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Abstract

QR (quick response) codes are widely used as an offline-
to-online channel to convey information (e.g., links) from
publicity materials (e.g., display and print) to mobile de-
vices. However, QR codes are not favorable for taking up
valuable space of publicity materials. Recent works pro-
pose invisible codes/hyperlinks that can convey hidden in-
formation from offline to online. However, they require
markers to locate invisible codes, which fails the purpose
of invisible codes to be visible because of the markers.
This paper proposes a novel invisible information hiding ar-
chitecture for display/print-camera scenarios, consisting of
hiding, locating, correcting, and recovery, where invisible
markers are learned to make hidden codes truly invisible.
We hide information in a sub-image rather than the entire
image and include a localization module in the end-to-end
framework. To achieve both high visual quality and high re-
covering robustness, an effective multi-stage training strat-
egy is proposed. The experimental results show that the pro-
posed method outperforms the state-of-the-art information
hiding methods in both visual quality and robustness. In
addition, the automatic localization of hidden codes signif-
icantly reduces the time of manually correcting geometric
distortions for photos, which is a revolutionary innovation
for information hiding in mobile applications.

1. Introduction

Scanning QR codes with smartphones provides conve-

nience for people to obtain information from offline to on-

line anytime and anywhere. However, with the increasing

demand for the quality of experience (QoE), the unaesthetic

appearance limits the application of QR codes in many sce-

narios, such as interactive visual media, and IP protection

of user-generated (UGG). To achieve offline-to-online ex-

periences while maintaining good QoE, invisible informa-

tion hiding becomes a novel alternative [11, 20]. The core
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requirement of information hiding in display/print-camera

scenarios is to make the information invisible to human eyes

but detectable by mobile devices.

The general process of invisible information hiding in

display/print-camera scenarios includes five steps as Fig-

ure 1: (i) encoding information in images, (ii) display-

ing/printing, (iii) capturing, (iv) locating the encoded infor-

mation and correcting geometric distortion, and (v) decod-

ing. The main challenge of the above process is that the de-

coding procedure needs to recover the hidden information

from photos that contains distortions caused by the cam-

era imaging process. These distortions can be divided into

three categories according to their sources: (i) from envi-

ronments, e.g., brightness, contrast, and color distortions),

(ii) from camera sides, e.g., defocus blur, noise, and com-

pression, (iii) from photographer sides, e.g., motion blur

and geometric distortion. We define the image containing

hidden information as the encoded image. Existing meth-

ods [7, 8, 11, 20, 25] can recover hidden information under

the above-mentioned distortions. However, these methods

assume that the coordinates of the encoded image’s four

vertices in photos are provided such that the geometric dis-

tortion can be corrected by performing perspective trans-

formation. Thus, these methods require preprocessing to

locate the encoded image’s four vertices and rectify the en-

coded image from photos taken from different perspectives,

which is essential for the success of decoding [8].

Existing preprocessing methods commonly used to re-

move geometric distortions include two categories: manual

locating [8, 25] and automatic locating [7, 11, 20]. Manual

locating is to find the four vertices of the encoded image

manually, as Figure 1. However, manually locating the ver-

tex coordinates is time-consuming and sometimes is diffi-

cult when hidden codes are invisible. Traditional automatic

locating requires additional markers such that encoded im-

ages with distortions are distinguishable from backgrounds.

These methods add visible markers, such as bounding boxes

[11] and barcodes [7], around the encoded image. How-

ever, the markers break the invisibility of invisible codes. In

addition to the traditional automatic methods, Tancik et al.
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Figure 1. Comparison of the proposed method with the previous methods [7,8,11,20,25]. Compared to the previous methods, the proposed

method can automatically locate the accurate position containing the hidden information, which is efficient in mobile applications.

[20] propose StegaStamp, which is an end-to-end trainable

framework. The encoder and the decoder of [20] consist

of convolution neural network (CNN). During training, Ste-

gaStamp uses a series of differentiable distortion operations

to process the encoded image and feed the distorted image

to its decoder. Thus, the decoder can learn to locate and

recover information under different distortions. However,

experimental results show that the CNN-based decoder is

vulnerable to geometric distortions, thus additional mark-

ers (white borders) are still required to locate the encoded

image in [20].

This paper proposes a novel invisible information hid-

ing model in display/print-camera scenarios, which can

automatically locate the hidden information (data matrix)

by learning invisible markers. Inspired by the success of

[11, 20], the proposed model is a CNN-based end-to-end

framework consisting of an encoder, a distortion network, a

localization network, and a decoder. Unlike [7,8,11,20,25],

the encoder hides information (data matrix) in a sub-image

rather than the entire cover image such that the image area

outside the sub-image is considered as backgrounds in pho-

tos. The role of the distortion network is similar to [20] and

the decoder recovers information from the distorted sub-

image. We add a localization network between the distor-

tion network and the decoder for the first time. Different

from manual locating or adding artificial markers, the joint

training of the encoder and the localization network makes

the encoder learn to generate invisible markers around the

sub-image while the localization network learns to detect

these invisible markers under various distortions, especially

geometric distortions. In other words, the optimization goal

is to make the markers of the hidden codes invisible to the

human eyes, but can be detected by the localization net-

work. Given the detected coordinates of the sub-image, we

can remove geometric distortion such that the decoder only

needs to recover information from the corrected sub-image.

The main contributions of this paper are summarized below:

• We propose a novel invisible information hiding archi-

tecture in display/print-camera scenarios, consisting of

information hiding, locating, correcting, and informa-

tion recovery.

• For the first time, we learn invisible markers and de-

velop a localization module in the end-to-end frame-

work for hidden codes. The joint training of the en-

coder and the localization network generates markers

that are invisible to human eyes but detectable by the

localization network, which considerably reduces the

time of correcting geometric distortions without break-

ing the visual invisibility.

• To achieve a good trade-off between the detectabil-

ity of invisible markers, recovery accuracy of hidden

codes, and visual invisibility, we propose an effective

multi-stage training strategy. A series of loss functions

are designed to make the sub-images containing hid-

den information comfortable to human eyes.

2. Related Work

Barcode With the development of Internet of Things,

barcodes have become the most important medium to con-

nect the physical world and the virtual world. However,

barcodes are not favorable for their unaesthetic appear-

ances and take up valuable space of publicity materials. To

solve these limitations, many aesthetic barcodes are pro-

posed [1–4, 9, 10], which hide barcodes in natural images

and preserve visible markers for locating.

Invisible Information Hiding Invisible information

hiding includes two major branches: steganography and

digital watermarking. Steganography is widely used in the

field of information security. According to the require-

ments of information security, steganography algorithms

need high information capacity and security against ste-

ganalysis [14]. According to the domain where the in-

formation is hidden, steganography can be classified into

spatial steganography, e.g., Least Significant Bit (LSB),

and steganography in transform domain [12, 16]. Recently,
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Figure 2. The pipeline of the proposed model. The encoder hides a data matrix in a sub-image of the entire cover image. The distortion

network applies differentiable operations to process the entire image containing the encoded sub-image. The localization network locates

the accurate position of the distorted sub-image. According to the locating results, the geometric distortion of the sub-image is corrected

and the decoder recovers the hidden data matrix from the corrected sub-image.

many methods based on deep neural networks are proposed

[19, 22, 25, 26].

Different from steganography, the main application of

digital watermarking is the protection of property rights,

which requires high accuracy of watermarking recovery

rather than high security and information capacity. Digital

watermarking also includes spatial watermarking [13, 17],

transform domain watermarking [5, 7, 8, 21], and DNN-

based watermarking [11, 15, 20, 27, 29]. Recently, some

methods are proposed to replace the role of barcodes in

offline-to-online messaging [7, 8, 11, 20]. Since these meth-

ods do not consider locating hidden codes in the archi-

tectures, manually locating hidden codes or adding visible

markers is necessary for them to detect the encoded images

in practical applications.

3. Methodology
As shown in Figure 2, the proposed model is an end-to-

end framework including an encoder, a distortion network,

a localization network, and a decoder. The following sub-

sections will describe these modules in detail.

3.1. Encoder

The encoder hides information in a selected sub-image

of the cover image, making the hidden data matrix invisible

to human eyes. The cover image is a 256×256 RGB image,

the sub-image is a 96×96 sub-region of the cover image,

and the hidden information is a 96×96 data matrix. We

concatenate the data matrix to the last channel of the sub-

image to generate a 96×96×4 tensor and send this tensor to

the encoder as input. We employ U-Net [18] as the encoder

which receives the 96×96×4 tensor and outputs a 96×96

RGB image. After encoding, we replace the original sub-

image with the encoded sub-image.

3.2. Distortion Network

The imaging process from digital images to photos may

cause quality degradation to the displayed/printed images.

Inspired by [11, 20, 29], we insert a distortion network be-

tween the encoder and the localization network to simulate

the quality degradation caused by the camera imaging pro-

cess. During training, the distortion network uses differ-

entiable image processing operations to process the entire

image after encoding but does not hold any inference pa-

rameters. With the help of the distortion network, the lo-

calization network and the decoder can learn to resist these

distortions.

According to the sources of these distortions, we di-

vide the distortions into three categories: (i) the distor-

tion caused by environmental factors (brightness, contrast,
and color distortions), (ii) the distortion caused by cam-

era sides (Gaussian blur, random noise, and JPEG com-
pression), (iii) the distortion caused by photographer sides

(motion blur and geometric distortion). The implemen-

tation details and settings of these distortions are presented

in supplementary materials.

3.3. Localization Network

To locate the encoded sub-image from the entire dis-

torted image, the proposed architecture inserts a localiza-

tion network between the distortion network and the de-

coder. The localization network receives the entire distorted

image (256×256×3), predicts a heat map for each vertex

(64×64×4), and calculates the coordinates of each vertex
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Figure 3. The architecture of the localization network (HRNet

[23]).

according to the predicted heat maps Hpre. The localiza-

tion network is a variant version of HRNet [23] which is

an architecture with parallel multi-resolution sub-networks

and repeated multi-scale fusion. Figure 3 presents a sim-

plified architecture of HRNet. After receiving the distorted

image, the localization network uses two convolutional lay-

ers of 3× 3 kernels and stride size of 2 to process the input

image, and then sends the downsampled feature maps to the

first high-resolution module of HRNet.

The HRNet used in this paper includes four parallel sub-

networks of different scales (Figure 3 presents three parallel

sub-networks because of the limited paragraphs). Through

multi-scale feature extraction and multi-scale feature fu-

sion, the final feature maps in the first scale (the first row

of Figure 3) have enough information to predict a heat map

for each vertex. To supervise the regression of the coor-

dinates of the four vertices, we convert the coordinate val-

ues to heat maps Hgt (64×64×4) as the ground truth. The

ground-truth heat maps Hgt are generated by applying 2D

Gaussian distribution with a standard deviation of 1 pixel

centered on the coordinate value of each vertex. After pre-

diction, we convert the heat maps into coordinate values,

calculate a perspective matrix according to the coordinates,

and use perspective transformation to correct geometric dis-

tortion of the encoded sub-image. The size of the corrected

sub-image is 96×96×3.

3.4. Decoder

The decoder receives the encoded sub-image after cor-

rection (96×96×3) and recovers the hidden data matrix

(96×96×3). The structure of the decoder is the same as

the encoder [18]. Although geometric distortion has been

removed with the help of the localization network, the de-

coder input still has other distortions compared to the orig-

inal image, such as noise, blur, and changes in brightness

and contrast. These distortions come from the processing

of the distortion network, helping the decoder learn to re-

cover the hidden data matrix under these distortions.

In [20], Tancik et al. found that it is difficult to make

the decoder learn to resist geometric distortion by feeding

the geometrically distorted image to the decoder. Further-

more, to make the hidden information decodable under ge-

ometric distortion, the encoder of [20] will sacrifice the vi-

sual quality of the generated image. Thus, with the help of

the localization network, our decoder can focus on recover-

ing information under other distortions except for geometric

distortion.

3.5. Training Strategy

Before describing the training strategy, we analyze the

optimization objective of each module. The encoder aims

to achieve good visual quality for the encoded images, the

localization aims to find the target sub-image under distor-

tions, and the decoder is to recover hidden information un-

der distortions except for geometric distortion. However, it

is difficult to achieve a good trade-off between these com-

peting objectives if we jointly train the three modules at the

beginning. Thus, we propose an efficient multi-stage train-

ing strategy to achieve a good trade-off between visual qual-

ity and robustness.

3.5.1 The First Stage

In this stage, we only optimize the localization network and
the decoder. The loss function to optimize the localization
network is defined as Lloc:

Lloc(Hgt, Hhr) =
1

w2

w2∑
||Hgt −Hhr||2, (1)

where w is the map width, Hgt is the ground-truth heat
map and Hpre is the heat map predicted by HRNet. The
loss function to optimize the decoder is defined as Ldec:

Ldec(dm, dm
′
) = Cross− Entropy(dm, dm

′
), (2)

where dm is the ground-truth data matrix and dm
′

is the
data matrix recovered by U-Net. The total loss function of
this stage is formulated as follows:

L1−stage = λ1 ∗ Lloc + λ2 ∗ Ldec, (3)

where λ1 and λ2 are set to 30 and 1, respectively.

3.5.2 The Second Stage

After the first stage, our model can accurately locate the
encoded sub-images and recover data matrices from the en-
coded sub-images without geometric distortion. However,
the sub-images encoded by the encoder have poor visual
quality, because we have not optimized the encoder but the
end-to-end training also updates the parameters of the en-
coder with the supervision of Lloc and Ldec. Thus, we use
Lpix and Lperp to the second stage as followings:

L2−stage = λ1∗Lloc+λ2∗Ldec+(λ3∗Lpix+λ4∗Lperp), (4)

where Lpix is L2 norm and Lperp is LPIPS [28]. λ1 and λ2

are set to the same values as the first stage, and λ3 and λ4

are set to 1.

3.5.3 The Third Stage

Through the optimization of the above stages, the generated

sub-image can achieve good visual quality while the local-
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ization network and the decoder can maintain good perfor-

mance. However, compared to the original sub-image, the

generated sub-image has conspicuous markers at its edges

and four vertices as Figure 9. From the interpretability per-

spective, these markers are learned by the end-to-end train-

ing of the encoder and the localization. The encoder gen-

erates these markers to help the localization network find

the encoded sub-image under distortions. Thus, this stage’s

optimization objective is to decrease the visibility of these

markers while keeping the sensitivity of the localization net-

work to these markers. Inspired by [20], we propose a co-

sine gain scheme to achieve the above objective.
Formally, we define a weight matrix as:

Mcos[i,j]=
cos(

s∗π∗dx[i]

N
+π)+1

2
∗cos(

s∗π∗dy[j]

N
+π)+1

2
, (5)

where N is the width of the sub-image, s is 4, (i, j) rep-
resents the pixel coordinate, and dx/y is the distance to

edges along x axis or y axis. When dx/y /∈ [0, N
s ), we

set dx/y = N
s . We multiply this matrix by Lpix and a gain

factor fcos to obtain Lcos:

Lcos =fcos ∗ (1−Mcos) ∗ Lpix

=
fcos
N2

∑

[0.N)

(1−Mcos[i,j]) ∗ ||Iori[i,j]−Ienc[i,j]||2 (6)

where fcos is 10 in this paper. The total optimization objec-
tive of the third stage is formulated as:

L3−stage =λ1 ∗ Lloc + λ2 ∗ Ldec+

(λ3 ∗ Lpix + λ4 ∗ Lperp + λ5 ∗ Lcos),
(7)

where Lgain is Lcos or Lgau, λ5 is set to 1, and λ1,2,3,4 are

set to the same values as the above stages.

4. Experimental Results
4.1. Dataset

The training set consists of 1,200 images from PAS-

CAL VOC 2012 [6]. The test set consists of 300 images

from PASCAL VOC 2012 [6] and 100 images used by RI-

HOOP [11]. The size of cover images is 256×256×3 and

the size of sub-images is 96×96×3. The hidden data ma-

trix is generated by pylibdmtx1, which is a 16×16 matrix.

To align with the sub-images, we resize the data matrices to

96×96 pixels. The total number of bits in the data region

is 196, where the length of the encoded data is 96 bits and

the other bits represent error correcting codes and padding

codes.

4.2. Hyper-parameter Setting

As mentioned in Section 3.5, the training process is di-

vided into three stages. In training, we use 800 epochs,

1,000 epochs, and 300 epochs for the first stage, the sec-

ond stage, and the third stage of training, respectively. If we

1 https://pypi.org/project/pylibdmtx/

Intensity Metric

Defocusing

(kernel size)

Motion

(kernel size)

Warp

(pixel offset)
IoU↑ BER↓ PER↓

3×3 2×2

[-15,+15] 0.9447 0.00% 0.01%

[-20,+20] 0.9230 1.00% 0.94%

[-25,+25] 0.9230 4.39% 4.38%

[-30,+30] 0.8685 11.73% 11.86%

5×5 3×3

[-15,+15] 0.9522 0.10% 0.08%

[-20,+20] 0.9359 0.10% 0.13%

[-25,+25] 0.9428 0.00% 0.01%

[-30,+30] 0.9039 9.08% 9.19%

7×7 4×4

[-15,+15] 0.6354 19.69% 19.54%

[-20,+20] 0.6418 20.00% 19.87%

[-25,+25] 0.6269 21.63% 21.76%

[-30,+30] 0.5512 20.41% 20.68%

Table 1. The IoU, BER, and PER under the combination of defo-

cusing blur, motion blur (degree=15◦), and geometric distortion.

train all losses at once, the decoding and locating losses are

difficult to converge. The weight parameters of Eq. 7 are set

as follows: λ1=30, λ2=1, λ3=1, λ4=1, and λ5=1. The set-

tings of the parameters about training strategy are described

in Section 3.5 and the settings of the distortion layers are de-

scribed in Section 3.2. We select Adam as the optimizer and

set the initial learning rate to 10−4. In each training stage,

the learning rate decays with a cosine annealing schedule

until it decays to 4×10−5. The batch size is 32.

4.3. Evaluation Metrics

We use the Intersection over Union (IoU) as the metric

to evaluate the performance of the localization network:

IoU =
Aerapre ∩Aeragt
Aerapre ∪Aeragt

, (8)

where Areapre is the area of the localized sub-image and

Aeragt the area of ground truth. To evaluate the perfor-

mance of the decoder, we use Bit Error Rate (BER) and

Pixel Error Rate (PER) as the metrics:

BER =
nerr

len(str)
, PER =

perr
size(datamatrix)

, (9)

where nerr is the number of error bits, len(str) represents

the length of hidden messages, perr is the number of error

pixels, and size(datamatrix) represents the resolution of

data matrices. In addition, we use PSNR and SSIM [24] to

evaluate the visual quality.

4.4. Simulation-based Robustness Test

In this section, we test the robustness of our model to

synthetic distortions. In addition to the distortions used in

training, we test the generalization ability of our model to

unknown distortion by adding distortion categories that are

unknown in training. For each distortion category, we set

different distortion levels. More details about these settings

are presented in supplementary materials. We present the

decoding results under different distortion categories in Fig-

ure 4. From Figure 4, we can find that our model is vulner-

able to JPEG compression and motion blur. In addition,
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Lo
ca

tin
g 

R
es

ul
ts

Re
co

ve
re

d 
R

es
ul

ts
Ca

pt
ur

ed
 

Im
ag

es
Su

b-
Im

ag
es

Ground Truth Down 60   Down 45° Up 45° Up 60° 0° 

Figure 5. The photographs captured under different vertical shoot-

ing angles and the corresponding localization and decoding re-

sults.

Figure 4 shows that our model is robust to the unknown dis-

tortions in training, such as Gaussian noise, median blur,

and bilateral filtering. In this experiment, we find that the

errors of locating results will cause decoding failure. For

example, when the quality factor of JEPG is 10, the average

IoU is only 0.25, so the sub-images sent to the decoder do

not contain the full information. We present the correlation

between IoU and error rates in Table 1.

4.5. In-the-Wild Robustness

To further validate the practicality of the proposed infor-

mation hiding model in real scenarios, we capture a large

number of photographs under various shooting conditions

to test the robustness of our model. In these experiments, we

use two smartphones (Redmi Note 9 and iPhone 10) to ver-

ify the generalization ability to different cameras. The mon-

itor is Dell S2421HSX and the printer in this experiment is

a color consumer printer. We capture this photographs from

different shooting angles and different shooting distances.

Horizontal BER↓ PER↓ Vertical BER↓ PER↓
Left 60◦ 7.32% 7.39% Down 60◦ 8.72% 8.70%

Left 45◦ 0.46% 0.49% Down 45◦ 1.20% 1.26%

Left 30◦ 0.64% 0.66% Down 30◦ 0.54% 0.56%

0◦ 0.46% 0.45% 0◦ 0.46% 0.45%

Right 30◦ 0.18% 0.22% Up 30◦ 0.61% 0.65%

Right 45◦ 1.71% 1.72% Up 45◦ 1.28% 1.24%

Right 60◦ 1.33% 1.28% Up 60◦ 5.66% 5.70%

Table 2. The decoding results under different shooting angles.

4.5.1 Robustness to Different Shooting Angles

In this experiment, we fix the position of the camera and ad-

just the monitor’s orientation to simulate different shooting

angles as Figure 5. We set the distance between the monitor

and the smartphone to 40 cm. Because the generated im-

ages are displayed at their original resolutions without any

scaling, we roughly crop out the regions of encoded images

and resize the cropped regions to 256×256 as Figure 5. The

first row of Figure 5 presents the original photos and the sec-

ond row presents the locating results on the resized images.

Different from [11] and [20], this process does not need to

manually find the accurate vertices of the encoded images

or add white borders around the encoded images. The de-

coding results under different shooting angles are presented

in Table 2. When the shooting angle is 60◦ downward, the

error rate is the highest but still less than 10%. The results

show that our model is robust enough for shooting from dif-

ferent angles.

4.5.2 Robustness to Different Shooting Distances

In this experiment, we fix the orientation of the monitor and

adjust the shooting distances (5 cm, 10 cm, 20 cm, 30 cm,

40 cm, and 50 cm). We present the decoding results in Ta-

ble 3 and some visualization results in Figure 6. The target

sub-images in Figure 6 have different resolutions because of

the scaling caused by variant shooting distances. We resize
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Figure 6. The photographs captured under different shooting dis-

tances and the corresponding localization and decoding results.

Shooting Distance Error Bits ↓ BER ↓ Error Pixels ↓ PER ↓
5 cm 1.05 bits 0.54% 26.25 pixels 0.54%

10 cm 0.40 bits 0.20% 10.40 pixels 0.21%

20 cm 1.40 bits 0.71% 36.65 pixels 0.75%

30 cm 1.10 bits 0.56% 27.50 pixels 0.56%

40 cm 0.70 bits 0.36% 18.00 pixels 0.37%

50 cm 8.00 bits 4.08% 201.4 pixels 4.11%

Table 3. The decoding results under different shooting distances.

these sub-images to 256×256 before inputting them to the

localization network. The quantitative results show that our

model is robust enough for different shooting distances.

4.5.3 Robustness to Printed Images

In this experiment, we test the robustness of our model in

print-camera scenario. We present some examples in Fig-

ure 7 where the photos include different lighting conditions

and different backgrounds. The average BER and PER of

Redmi Note 9 are 1.37% and 1.38%, respectively. The av-

erage BER and PER of iPhone 10 are 0.27% and 0.28%,

respectively. These results show that our model is robust

enough to printed images and generalizes well to different

camera models.

Papery Background Reflection and Shadows Reflection and Shadows Perspective Distortion

Figure 7. The photographs captured after printing. These ex-

amples include different lighting conditions and different back-

grounds.

4.6. Comparison with State-of-the-art Methods

In this section, we compare our model with state-of-the-

art methods: StegaStamp [20] and RIHOOP [11]. Both Ste-

gaStamp and RIHOOP are deep learning based information
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Original Encoded Original Encoded

Figure 8. The comparison of the original image and the generated

image. [20] and [11] hide the information in the entire images,

which cannot control the hidden regions. Thus, the generated im-

ages of [20] and [11] have significant quality degradation in low

frequency region, e.g. the wall and the sky.

hiding methods that are robust to camera imaging processes.

We retrain both StegaStamp [20] and RIHOOP [11] using

the training set described in Section 4.1 for fair compari-

son. We present the comparison results in Table 4. Because

the image sizes of [20] and [11] are different from ours, we

adjust the ranges of geometric distortion according to the ra-

tio between the resolutions of different models. We present

some generated images of these three models in Figure 8.

Table 4 shows that our method is much more robust to geo-

metric distortion than [20] and [11]. For visual quality, our

method achieves comparable objective scores to [11] and

outperforms [20] significantly. Even when error-correcting

codes are taken into account, our model is able to hide more

bits than [11, 20].

4.7. Ablation Study

4.7.1 The Effect of the Localization Network

In this section, we compare the effect of the localization

network with manual locating. When using the localiza-

tion network, we remove geometric distortion according to

the detected coordinates. When using manual locating, we

manually find the vertices of the sub-images and remove ge-

ometric distortion. The comparison results are presented in

Table 5 where Distortion 1 represents the combination of

brightness, contrast, and color distortions and Distortion
2 represents the combination of random noise and JPEG

compression. The results show that the localization net-

work may sacrifice a little bit of decoding accuracy but can

significantly reduce the preprocessing time compared with

manual locating. In mobile applications, the decoding er-

rors caused by locating results can be ignored compared to

the significant improvement in running efficiency.

4.7.2 The Effect of the Edge Gain Scheme

In this section, we validate the effect of the proposed edge

gain scheme by training two models. The first model does

not use the edge gain loss function proposed in Section 3.5.3
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Method Image Size Capacity Bits Per Pixel
Bit Error Rate under Different Levels of Geometric Distortion ↓

PSNR ↑ SSIM ↑
[-20,+20] [-25,+25] [-30,+30] [-35,+35] [-40,+40]

StegaStamp [20] 400×400 100 6.25×10−4 14.45% 24.10% 27.85% 32.15% 36.27% 29.82 0.9223

RIHOOP [11] 400×400 100 6.25×10−4 48.20% 51.30% 48.90% 44.10% 50.70% 35.86 0.9712

Ours 256×256 196 2.99×10−3 2.04% 4.01% 4.74% 7.53% 13.77% 32.95 0.9677

Table 4. The comparison results with state-of-the-art methods.

With

Localization

Manual

Correction

Distortion 1 Distortion 2 Average

Time ↓BER ↓ PER ↓ BER ↓ PER ↓
� × 2.10% 2.07% 7.57% 7.48% 0.014s
× � 0.16% 0.19% 1.22% 1.25% 7s

Table 5. The decoding results with and without the localization

network.

Figure 9. The comparison results between the encoder supervised

with and without the cosine edge gain loss function.

Model Edge Gain IoU↑ BER↓ PER↓ PSNR↑ SSIM↑
Model 1 × 0.8866 11.29% 11.53% 40.64 0.9880

Model 2 � 0.9318 8.08% 8.32% 41.87 0.9903

Table 6. The Ablation Results of the Proposed Edge Gain.

and the second model uses this loss function. Table 6 shows

that the edge gain improves the visual quality of the gen-

erated images as expected. In addition, the performance of

the localization network and the decoder are also improved.

To avoid the randomness of two training processes, we use

the edge gain loss to optimize the parameters on the base of

the first model. Then, we use the model without the edge

gain to generate test images. After that, we decode the im-

ages using these two models. The results show that fine-

tuning the model with the proposed edge gain can improve

the performance of the localization network (IoU↑ increases

from 0.8866 to 0.9403) and the decoder (BER↓ decreases

from 11.29% to 8.59% and PER↓ decreases from 11.53%
to 8.56%). The visualized results have been presented in

Figure 9, indicating that the edge gain scheme eliminates

the effect of visible edges on the HVS.

4.7.3 The Effect of the Selection of Sub-Images

In this subsection, we analyze the effect of the selection

of hidden sub-images. For the same image, we hide the

same data matrix in two different sub-images: (1) a low-

frequency region, such as human face and sky; (2) a high-

frequency region, such as animal fur and grass. Com-

pared to hiding information in low-frequency regions, hid-

(a-2) (a-5)(a-1) (a-3) (a-4)
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Figure 10. Some failure examples: (a-1) too dark, (a-2) motion

blur, (a-3) JPEG compression, (a-4) and (a-5) geometric distortion,

(b) occlusion.

ing in high-frequency regions increases the visual invisibil-

ity of hidden information significantly, but its robustness de-

creases (BER increases by 9.35%, PER increases by 9.69%,

and IoU decreases by 3.75%).

4.8. Limitation

This section describes the limitations of our model. In

addition to being vulnerable to JPEG compression and mo-

tion blur as Section 4.4, the locating errors are too large

to recover data matrices when the degree of geometric dis-

tortion exceeds the learnable range in training. This phe-

nomenon shows that the learned markers are related to

the relative position between the sub-image and the back-

ground. We present some failure examples in Figure 10. In

addition, our model is vulnerable when the most areas of

the encoded regions are occluded.

5. Conclusion
This paper proposes to learn and detect invisible mark-

ers for hidden codes in offline-to-online photography (i.e.,

in display/print-camera scenarios). An effective multi-stage

training strategy is developed to achieve high invisibility

and detectability. Experimental results show that the our

method is robust to general shooting conditions without

time-consuming preprocessing to locate and correct en-

coded images with geometric distortions from the camera

imaging process.
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