18 0.9524 28.78 0.8721 10.08 1703.95 5.55
Ours 31.27 0.9531 28.88 0.8765 6.98 1784.39 5.68

DMPHN

Baseline∗ 30.28(30.25) 0.9408 26.97 0.8170 7.23 1100.18 1.62
Channel↑ 30.23 0.9414 26.86 0.8201 18.63 3060.28 2.52

Layer↑ 30.48 0.9443 27.78 0.8366 10.33 1509.11 2.30
Ours 30.63 0.9458 28.02 0.8459 7.23 1754.07 2.41

MSCNN

Baseline∗ 29.22(29.08) 0.9273 27.91 0.8442 11.72 4728.69 3.21
Channel↑ 29.34 0.9292 27.92 0.8432 28.94 11673.07 4.84

Layer↑ 28.97 0.9250 27.92 0.8449 17.25 6960.32 4.71
Ours 29.98 0.9382 28.19 0.8550 11.72 6966.13 4.78

∗ The PSNR in parentheses is the value reported by the authors in their original paper.
† The number of parameters is measured in million.
† GMACs is estimated for the input resolution of 720P (1280×720).
† The usage of VRAM is measured in GB with the input size of 256×256.
The increased and decreased PSNR and SSIM value compared to the baseline method are
shown in red and blue, respectively.

rameters. Fig. 8 shows the experimental results for three
networks in the GoPro test data. When the proposed ap-
proach is applied to the conventional networks, it induces
the networks to solve the deblurring problem by dividing it
in a complementary manner (see r̂1 and r̂2 in Fig. 8), and
it can be confirmed that qualitatively better results are ob-
tained compared to the baseline network. 3

RealBlur. Unless the training and test data are collected
from the same distribution, even negligible data differ-
ences can significantly degrade the performance of top-
performing deep learning networks [23]. This generaliza-

3More experimental results can be found in the supplemental material.

tion problem is observed more severely as the structure of
the network becomes more complex than necessary [4].
Therefore, the generalization ability of a network is one
of the essential parts of evaluating deep-learning-based ap-
proaches. To confirm the generalization ability of the pro-
posed network architecture on the state-of-the-art networks,
we set a domain gap between training and test sets. In
this experiment, we trained the network variations using the
GoPro dataset and tested the networks with the RealBlur
dataset. The results are shown in Table 2 and Fig. 7 (b).
As compared to the previous experiment on the GoPro test
set, the performance results for all networks are degraded.
PSS-NSCChannel↑ and DMPHNChannel↑ even show lower per-
formance than their baseline networks. On the contrary, the
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Figure 8. Experimental results for MSCNN, DMPHN, PSS-NSC with and without the proposed approach from the GoPro dataset.

proposed approach consistently recorded performance im-
provement in terms of both PSNR and SSIM as compared
with the baseline networks.

5. Conclusion
In this paper, we propose a novel one-encoder-two-

decoder network for single image deblurring. We showed
that the proposed architecture guides the network to divide
the original deblurring problem into two sub-problems by
separating the blur residuals along the x-axis and y-axis,
each of which is assigned to each decoder. In addition, we
share the rotated parameters of one decoder with the other to
prevent any undesired division of complementary features.
Extensive performance evaluation demonstrated that XY-
Deblur outperforms the conventional U-Net structure while
consuming the same number of parameters. Also, we con-
firmed that the performance of the state-of-the-art networks
can be further boosted by substituting their base structure
with the proposed network.

6. Limitation
These are the possible limitations of the proposed image

deblurring method.

1. Although XYDeblur maintains the number of param-
eters used in the network and improves the perfor-
mance, the increase in the number of GMACs and the
VRAM usage is inevitable. If the network is used

in circumstances where the computational capacity is
limited, overall adjustment of the network might be re-
quired.

2. To apply the proposed network, learning the residual
image r = y − x is essential since the two decoders
attempt to reconstruct the lost high-frequency com-
ponents in a complementary manner. Without resid-
ual learning, the entire image including the lost high-
frequency information should be estimated, which
could overload the network and eventually hinder the
deblurring performance.

3. Using the proposed network as a base network archi-
tecture can be constrained when the deblurring net-
work has a complicated architecture. Since we con-
struct the proposed network based on a very simple U-
Net structure, if a deblurring network contains a com-
plex decoder design, e.g., transfer blocks in decoders,
it can be necessary to further redesign or modify the
architectures in the two decoders of the proposed net-
work to implement the desired network.
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