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Abstract

Adversarial training (AT) is always formulated as a min-
imax problem, of which the performance depends on the
inner optimization that involves the generation of adver-
sarial examples (AEs). Most previous methods adopt Pro-
jected Gradient Decent (PGD) with manually specifying at-
tack parameters for AE generation. A combination of the
attack parameters can be referred to as an attack strategy.
Several works have revealed that using a fixed attack strat-
egy to generate AEs during the whole training phase lim-
its the model robustness and propose to exploit different at-
tack strategies at different training stages to improve robust-
ness. But those multi-stage hand-crafted attack strategies
need much domain expertise, and the robustness improve-
ment is limited. In this paper, we propose a novel frame-
work for adversarial training by introducing the concept of
“learnable attack strategy”, dubbed LAS-AT, which learns
to automatically produce attack strategies to improve the
model robustness. Our framework is composed of a tar-
get network that uses AEs for training to improve robust-
ness, and a strategy network that produces attack strate-
gies to control the AE generation. Experimental evalua-
tions on three benchmark databases demonstrate the su-
periority of the proposed method. The code is released at
https://github.com/jiaxiaojunQAQ/LAS-AT.

1. Introduction
Although deep neural networks (DNNs) have achieved

great success in academia and industry, they could be easily
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Figure 1. The difference between conventional AT and LAS-AT.

(a) Conventional AT methods use a hand-crafted attack strategy to

generate AEs. (b) The proposed LAS-AT uses a strategy network

to automatically produce sample-dependent attack strategies.

fooled by adversarial examples (AEs) [15,44] generated via

adding indistinguishable perturbations to benign images.

Recently, many studies [2, 3, 12, 13, 19, 25, 32, 47] focus on

generating AEs. It has been proven that many real-world

applications [14, 30] of DNNs are vulnerable to AEs, such

as image classification [15, 22], object detection [26, 50],

neural machine translation [23, 62], etc. The vulnerability

of DNNs makes people pay attention to the safety of artifi-

cial intelligence and brings new challenges to the applica-

tion of deep learning [17,18,54,55,61]. Adversarial training

(AT) [33, 35, 43, 52] is considered as one of the most effec-

tive defense methods to improve adversarial robustness by

injecting AEs into the training procedure through a mini-

max formulation. Under the minimax framework, the gen-

eration of AEs plays a key role in determining robustness.

Several recent works improve the standard AT method

from different perspectives. Although existing methods [4,

9,10,16,27,39] have made significant progress in improving

robustness, they rarely explore the impact of attack strategy

on adversarial training. First, as shown in Fig. 1a, most

existing methods leverage a hand-crafted attack strategy to

generate AEs by manually specifying the attack parameters,

e.g., PGD attack with the maximal perturbation of 8, itera-

tion of 10, and step size of 2. A hand-crafted attack strategy
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Figure 2. The framework of proposed LAS-AT. It consists of a tar-

get network and a strategy network. Given a clean image, the strat-

egy network generates an attack strategy. The AE generator takes

the strategy as well as the target network to generate an AE which

is used to train the target network. Some non-differentiable op-

erations (e.g. choosing the iteration times) related to attack break

gradient flow from the target network to the strategy network. As

an alternative approach, REINFORCE algorithm [51] is applied to

optimize the strategy network and we utilize the so-called “REIN-

FORCE gradient” to update the strategy network.

lacks flexibility and might limit the generalization perfor-

mance. Second, most methods use only one attack strat-

egy. Though some works [5, 48, 58] have realized that ex-

ploiting different attack strategies at different training stages

could improve robustness, i.e., using weak attacks at the

early stages and strong attacks at the late stages, they use

manually designed metrics to evaluate the difficulty of AEs

and still use one strategy at each stage. However, they need

much domain expertise, and the robustness improvement is

limited. They use sample-agnostic attack strategies that are

hand-crafted and independent of any information of specific

samples. There exist statistical differences among samples,

and attack strategy should be designed according to the in-

formation of the specific sample, i.e., sample-dependent.

To alleviate these issues, we propose a novel adversarial

training framework by introducing the concept of “learnable

attack strategy”, dubbed LAS-AT, which learns to automat-

ically produce sample-dependent attack strategies for AE

generation instead of using hand-crafted ones (see Fig. 1b).

Our framework consists of two networks, i.e., a target net-

work and a strategy network. The former uses AEs for

training to improve robustness, while the latter produces at-

tack strategies to control the generation of AEs. The two

networks play a game where the target network learns to

minimize the training loss of AEs while the strategy net-

work learns to generate strategies to maximize the training

loss. Under such a gaming mechanism, at the early train-

ing stages, weak attacks can successfully attack the target

network. As the robustness improves, the strategy network

learns to produce strategies to generate stronger attacks.

Unlike [5] [48], and [58] that use designed metrics and

hand-crafted attack strategies, we use the strategy network

to automatically produce an attack strategy according to the

given sample. As the strategy network updates according to

the robustness of the target model and the given sample, the

strategy network figures out to produce different strategies

accordingly at different stages, rather than setting up any

manually designed metrics or strategies. We propose two

loss terms to guide the learning of the strategy network. One

evaluates the robustness of the target model updated with

the AEs generated by the strategy. The other evaluates how

well the updated target model performs on clean samples.

Our main contributions are in three aspects: 1) We propose

a novel adversarial training framework by introducing the

concept of “learnable attack strategy”, which learns to au-

tomatically produce sample-dependent attack strategies to

generate AEs. Our framework can be combined with other

state-of-the-art methods as a plug-and-play component. 2)
We propose two loss terms to guide the learning of the strat-

egy network, which involve explicitly evaluating the robust-

ness of the target model and the accuracy of clean samples.

3) We conduct experiments and analyses on three databases

to demonstrate the effectiveness of the proposed method.

2. Related Work
Adversarial Attack Methods. As the vulnerability of

deep learning models has been noticed [44], many works

studied the model’s robustness and proposed a series of

adversarial attack methods. Fast Gradient Sign Method

(FGSM) [15] was a classic adversarial attack method,

which made use of the gradient of the model to generate

AEs. Madry et al. [35] proposed a multi-step version of

FGSM, called Projected Gradient Descent (PGD). To solve

the problem of parameter selection in FGSM, Moosavi-

Dezfooli et al. [36] proposed a simple but accurate method,

called Deepfool, to attack deep neural networks. It gen-

erated AEs by using an iterative linearization of the clas-

sification model. Carlini-Wagner et al. [6] proposed sev-

eral powerful attack methods that could be widely used to

evaluate the robustness of deep learning models. Moreover,

Croce et al. [8] proposed two improved methods (APGD-

CE, APGD-DLR) of the PGD-attack. They did not need to

choose a step size or alternate a loss function. And then

they combined the proposed method with two complemen-

tary adversarial attack methods (FAB [7] and Square [1]) to

evaluate the robustness, which was called AutoAttack (AA).

Adversarial Training Defense Methods. Adversarial

training is an effective way to improve robustness by us-

ing AEs for training, such as [28,37,41,45,46,49,53]. The

standard adversarial training (AT) is formulated as a mini-

max optimization problem in [35]. The objective function

is defined as:

min
w

E(x,y)∼D[max
δ∈Ω

L(fw(x+ δ), y)], (1)

where D represents an underlying data distribution and Ω
represents the perturbation set. x represents the example,
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y represents the corresponding label, and δ represents the

indistinguishable perturbation. fw(·) represents the tar-

get network and L(fw(x), y) represents the loss function

of the target network. The inner maximization problem

of standard AT can be regarded as the attack strategy that

guides the creation of AEs, which is the core to improve

the model robustness. A training strategy is designed ac-

cordingly, which significantly improves the network’s ro-

bustness. Madry et al. proposed the prime AT frame-

work, PGD-AT [35], to improve the robustness. And Rice

et al. proposed a early stopping version [40] of PGD-AT,

which gained a great improvement. Zhang et al. [57] ex-

plored a trade-off between standard accuracy and adversar-

ial robustness and proposed a defense method (TRADES)

that can trade standard accuracy off against adversarial ro-

bustness. Wu et al. [53] investigated the weight loss land-

scape and proposed an effective Adversarial Weight Pertur-

bation (AWP) method to improve the robustness. Cui et
al. [9] proposed to adapt the logits of one model trained on

clean data to guide adversarial training (LBGAT). These AT

methods adopted a fxed attack strategy to conduct AT. Some

AT methods exploited different attack strategies at different

training stages to improve robustness. In detail, Cai et al. [5]

adopted curriculum adversarial training (CAT) to improve

model robustness. Wang et al. [48] designed a criterion to

measure the convergence quality and proposed dynamic ad-

versarial training (DART) to improve the robustness of the

target model. Zhang et al. [58] proposed to search for the

least adversarial data for AT, which could be called friendly

adversarial training (FAT).

3. The Proposed Approach
We propose a novel adversarial training framework by

introducing the concept of “learnable attack strategy”. We

first introduce the pipeline of our framework in Sec. 3.1 and

then present our novel formulation of adversarial training in

Sec. 3.2 and our proposed loss terms in Sec. 3.3 followed

by the proposed optimization algorithm in Sec. 3.4.

3.1. Pipeline of the Proposed Framework

The pipeline of our framework is shown in Fig. 2. Our

model is composed of a target network and a strategy net-

work. The former uses AEs for training to improve its ro-

bustness, whilst the latter generates attack strategies to cre-

ate AEs to attack the target network. They are competitors.

Target Network. The target network is a convolutional net-

work for image classification, denoted as ŷ = fw(x) where

ŷ is the estimation of the label, x is an image, and w are the

parameters of the network.

Strategy Network. The strategy network generates adver-

sarial attack strategies to control the AE generation, which

takes a sample as input and outputs a strategy. Since the

strategy network updates gradually, it gives different strate-

gies given the same sample as input according to the ro-

bustness of the target network at different training stages.

The architecture of the strategy network is illustrated in

the supplementary material. Given an image, the strat-

egy network outputs an attack strategy, i.e., the configu-

ration of how to perform the adversarial attack. Let a =
{a1, a2, ..., aM} ∈ A denote a strategy of which each el-

ement refers to an attack parameter. A denotes the value

space of strategy. Parameter am ∈ {1, 2, ...,Km} has

Km options, which is encoded by a one-hot vector. The

meaning of each option differs in different attack param-

eters. For example, PGD attack [35] has three attack pa-

rameters, i.e., the attack step size α, the attack iteration I ,

and the maximal perturbation strength ε. Each parameter

has Km optional values to select, e.g., the options for α
could be {0.1, 0.2, 0.3, ...} and the options for I could be

{1, 10, 20, ...}. A combination of the selected values for

these attack parameters is an attack strategy. The strategy

is used to created AEs along with the target model. The

strategy network captures the conditional distribution of a

given x and θ, p(a|x;θ), where x is the input image and θ
denotes the strategy network parameters.

Adversarial Example Generator. Given a clean image,

the process of the generation of AEs can be defined as:

xadv := x+ δ ← g(x,a,w), (2)

where x is a clean image, xadv is its corresponding AEs,

and δ is the generated perturbation. a is an attack strategy.

w represents the target network parameters, and g(·) is the

PGD attack. The process is equivalent to solving the inner

optimization problem of Eq. (1) given an attack strategy a,

i.e., finding the optimal perturbation to maximize the loss.

3.2. Novel Formulation of Adversarial Training

By using Eq. (2) that represents the process of AE gen-

eration, the standard AT with a fixed attack strategy can be

rewritten as:

min
w

E(x,y)∼D L(fw(xadv), y), (3)

where xadv = g(x,a,w) and a is the hand-crafted attack

strategy. D is the training set. L is the cross-entropy loss

function which is used to measure the difference between

the predicted label of the AE xadv and the ground truth y.

Differently, instead of using a hand-crafted sample-

agnostic strategy, we use a strategy network to produce

automatically generated sample-dependent strategies, i.e.,
p(a|x;θ). Our novel formulation for AT can be defined as:

min
w

E(x,y)∼D[max
θ

Ea∼p(a|x;θ) L(fw(xadv), y)]. (4)
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Compared to the standard AT, the most distinct difference

lies in the generation of AEs, i.e., xadv (2). The standard AT

uses a hand-crafted sample-agnostic strategy a to solve the

inner optimization problem while we use a strategy network

to produce the sample-dependent strategy by p(a|x;θ), i.e.,
our strategy is learnable. Our AE generation involves the

parameters θ of the strategy network, which leads that our

loss being a function of the parameters of both networks.

Comparing Eq. (3) and Eq. (4), our formulation is a min-

imax problem and the inner optimization involves the pa-

rameters of the strategy network. From Eq. (4), it can be

observed that the two networks compete with each other in

minimizing or maximizing the same objective. The target

network learns to adjust its parameters to defend AEs gen-

erated by the attack strategies, while the strategy network

learns to improve attack strategies according to the given

samples to attack the target network. At the beginning of

the training phase, the target network is vulnerable, which a

weak attack can fool. Hence, the strategy network can eas-

ily generate effective attack strategies. The strategies could

be diverse because both weak and strong attacks can suc-

ceed. As the training process goes on, the target network

becomes more robust. The strategy network has to learn to

generate attack strategies that create stronger AEs. There-

fore, the gaming mechanism could boost the robustness of

the target network gradually along with the improvement of

the strategy network.

3.3. The Proposed Loss Terms

Loss of Evaluating Robustness. To guide the learning of

the strategy network, we propose a new metric to evalu-

ate attack strategy by using the robustness of the one-step

updated version of the target model. Specifically, an at-

tack strategy a is first used to create an AE xadv which is

then used to adjust the parameters of the target model w
for one step through the first-order gradient descent. The

attack strategy is criticized to be effective if the updated tar-

get model ŵ can correctly predict labels for AEs xâ
adv that

generated by another attack strategy â, e.g., PGD with the

maximal perturbation strength of 8, iterative steps of 10 and

step size of 2. The loss function of evaluating robustness

can be defined as:

L2(θ) = −L(f(xâ
adv, ŵ), y), (5)

where ŵ = w − λ∇wL1|xadv
is the parameters of the up-

dated target network and λ is the step size. L1 refers to the

loss in Eq. (4), i.e., L1(w,θ) := L(f(xadv,w), y). xadv

is created by the attack strategy a, which is to be evalu-

ated. xâ
adv := g(x, â, ŵ) is the AE created by another at-

tack strategy â, which is used to evaluate the robustness of

the updated model ŵ. Please note that L2 is used to eval-

uate the attack strategy and w is treated as a variable here

rather than parameters to optimize. Hence, the value of w

is used in Eq. (5), but the gradient of L2 will not be back-

propagated to update w through ŵ. Eq. (5) indicates that

a larger L2 means the updated target model is more robust,

i.e., a better attack strategy.

Loss of Predicting Clean Samples. A good attack strategy

should not only improve the robustness of the target model

but also maintain the performance of predicting clean sam-

ples, i.e., clean accuracy. To further provide guidance for

learning the strategy network, we also consider the perfor-

mance of the one-step updated target model in predicting

clean samples. The loss of evaluating the attack strategy

can be defined as:

L3(θ) = −L(f(x, ŵ), y), (6)

where ŵ is the same as that in Eq. (5), i.e., the parameters

of the one-step updated target model. L3 is the function of

θ as the AE xadv involves computing ŵ and a is the output

of the strategy network. Eq. (6) indicates that a larger L3

means the updated target model has a lower loss in clean

samples, i.e., a better attack strategy.

Formal Formulation. Incorporating the two proposed

loss terms, our formulation for AT can be defined as:

min
w

E(x,y)∼D

[
max
θ

Ea∼p(a|x;θ) [L1(w,θ)+

min
w

E(x,y)∼D[max
θ

EEEEαL2(θ) + βL3(θ)]

]
,

(7)

where L1 is a function of the parameters of both the target

network and the strategy network while L2 and L3 involve

the parameters of the strategy network. α and β are the

trade-off hyper-parameters of the two loss terms.

3.4. Optimization

We propose an algorithm to alternatively optimize the

parameters of the two networks. Given θ, the subproblem

of optimizing the target network can be defined as,

min
w

E(x,y)∼DEa∼p(a|x;θ)[L1(w,θ)]. (8)

Given a clean image, the strategy network generates a strat-

egy distribution p(a|x;θ), and we randomly sample a strat-

egy from the conditional distribution. The sampled strat-

egy is used to generate AEs. After collecting the AEs for a

batch of samples, we can update the parameters of the target

model through gradient descent, i.e.,

wt+1 = wt − η1
1

N

N∑
n=1

∇wL (
f(xn

adv,w
t), yn

)
, (9)

where N is the number of samples in a mini batch and η1 is

the learning rate.
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Given w, the subproblem of optimizing the parameters

of the strategy network can be written as,

max
θ

J(θ), (10)

where J(θ) := E(x,y)∼D Ea∼p(a|x;θ) [L1 + αL2 + βL3].
The biggest challenge of this optimization problem is that

the process of AE generation (see Eq. (2)) is not differen-

tiable, namely, the gradient can not be backpropagated to

the attack strategy through the AEs. Moreover, there are

some non-differentiable operations (e.g. choosing the itera-

tion times) related to attack [24, 38], which sets an obstacle

to backpropagate the gradient to the strategy network.

Following by the REINFORCE algorithm [51], we can

compute the derivative of the objective function J(θ) with

respect to the parameters θ as:

∇θJ(θ) = ∇θE(x,y)∼DEa∼p(a|x;θ) [L0] (11)

= E(x,y)∼D

∫
a

L0 · ∇θp(a|x;θ)da

= E(x,y)∼D

∫
a

L0 · p(a|x;θ)∇θ log p(a|x;θ)da
= E(x,y)∼DEa∼p(a|x;θ)[L0 · ∇θ log p(a|x;θ)],

where L0 = L1 + αL2 + βL3. Similar to solving Eq. (8),

we sample attack strategy from the conditional distribution

of strategy to generate AEs. The gradient with respect to

the parameters can be approximately computed as:

∇θJ(θ) ≈ 1

N

N∑
n=1

L0(x
n;θ) · ∇θ log pθ(a

n|xn). (12)

Then, the parameters of the strategy network can be updated

through gradient ascent, i.e.,

θt+1 = θt + η2∇θJ(θ
t), (13)

where η2 is the learning rate. And θ and w are updated

iteratively. We update w every k times of updating θ.

3.5. Convergence Analysis

Based on (9) and (13), we have the following conver-

gence result of the proposed adversarial training algorithm.

Theorem 1. Suppose that the objective function L0 = L1+
αL2+βL3 in (7) satisfied the gradient Lipschitz conditions
w.r.t. θ and w, and L0 is μ-strongly concave in Θ, the
feasible set of θ. If x̂adv(x,w) is a σ-approximate solution
of the �∞ ball with radius ε constraint, the variance of the
stochastic gradient is bounded by a constant σ2 > 0, and
we set the learning rate of w as

η1 = min

⎛
⎝ 1

L0
,

√
L0(w0)−min

w
L0(w)

σ2TL0

⎞
⎠ , (14)

Table 1. Test robustness (%) on the CIFAR-10 database using

ResNet18. Number in bold indicates the best.

Method PGD-AT [40] k=1 k=10 k=20 k=40 k=60

Clean 82.56 82.88 82.38 82.00 82.3 82.10

PGD-10 53.15 53.71 53.89 53.53 54.29 53.85

Time(min) 261 1378 432 418 365 333

where L0 = LwθLθw/μ + Lww is the Lipschitz constants
of L0, it holds that

1

T

T−1∑
t=0

E
[‖∇L0(w

t)‖22
] ≤ 4σ

√
ΔL0

T
+

5δL2
wθ

μ
, (15)

where T is the maximum adversarial training epoch number
and Δ = L0(w

0)−min
w

L0(w).

The detailed proof is presented in the supplementary
material. By Theorem 1, if the inner maximization process

can obtain a δ-approximation of x∗
adv, the proposed method

LAS-AT can archive a stationary point by sub-linear rate

with the precision 5δL2
wθ/μ. Moreover, if 5δL2

wθ/μ is suf-

ficient small, our method can find the desired robust model

wT with a good approximation of x∗
adv.

4. Experiments
To evaluate the proposed method, we conduct experi-

ments on three databases, i.e., CIFAR10 [29], CIFAR100

[29], and Tiny ImageNet [11]. The details of these

databases are presented in the supplementary material.

4.1. Settings

Competitive Methods. To evaluate the proposed method

effectiveness in improving the robustness of a target model,

we combine it with several state-of-the-art adversarial train-

ing methods and illustrate its performance improvements.

We choose not only the most popular methods such as the

early stopping PGD-AT [40] and TRADES [57] as base

models but also the recently proposed method AWP [53].

The combinations of our method and these models are re-

ferred to as LAS-PGD-AT, LAS-TRADES, and LAS-AWP,

respectively. Note that we use the same training settings
as the base models [40, 53, 57] to train our proposed mod-

els, including data splits and training losses. Then we

compare the proposed LAS-PGD-AT, LAS-TRADES, and

LAS-AWP with the following baselines: (1) PGD-AT [40],

(2) TRADES [57], (3) SAT [42], (4) MART [49], (5)

FAT [58], (6) GAIRAT [59], (7) AWP [53] and (8) LB-

GAT [9]. Moreover, we compare our method with CAT [5],

DART [48] and FAT [58] They use different attack strate-

gies at different training stages to conduct AT. Besides, we

also compare our method with other state-of-the-art hyper-

parameter search methods [34, 60] to evaluate our method.
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Table 2. Test robustness (%) on the CIFAR-10 database using WRN34-10. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA

PGD-AT [40] 85.17 56.07 55.08 54.88 53.91 51.69

TRADES [57] 85.72 56.75 56.1 55.9 53.87 53.40

MART [49] 84.17 58.98 58.56 58.06 54.58 51.10

FAT [58] 87.97 50.31 49.86 48.79 48.65 47.48

GAIRAT [59] 86.30 60.64 59.54 58.74 45.57 40.30

AWP [53] 85.57 58.92 58.13 57.92 56.03 53.90

LBGAT [9] 88.22 56.25 54.66 54.3 54.29 52.23

LAS-AT(ours) 86.23 57.64 56.49 56.12 55.73 53.58

LAS-TRADES(ours) 85.24 58.01 57.07 56.8 55.45 54.15

LAS-AWP(ours) 87.74 61.09 60.16 59.79 58.22 55.52

Table 3. Test robustness (%) on the CIFAR-100 database using WRN34-10. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA

PGD-AT [40] 60.89 32.19 31.69 31.45 30.1 27.86

TRADES [57] 58.61 29.20 28.66 28.56 27.05 25.94

SAT [42] 62.82 28.1 27.17 26.76 27.32 24.57

AWP [53] 60.38 34.13 33.86 33.65 31.12 28.86

LBGAT [9] 60.64 35.13 34.75 34.62 30.65 29.33

LAS-AT(ours) 61.80 33.45 32.77 32.54 31.12 29.03

LAS-TRADES(ours) 60.62 32.99 32.53 32.39 29.51 28.12

LAS-AWP(ours) 64.89 37.11 36.36 36.13 33.92 30.77

Evaluation. We choose several adversarial attack methods

to attack the trained models, including PGD [35], C&W [6]

and AA [8] which consists of APGD-CE [8], APGD-DLR

[8], FAB [7] and Square [1]. Following the default setting

of AT, the max perturbation strength ε is set to 8 for all at-

tack methods under the L∞. The clean accuracy and robust

accuracy are used as the evaluation metrics.

Implementation Details. On CIFAR-10 and CIFAR-100,

we use ResNet18 [20] or WideResNet34-10(WRN34-10)

[56] as the target network. On Tiny ImageNet, we use Pre-

ActResNet18 [21] as the target model. For all experiments,

we train the target network for defense baselines, follow-

ing their original papers. For the training hyper-parameters

of the target network of our method, we use the same set-
ting as the base models [40, 53, 57]. The detailed settings

are presented in the supplementary material. For the tar-

get network, we adopt SGD momentum optimizer with a

learning rate of 0.1, weight decay of 5 × 10−4. We use

ResNet18 as the backbone of the strategy network. For the

strategy network of our method, we adopt SGD momentum

optimizer with a learning rate of 0.001. The trade-off hyper-

parameters α and β are set to 2.0 and 4.0. The range of the

maximal perturbation strength is set from 3 to 15, the range

of the attack step is set from 1 to 6, and the range of the

attack iteration is set from 3 to 15.

4.2. Hyper-parameter Selection

The hyper-parameter k controls the alternative update of

w and θ. We update w every k times of updating θ. It

not only affects model robustness but also affects model

training efficiency. A hyper-parameter selection experiment

with ResNet18 is conducted on CIFAR-10 to select the op-

timal hyper-parameter k. The results are shown in Table 1.

The training time of the proposed LAS-PGD-AT decreases

along with the increase of parameter k. The more time the

strategy network requires for training, the smaller the k is.

When k = 40, the proposed LAS-PGD-AT achieves the best

adversarial robustness. Considering AT efficiency, we set k

to 40. The selection of hyper-parameters α and β is pre-

sented in the supplementary material.

4.3. Comparisons with Other AT Methods

Our method is a plug-and-play component that can be

combined with other AT methods to boost their robustness.

Comparisons on CIFAR-10 and CIFAR-100. The results

on CIFAR-10 and CIFAR-100 are shown in Table 2 and Ta-

ble 3. Analyses are as follows. First, the three proposed

models outperform their base models under most attack sce-

narios. In a lot of cases, our method not only improves

the robustness but also improves the clean accuracy of the

base models though there is always a trade-off between ac-

curacy and robustness. For example, on CIFAR-10 when
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Table 4. Test robustness (%) on the Tiny Imagenet database using

PreActResNet18. Number in bold indicates the best.

Method Clean PGD-50 C&W AA

PGD-AT [40] 43.98 19.98 17.6 13.78

TRADES [57] 39.16 15.74 12.92 12.32

AWP [53] 41.48 22.51 19.02 17.34

LAS-AT(ours) 44.86 22.16 18.54 16.74

LAS-TRADES(ours) 41.38 18.36 14.5 14.08

LAS-AWP(ours) 45.26 23.42 19.88 18.42

Table 5. Test robustness (%) on the CIFAR-10 and CIFAR-100

database. Number in bold indicates the best.

Database Target network Method Clean AA

CIFAR-10 WRN70-16
Gowal et al [16] 85.29 57.20

LAS-AWP(ours) 85.66 57.61

CIFAR-100 WRN34-20
LBGAT [9] 62.55 30.20

LAS-AWP(ours) 67.31 31.92

Table 6. Test robustness (%) on the CIFAR-10 database using

ResNet18. Number in bold indicates the best.

L1 L2 L3 clean PGD-10 AA

� 81.83 53.88 49.06

� � 81.54 53.98 49.34

� � 81.90 53.89 49.20

� � � 82.3 54.29 49.89

Table 7. Test robustness (%) on the CIFAR-10 database using

WRN34-10. Comparisons with Madry, CAT, DART and FAT. The

results are reported in [58]. Number in bold indicates the best.

Method Clean FGSM PGD-20 C&W

Madry-AT [35] 87.3 56.1 45.8 46.8

CAT [5] 77.43 57.17 46.06 42.28

DART [48] 85.03 63.53 48.70 47.27

FAT [58] 87.97 65.94 49.86 48.65

LAS-Madry-AT 84.95 67.16 55.61 54.31

using WRN34-10 as the target network, our method im-

proves the clean accuracy of powerful AWP by about 2.2%
and also improves the performance of AWP under PGD-10

attack and AA attack by about 2.1% and 1.62%, respec-

tively. Moreover, the proposed LAS-AWP achieves the best

robustness performance under all attack scenarios. We at-

tribute the improvements to using automatically generated

attack strategies instead of hand-crafted ones. Second, on

CIFAR-100, the proposed LAS-AWP not only achieves the

highest accuracy on clean images but also achieves the best

robustness performance under all attack scenarios. In de-

tail, our LAS-AWP outperforms the original AWP 4.5% and

1.9% on the clean accuracy and AA attack accuracy, respec-

tively. Moreover, our LAS-AWP outperforms the powerful

LBGAT under all attack scenarios.

Comparisons on Tiny ImageNet. Following [31], we use

PreActResNet18 [21] as the target model for evaluation on

Tiny ImageNet. The results are shown in Table 4. As Tiny

ImageNet has more classes than CIFAR-10 and CIFAR-

100, the defense of AEs is more challenging. Our method

improves the clean and adversarial robustness accuracy of

the three base models.

Comparisons with state-of-the-art robustness model.
Auto Attack (AA) is a reliable and strong attack method

to evaluate model robustness. It consists of three white-box

attacks and a black-box attack. The details is introduced

in Sec 2. Under their leaderboard results 1, on CIFAR-10,

Gowal et al. [16] study the impact of hyper-parameters (

such as model weight averaging and model size ) on model

robustness and adopt WideResNet70-16 (WRN-70-16) to

conduct AT, which ranks the 1st under AA attack without

additional real or synthetic data. We also adopt WRN-70-16

for our method. LAS-AWP can boost the model robustness

and achieve higher robustness accuracy. On CIFAR-100,

Cui et al. train WideResNet34-20 (WRN-34-20) for LB-

GAT and achieves state-of-the-art robustness without addi-

tional real or synthetic data. We also adopt WRN-34-20 for

our method. LAS-AWP can also achieve higher robustness

accuracy. The result is shown Table 5.

4.4. Ablation Study

In our formulation in Eq. (7), besides the loss L1, we pro-

pose two additional loss terms to guide the learning of the

strategy network, i.e., the loss of evaluating robustness L2

and the loss of predicting clean samples L3. To validate the

effectiveness of each element in the objective function, we

conduct ablation experiments with ResNet18 on CIFAR-10.

We train four LAS-PGD-AT models by using L1, L1&L2,

L1&L3, and L1&L2&L3, respectively. The trained mod-

els are attacked by a set of adversarial attack methods. The

results are shown in Table 6. The classification accuracy is

the evaluation metric. Clean represents using clean images

for testing while other attack methods use AEs for testing.

Analyses are summarized as follows. First, when in-

corporating the loss L2 only, the performance of robust-

ness under all attacks improves while the clean accuracy

slightly drops. When incorporating the loss L3 only, the

clean accuracy improves, but the performance of robustness

under partial attacks slightly drops. The results show that

L2 contributes more to improve the robustness and L3 con-

tributes more to improve the clean accuracy. Second, us-

ing all losses achieves the best performance in robustness

as well as the clean accuracy, which indicates that the two

losses are compatible and combining them could remedy

the side effect of independent use.

4.5. Performance Analysis

Comparisons with hand-crafted attack strategy meth-
ods. To investigate the effectiveness of automatically gener-

ated attack strategies generated by our method, we compare

1https://github.com/fra31/auto-attack
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Figure 3. Comparisons with the hyper-parameter search methods

using WRN34-10 on the CIFAR-10 database. x-axis represents

the attack methods. y-axis represents the robust accuracy.

our LAS-AT with some AT methods (CAT [5], DART [48]

and FAT [58]) which adopt dynamic hand-crafted attack

strategies for training. For a fair comparison, we keep the

training and evaluation setting as same as those used in

FAT [58]. The details are presented in the supplementary
material. The result is shown in Table 7. Our method out-

performs competing methods under all attacks. It indicates

that compared with previous hand-crafted attack strategies,

the proposed automatically generated attack strategies can

achieve the greater robustness improvement.

Comparisons with hyper-parameter search methods.
We compare the proposed method with other hyper-

parameter search methods that include a classical hyper-

parameter search method (random search) and two au-

tomatic hyper-parameter search methods (OHL [34] and

AdvHP [60]). For a fair comparison, the same hyper-

parameters and search range that are used in our method

(see Sec 4.1) are adopted for them. The detail settings are

presented in the supplementary material. The result is

shown in Fig. 3. It can be observed that our method achieves

the best robustness performance under all attack scenarios.

The automatically generated attack strategies generated by

our method are more suitable for AT.

Adversarial Training from Easy to Difficult. To inves-

tigate how LAS-AT works, we analyze the distribution of

the strategy network’s attack strategies at different training

stages. Experiments using ResNet18 with LAS-PGD-AT

are performed on the CIFAR-10 database. The range of

the maximal perturbation strength is set from 3 to 15. The

distribution evolution of the maximal perturbation strength

during adversarial training is illustrated in Fig. 4.

At the beginning of AT, the distribution covers all the

optional values of the maximal perturbation strength. Each

value has a chance to be selected, which ensures the diver-

sity of AEs. As the training process goes on, the percent-

age of small perturbation strengths decreases. At the late

stages, the distribution of the maximal perturbation strength

is occupied by several large values. This phenomenon indi-

cates that the strategy network gradually increases the per-

Figure 4. The distribution evolution of the maximal perturbation

strength in LAS-PGD-AT during training.

centage of large perturbation strengths to generate strong

AEs because the robustness of the target network is gradu-

ally boosted by training with the generated AEs. Therefore,

it can be observed that under the gaming mechanism, our

method starts training with diverse AEs when the target net-

work is vulnerable, and then learns with more strong AEs

at the late stages when the robustness of the target network

improves. CAT [5], DART [48] and FAT [58] adopt hand-

crafted strategies to use weak AEs at early stages and then

use strong AEs at late stages. Unlike them, under our frame-

work, the strategy network automatically generates strate-

gies that determine the difficulty of AEs, according to the

robustness of the target network at different stages.

5. Conclusion and Discussion
We propose a novel adversarial training framework

by introducing the concept of “learnable attack strategy”,

which is composed of two competitors, i.e., a target network

and a strategy network. Under the gaming mechanism,

the strategy network learns to produce dynamic sample-

dependent attack strategies according to the robustness of

the target model for adversarial example generation, instead

of using hand-crafted attack strategies. To guide the learn-

ing of the strategy network, we also propose two loss terms

that involve evaluating the robustness of the target network

and predicting clean samples. Extensive experimental eval-

uations are performed on three benchmark databases to

demonstrate the superiority of the proposed method.
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