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Abstract

It is challenging to accurately detect camouflaged ob-
jects from their highly similar surroundings. Existing meth-
ods mainly leverage a single-stage detection fashion, while
neglecting small objects with low-resolution fine edges re-
quires more operations than the larger ones. To tackle
camouflaged object detection (COD), we are inspired by
humans attention coupled with the coarse-to-fine detection
strategy, and thereby propose an iterative refinement frame-
work, coined SegMaR, which integrates Segment, Magnify
and Reiterate in a multi-stage detection fashion. Specifi-
cally, we design a new discriminative mask which makes the
model attend on the fixation and edge regions. In addition,
we leverage an attention-based sampler to magnify the ob-
ject region progressively with no need of enlarging the im-
age size. Extensive experiments show our SegMaR achieves
remarkable and consistent improvements over other state-
of-the-art methods. Especially, we surpass two competitive
methods 7.4% and 20.0% respectively in average over stan-
dard evaluation metrics on small camouflaged objects. Ad-
ditional studies provide more promising insights into Seg-
MaR, including its effectiveness on the discriminative mask
and its generalization to other network architectures. Code
is available at https://github.com/dlut-dimt/SegMaR.

1. Introduction

Camouflaged object detection (COD) is a task which
aims to identify any object hidden in the background [8,22,
29]. It has been commonly useful for many applications in
different fields [9, 38], including agriculture (e.g. locust de-
tection to prevent invasion), art (e.g. photo-realistic blend-
ing and recreational art) and medical diagnosis (e.g. polyp
segmentation). Biological and psychological studies have
shown that various camouflage strategies can easily deceive
the human’s visual perceptual system [38], since the cam-
ouflaged objects always have similar visual features as the
background surroundings. The major difficulty in COD is
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Figure 1. Illustration of our SegMaR (Segment, Magnify and
Reiterate) framework for camouflaged object detection. Multiple
stages are performed iteratively in the framework. Each stage in-
volves two main steps: segment the camouflaged object (the solid
line) and magnify the camouflaged object (the dotted line).

how to accurately distinguish the subtle differences between
the target object and the background in the image.

Different from traditional methods [5, 29, 51], a number
of recent works [4,7,8,20,28,45], by making use of sophis-
ticated deep learning techniques [3, 43, 53], have achieved
new state-of-the-art performance on all the COD bench-
marks. Despite the quantitative performance by the latest
methods looks promising (e.g. 0.80 of Sα on COD10K test
set [8]), several difficulties in COD are still remaining un-
solved. Particularly, when one certain camouflaged object
accounts for a very small proportion of the whole image, it
becomes more difficult to detect accurate edges around the
object. For instance the crab in the first column in Fig. 1,
its size is much smaller than the beach in the background.
Unfortunately, existing COD methods fail to detect small
camouflaged objects accurately.

Their detection and segmentation results lead to high de-
viation on low-resolution and small objects. One main rea-
son is these methods employ a single-stage detection fash-
ion, but many camouflaged objects are hardly detectable at
the first time. In fact, when humans cannot watch any tar-
get object in the scene clearly, they will consciously move
closer to the target till its resolution is large enough for vi-
sual recognition. We expect every person in front of the
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screen is using such a manner to observe the small crab in
Fig. 1. Motivated by this human behavior, our work aims to
address the research question: How to leverage more stages
for gradually discovering more accurate camouflaged ob-
jects?

To this end, we propose a new iterative refinement frame-
work, coined SegMaR, which integrates Segment, Magnify
and Reiterate via a multi-stage detection fashion, please see
Fig. 2. First of all, our approach builds a new camouflaged
segmentation network to generate an initial mask predic-
tion. Next, an object magnification step takes as input both
the original image and the mask prediction, and leverages
an attention-based sampler to enlarge the camouflaged ob-
ject adaptively. It can be observed that the image size is kept
while the camouflaged object accounts for a larger propor-
tion in the image. Moreover, we run iterative refinement
by passing the image with magnified object back into the
same network and fine-tuning the network parameters. Af-
ter more refinement stages, SegMaR enables to refine and
enrich the detected details, especially for small objects.

Importantly, SegMaR is an unified and general frame-
work which shall be applicable to various camouflaged seg-
mentation networks. Considering the significance of object
localization and edge extraction, we advocate several spe-
cial designs on the segmentation network for improving the
COD performance further.

In particular, we introduce a distraction module to disen-
tangle foreground and background features in order to cap-
ture more accurate edges.

Besides, we present a new and non-binary ground truth
called discriminative mask, which combines the fixation
and edge annotations together. Beyond the original ground
truth based on binary mask, our discriminative mask makes
the network attend more on the most significant textures and
edges associated with the camouflaged objects.

The contributions in this work are three-fold:

• Framework contribution: we propose SegMaR, which
is the first to leverage an iterative refinement framework
for camouflaged object detection. This work raises aware-
ness of the importance of accomplishing COD in a multi-
stage detection fashion.

• Network contribution: we implement an effective cam-
ouflaged segmentation network which introduces a dis-
traction module to disentangle better object feature. In
addition, we present a new discriminative mask to make
the network attend on the most significant object regions.

• Empirical contribution: Our SegMaR achieves new
state-of-the-art performance on three COD benchmarks,
especially for small camouflaged objects. Besides, previ-
ous COD networks are easy to be applicable to SegMaR
and witness remarkable accuracy boosts.

2. Related Work
Camouflaged Object Detection. Camouflaged or con-

cealed objects [7, 18, 29, 51] are hardly detectable due to
their subtle differences from the background surroundings.
To overcome this difficulty, a increasing number of recent
works [8, 20, 25, 28, 36] are devoted to adopting sophis-
ticated SOD techniques [3, 42, 43, 53] for solving COD.
For instance, SINet [8] was built on top of cascaded par-
tial decoder [43] which has been widely used for SOD.
The work in [25] introduced the reverse attention [3] in
order to capture more spatial details. Besides, some other
works [24,49] focus on how to extract more accurate edges
around the camouflaged objects. Zhai et al. [49] built an
edge-Constricted Graph Reasoning module to guide fea-
ture representation learning of camouflaged objects. How-
ever, these existing methods are not robust to some more
challenging yet practical cases, especially when the cam-
ouflaged objects are very small. Different from the single-
stage framework used in previous works, our SegMaR re-
fines and enriches camouflaged detection results iteratively
in a multi-stage framework.

Iterative Refinement. This is a common and effective
learning process for a variety of vision-oriented applications
like object detection [1,12], semantic segmentation [34,50]
and object localization [32, 35]. On the one hand, some
studies [2,11,23,34] perform the refinement steps iteratively
from shallow to deep convolutional layers within one single
neural network. For example, the work in [34] addressed se-
mantic segmentation with a refinement module and stacked
such modules successively into a top-down refinement pro-
cess. Likewise, Lin et al. [23] presented a multi-path re-
finement network which effectively combines high-level se-
mantics and low-level features to generate high-resolution
segmentation maps. On the other hand, several research
works [47,50] re-train the same network iteratively by pass-
ing the result of the last training iteration into the next iter-
ation. Representatively, CANet [50] proposed an iterative
optimization module to refine predicted results for few-shot
semantic segmentation.

Despite the significant improvements by iterative refine-
ment, it has not been researched for solving COD yet. Be-
sides, our SegMaR framework aims to magnify camouflaged
objects gradually until capturing more accurate results.

Object Magnification. To increase the resolution of
the target objects, some tasks [14, 17, 21, 30, 40, 41, 48]
crop or sample the original image into sub-regions at finer
scales and train neural networks recurrently. To reduce
expensive and redundant calculation cost caused by the
sub-regions, Marin et al. [27] proposed a content-adaptive
down-sampling technique to sample locations near seman-
tic edges of target objects. However, the increase of the
background resolution is useless. To this end, the method
of [54] provided an attention-based sampler to enlarge at-
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Figure 2. Pipeline of our SegMaR framework. The magnification module enlarges the proportion of the object while compressing that of
the background, without increasing the image size. Due to limited space, we show the first stage only, while the following stages reiterate
the same process. Please refer to the details in Section 3.

tended parts and decrease the background resolution, mean-
while the image size can be kept. One similar work to
ours is [44] where they introduced the attention-based sam-
pler [54] for SOD, while their method only magnified the
object once. Different from solving SOD, our work lever-
ages more magnification steps for camouflaged objects and
achieves further performance boosts.

3. Segment, Magnify and Reiterate
Overview. This section introduces the SegMaR frame-

work designed for COD. As depicted in Fig. 2, one can ob-
serve SegMaR is an iterative refinement framework trained
in a multi-stage fashion. First of all, the input image is
fed into a camouflaged segmentation network to generate
a mask prediction with respect to the camouflaged object.
Then it combines the input image and its mask into an at-
tention based object magnification module, so as to enlarge
the object while the image size can be kept. Next, we reit-
erate the segmentation process by taking as input the image
with the magnified object. Consequently, the camouflaged
object becomes more and more detectable from the back-
ground surroundings (Fig. 1).

Below, we detail the steps in the framework.

3.1. Camouflaged Segmentation Network

Like most of related works [8,43], our camouflaged seg-
mentation network is built on top of a two-branch network
architecture, see the left in Fig. 3. (1) For the first branch
(shown in blue), it consists of four convolutional blocks and
a discriminative decoder that generates a mask prediction
Pdis. (2) The second branch (shown in green) adds three
new convolutional blocks following the first block in the
first branch. A binary decoder is responsible to inferring
the final binary mask Pbin for COD. In addition, it is en-
couraged to use the first branch to help improve the learn-
ing process of the second branch. To make it, we merge the
feature maps from the second convolutional block and the
discriminative decoder in the first branch with the second
branch, by using a holistic attention (HA) module [43].

The discriminative and binary decoders have the same

network structure, see the right in Fig. 3. The input fea-
ture maps are firstly followed by atrous spatial pyramid
pooling (ASPP) components [46] with dilation rate Dr =
3, 6, 12, 18, respectively. The aim is to achieve multi-scale
receptive fields in the image. Then the pooling maps are
concatenated together and passed into a distraction mod-
ule (DM) [55]. DM is an effective technique to disentangle
previous feature maps into foreground and background fea-
tures, separately. We find this ability is significant partic-
ularly for recognizing the subtle differences between cam-
ouflaged objects and background surroundings. Different
from [55], we tailor the DM module by adding two paral-
lel residual channel attention blocks (RCAB) [52], which
make the module concentrate more on informative channels
and high-frequency information (e.g. edges, texture) in the
feature maps. Afterwards, we use the element-wise subtrac-
tion to reverse the background feature and the element-wise
addition to augment the foreground feature. The output fea-
ture fd by the distraction operation is formulated by

fd = BR (βfa +BR(−αfb)) , (1)

where BR is the combination of batch normalization and
ReLU, fa and fb represent the foreground and background
features, respectively. α and β are two learnable parameters
and initialized with 1. Lastly, another ASPP component fol-
lowing DM is added to make the output features.

Discriminative mask. In the wild, the fixation regions
like the face or limbs, are the key clues for the predator be-
ing able to quickly locate camouflaged prey. Besides, the
edge regions may also leak the location of the camouflaged
objects, e.g. the hair of an animal. Thus, both fixation and
edge regions are important to make the camouflaged object
detectable. Typically, a binary mask (i.e. 255: object, 0:
background) usually acts as the ground truth to train the
COD model, which implies all the regions of the object
weigh equally. However, this way neglects some impor-
tant regions associated with the object. Although one recent
work [25] adds new fixation annotations in addition to the
binary mask, their fixation annotations have some wrong
regions overflow the object region.
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Figure 3. Our camouflaged segmentation network (Left) and its decoder (Right). The prediction Pdis by the first branch is supervised
with the discriminative mask we present, while the prediction Pbin from the second branch is trained with the original binary mask. HA is
holistic attention, ASPP is atrous spatial pyramid pooling, and RCAB is residual channel attention block.

(a) Image

(b) Fixation annotation (e) Binary mask

(f) Discriminative mask
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Figure 4. The calculation process of our discriminative mask.
Here we use the colormaps for clearer visualization.

To solve this problem, we propose a richer and non-
binary ground-truth annotation called discriminative mask.
Beyond the original binary mask, our discriminative mask
supervise the network to attend more on the fixation and
edge regions. As for any image, we capture its edge anno-
tation based on the binary mask, and then dilate the edges
with Gaussian operation. The dilated edge captures more
information around the object boundary. Then we merge
the fixation annotation and dilated edge, resulting a addi-
tion mask. Lastly, we use the binary mask to subtract the
overflow fixation region. Our discriminative mask Gdis is
computed via

Gdis = Gbin ∩ (Gfix ∪A(σ, λ,Gedge)), (2)

where A(·) is the Gaussian function with Gaussian blur σ
= 15 and kernel size λ = 25. Gbin is binary mask based
ground truth, Gfix and Gedge are fixation and edge annota-
tions. Since Gfix is non-binary, Gdis is a non-binary mask
ranging from 0 to 255. Figure 4 depicts the process of com-
puting the discriminative mask. We illustrate some discrim-
inative mask instances in Fig. 6, which renders stronger at-
tention on significant regions.

(b) Attention map (c) Sampling points (d) Magnified image(a) Original image

Figure 5. The attention based magnification process.

Loss function. The camouflaged segmentation network
is trained end-to-end by two loss terms: the discrimina-
tive loss Ldis and the binary loss Lbin. Ldis indicates the
loss cost between Pdis and Gdis, and Lbin is that between
Pbin and Gbin. We adopt the structure loss in [42] to com-
pute Ldis and Lbin. The structure loss Lstr(P,G) adds a
weighted binary cross entropy (BCE) loss Lw

bce and a IoU
loss Lw

iou by

Lstr(P,G) = Lw
bce(P,G) + Lw

iou(P,G). (3)

This structure loss is beneficial to maintain both pixel
and global restrictions between the prediction and the
ground truth. Finally, our total loss function is

Ltotal = Ldis+Lbin = Lstr(Pdis, Gdis)+Lstr(Pbin, Gbin).
(4)

3.2. Attention based Object Magnification

Camouflaged objects normally accounts for a very small
proportion of the whole images, which makes it difficult
to detect accurate object edges. Motivated by the fact that
humans always move closer to the target in order to watch it
more clearly, we propose to enlarge the camouflaged object
while compressing the background information, as shown
in Fig. 5.

Given the prediction mask Pbin, we further dilate it to be
an attention map D via

D = Dilation(σ, λ, Pbin), (5)
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where Gaussian blur σ = 15 and kernel size λ = 75. The di-
lation operation aims to enlarge the original prediction area,
and strengthen the integrity of the object region. In the sec-
ond image of Fig. 5, the attention map completely covers
the object. Then we employ an attention based sampler al-
gorithm [54] to magnify the camouflaged object based on
the attention map D. The attention map is used to calculate
the mapping function between the coordinates of the origi-
nal image and the sampled image, and the area with larger
attention value is more likely to be sampled. We first de-
compose the attention map into two dimensions and obtain
the marginal distribution by calculating the max values of
the attention map D over x axis and y axis as

Dx = max
1≤i≤w

Di, Dy = max
1≤j≤h

Dj , (6)

where w and h is the width and height of D. Given the
original image I , the sampling function Sampler(I,D) is
defined as

Sampler(I,D)i,j = ID−1
x (i),D−1

y (j), (7)

where D−1(·) indicates the inverse function of D(·). Fig-
ure 5 demonstrates the area with high values in the atten-
tion map is dense sampled and magnified with its shape un-
changed.

3.3. Iterative Refinement

The main advantage of SegMaR is its iterative refine-
ment by replaying the Segment and Magnify steps in a
multi-stage fashion. As shown in Fig. 1, the camouflaged
crab becomes more detectable in an increasing resolution
across the stages. During training period, all the stages
share the same network parameters. In addition, we use the
same hyper-parameters such as the Gaussian blur and kernel
size for object magnification. The iterative refinement will
terminate when the loss differences between two successive
stages become subtle. Algorithm 1 summarizes the training
steps in the SegMaR framework.

In terms of testing period, we need to restore the final
mask prediction Pbin to the original object size, so that it
can be aligned with the ground truth of the test images. We
leverage a reversed sampling strategy of Eq. (7), which is
denoted as Rsampler(·). The restored mask prediction is
represented as Rsampler(Pbin).

4. Experiment Results
4.1. Setup and Evaluation

Dataset. We evaluate our method on three widely
used datasets: CHAMELEON [37], CAMO [19], and
COD10K [8]. CHAMELEON [37] includes 76 high-
resolution images, which are collected from the In-
ternet by using ‘camouflaged animal’ as the keyword.

Algorithm 1 Training SegMaR via Iterative Refinement

Input: Input images I(i) at the i-th stage, binary mask
(Gbin), discriminative mask (Gdis), N stages

Output: COD network (Net)
1: for each stage i ∈ [1, N ] do
2: // Segment step
3: Net(i) ←− train network with I(i) as Eq. (4);
4: // Magnify step
5: D(i) ←− Dilation(σ, λ,G

(i)
bin) as Eq. (5)

6: I(i+1) ←− Sampler(I(i), D(i)) as Eq. (7)
7: G

(i+1)
bin ←− Sampler(G

(i)
bin, D

(i)) as Eq. (7)
8: G

(i+1)
dis ←− Sampler(G

(i)
dis, D

(i)) as Eq. (7)
9: // Reiterate step

10: Initialize the next stage Net(i+1) ←− Net(i)

11: end for

Figure 6. From top to bottom: original image, discriminative mask
and colormap visualization. It can be seen that the fixation and
edge regions have stronger attention.

CAMO [19] is a collection of 1, 250 images with 8 cate-
gories. COD10K [8] is currently the largest benchmark,
containing 10, 000 images with 10 super-classes and 78
sub-classes collected from photography websites. Follow-
ing previous works, our training includes 1, 000 images
from CAMO dataset, and 3, 040 images from COD10K, and
the test set merges 2, 026 images from COD10K, 76 images
from CHAMELEON and 250 images from CAMO. In ad-
dition to the binary mask based ground truth provided in the
benchmarks, we also employ the discriminative mask when
training the network, please see the examples in Fig. 6.

Implementation details. A pretrained ResNet50 [13] on
ImageNet dataset [16] is employed as the backbone of our
camouflaged segmentation network. All input images are
resized to 352× 352, and the output predictions are resized
back to the original object sizes to compare with their binary
ground truths. Bilinear interpolation is employed for image
resizing. We adopt Adam optimizer [15] with learning rate
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Method COD10K-Test (2,026 images) CAMO-Test (250 images) CHAMELEON-Test (79 images)
Sα↑ αE↑ wF↑ M↓ Sα↑ αE↑ wF↑ M↓ Sα↑ αE↑ wF↑ M↓

CPD [43] 0.752 0.820 0.557 0.049 0.712 0.813 0.561 0.108 0.860 0.908 0.753 0.044
PraNet [9] 0.768 0.836 0.599 0.047 0.738 0.814 0.613 0.098 0.864 0.918 0.784 0.038

MINet-R [31] 0.759 0.832 0.580 0.045 0.749 0.835 0.635 0.090 0.844 0.919 0.746 0.040
SINet [8] 0.771 0.807 0.565 0.048 0.742 0.834 0.601 0.101 0.869 0.903 0.749 0.041
LSR [25] 0.767 0.861 0.611 0.045 0.712 0.791 0.583 0.104 0.846 0.913 0.767 0.046

PFNet [28] 0.800 0.868 0.660 0.040 0.782 0.852 0.695 0.085 0.882 0.942 0.810 0.033
C2F -Net [39] 0.810 0.875 0.674 0.038 0.791 0.863 0.706 0.083 0.886 0.931 0.824 0.032

MGL [49] 0.811 0.865 0.666 0.037 0.775 0.847 0.673 0.088 0.893 0.923 0.813 0.030
SegMaR (Stage-1) 0.813 0.880 0.682 0.035 0.805 0.864 0.724 0.072 0.892 0.937 0.823 0.028
SegMaR (Stage-2) 0.830 0.890 0.718 0.034 0.808 0.863 0.739 0.074 0.902 0.944 0.851 0.027
SegMaR (Stage-3) 0.833 0.892 0.725 0.034 0.810 0.870 0.745 0.073 0.905 0.947 0.858 0.027
SegMaR (Stage-4) 0.833 0.895 0.724 0.033 0.815 0.872 0.742 0.071 0.906 0.954 0.860 0.025
Table 1. Comparison of our method with other state-of-the-art methods on three benchmarks in terms of Sα (larger is better), αE (larger is
better), wF (larger is better), and M (smaller is better). Stage-i (i=1,2,3,4) denotes the iterative stages of our multi-stage framework. The
best scores highlighted in bold indicate our SegMaR outperforms other methods by achieving new top-performing accuracy.

Image Stage-1 Stage-2 Stage-3 Stage-4 GT

Figure 7. Visual comparison of our multi-stage detection frame-
work. The fist stage has a rough contour of the object, while the
following stages refine it. Please zoom-in to see the details.

of 2.5e− 5 and decay rate of 0.9.
We use PyTorch toolbox [33] to conduct the experiments

on a GPU Tesla V100. Each training stage takes about 6
hours with batch size 24 and 50 epochs.

Evaluation Metrics. We employ four evaluation met-
rics, including mean absolute error (M ), structure mea-
sure (Sα) [6], adaptive E-measure (αE) [10], and weight
F-measure (wF ) [26]. M is defined as element-wise differ-
ence between prediction map and binary ground truth. Sα is
defined as Sα = αSo+(1−α)Sr, where So denotes object-
aware structural similarity and Sr denotes region-aware
structural similarity. αE evaluates the pixel-level similarity
and the image level statistic simultaneously, which is related
to human visual perception. wF is a comprehensive mea-
sure on both precision and recall, and recent works [6, 10]
suggest that wF is more reliable than F-measure.

4.2. Comparison with the State-of-the-arts

We compare our SegMaR model with eight state-of-
the-art COD methods, including CPD [43], PraNet [9],
MINet [31], SINet [8], LSR [25], PFNet [28],C2FNet [39]
and MGL [49]. For a fair comparison, the results of these
methods are directly provided by their authors or by their

original trained model, and we test them with the same eval-
uation protocols. For our SegMaR model, we find the loss
difference between two successive stages flattens within
four stages for all three benchmarks. To validate the multi-
stage learning framework, we list the performance of the
proposed SegMaR in four stages, and compare them with
other methods in Table 1. We can see the performance of
SegMaR improves progressively with the increase of train-
ing stages, demonstrating the object magnification and iter-
ative refinement help the model to achieve stronger detec-
tion ability. In addition to the quantitative results, Fig. 7
compares detection results across four stages qualitatively.
Comparing with the ground truth in the last column, we can
already obtain a rough area in the first stage. The detec-
tion results are improved with more details gradually in the
following stages.

From the results reported in Table 1, the performance
of our 1-st stage already outperforms other methods, which
verifies the advantage of our camouflaged segmentation net-
work. Furthermore, our 4-th stage achieves new state-
of-the-art performance on three benchmarks. Specifically,
SegMaR outperforms previous methods by a large margin
on the most challenging dataset COD10K, like surpassing
MGL [49] 3.5% on αE, and 8.7% on wF . We outperform
MGL 2.0% in average over all metrics on CAMO dataset,
and 2.4% in average on CHAMELEON dataset. Addition-
ally, Fig. 8 shows the qualitative comparison of our method
with other methods. We can see that our detection results
are the closest to the ground-truth annotations, in terms of
not only large camouflaged objects (e.g. the first row), but
also small ones (e.g. the last four rows). This is mainly
because the discriminative mask can provide the initial lo-
cation of the camouflaged objects and enforce the attention
on the contours. Moreover, benefited by the magnification
process in the multi-stage training, our method can capture
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(a) Image (b) GT (c) Ours (d) SINet (e) LSR (f) MGL (g)PFNet

Figure 8. Visual comparison of the proposed SegMaR with recent state-of-the-art methods. Our method can distinguish the edges of
camouflaged objects more clearly than other methods.

detailed distraction information and thus has the ability to
finely segment the camouflaged objects with complex struc-
tures. The proposed SegMaR is far beyond other methods
on the fine contour with only bits of pixels, such as the fin-
gers of frog in the first row, the legs of spider in the second
row, and crab’s claws in the last two rows.

4.3. Ablation Study

We conduct ablation studies to validate our key compo-
nents tailored specifically for accurate COD, including dis-
criminative mask, small object detection, distraction mod-
ule (DM) and generalization analysis.

Effectiveness of discriminative mask. Table 2 com-
pares the performance of training SegMaR in the first stage
based on four different types of ground truth, including fix-
ation annotation, edge annotation, binary mask and our dis-
criminative mask. Notice that these ground-truths are used
to train the discriminative decoder in our segmentation net-
work, while the binary decoder is always trained with the bi-
nary mask for a consistent comparison with previous works.
Our discriminative mask surpasses fixation annotation and
binary mask across all metrics. Edge annotation achieves
better performance sometimes, but still under-performs our
discriminative mask.

Small object detection. One can expect that it is chal-
lenging to segment small camouflaged objects with fine

edges composed of limited pixels, such as fur or legs of
living creatures.

In order to validate the effectiveness of SegMaR on small
objects, we divide the testing set on COD10K into ‘small’
and ‘non-small’ subsets. The small subset contains 1, 084
images where the objects occupy less than 1/4 of the image
size, and the left 924 images belong to the ‘non-small’ sub-
set. As shown in Table 4, we compare our performance
at Stage-4 with two competitive methods, i.e. SINet and
MGL. Our method has remarkable improvements over the
two methods on small testing set, by surpassing SINet 8.0%
on Sα, 16.8% on αE, 35.4% on wF , and outperforming
MGL 7.4% in average over three metrics.

Effectiveness of distraction module (DM). To further
investigate the effectiveness of the tailored components of
our camouflaged segmentation network, Table 3 compares
the performance with and without our distraction module.
Specifically, adding the DM obtains 4.2% performance gain
in terms of wF on COD10K test set. This validates the ra-
tionality of our design to learn distractions from the atten-
tive input features.

Generalization analysis of SegMaR framework. We
state that, SegMaR is a unified and general framework
which shall be applicable to other camouflaged segmenta-
tion networks. To validate its generalization ability, we re-
iterate the segmentation, magnification steps on SINet [8]

4719



SegMaR (Stage-1) COD10K-Test (2,026 images) CAMO-Test (250 images) CHAMELEON-Test (76 images)
Sα↑ αE↑ wF↑ M↓ Sα↑ αE↑ wF↑ M↓ Sα↑ αE↑ wF↑ M↓

fixation 0.806 0.871 0.669 0.037 0.784 0.855 0.693 0.083 0.884 0.931 0.808 0.032
edge 0.809 0.882 0.679 0.036 0.796 0.863 0.712 0.075 0.890 0.944 0.822 0.030

binary 0.810 0.877 0.680 0.036 0.799 0.857 0.719 0.075 0.887 0.920 0.818 0.031
discriminative 0.813 0.880 0.682 0.035 0.805 0.864 0.724 0.072 0.892 0.937 0.823 0.028

Table 2. Ablation analysis of using different ground-truth annotations to train the network. ‘fixation’ and ‘edge’ indicate fixation and
edge annotations. ‘Binary’ indicates the binary mask, while ‘discriminative’ is our discriminative mask. Overall, our discriminative mask
achieves the best performance on almost all evaluation metrics.

SegMaR (Stage-1) COD10K-Test (2,026 images) CAMO-Test (250 images) CHAMELEON-Test (76 images)
Sα↑ αE↑ wF↑ M↓ Sα↑ αE↑ wF↑ M↓ Sα↑ αE↑ wF↑ M↓

without DM 0.799 0.866 0.654 0.039 0.795 0.865 0.706 0.077 0.881 0.926 0.799 0.033
with DM 0.813 0.880 0.682 0.035 0.805 0.864 0.724 0.072 0.892 0.937 0.823 0.028

Table 3. Ablation analysis of our distraction module (DM) and its effect on our SegMaR framework. Overall, introducing DM brings
considerable performance gains across datasets and metrics. We show the results at Stage-1 only due to limited space, while other stages
witness consistent improvements.

Method
COD10K(2,026 images)

Small
(1,084 images)

Non-Small
(924 images)

Sα↑ αE↑ wF↑ Sα↑ αE↑ wF↑
SINet [8] 0.764 0.743 0.500 0.779 0.881 0.639
MGL [49] 0.796 0.823 0.598 0.832 0.911 0.743

SegMaR

stage-1 0.797 0.852 0.620 0.832 0.913 0.753
stage-2 0.821 0.866 0.667 0.841 0.917 0.775
stage-3 0.825 0.871 0.677 0.843 0.917 0.782
stage-4 0.825 0.868 0.677 0.842 0.921 0.779

Table 4. Performance results on small and non-small test sets.
‘Small’ indicates the region of the camouflaged object is less than
1/4 of the image. We show the results of SegMaR at Stage-4. The
best performance in bold demonstrates our method surpass SINet
and MGL by a large margin, particularly for small objects.

Method Stage COD10K-Test (2026 images)
Sα↑ αE↑ wF↑ M↓

SINet [8]
with SegMaR

framwork

Stage-1 0.771 0.807 0.565 0.048
Stage-2 0.795 0.847 0.639 0.043
Stage-3 0.801 0.862 0.658 0.041
Stage-4 0.805 0.869 0.667 0.041

Table 5. Generalization analysis of the proposed SegMaR frame-
work, by applying multi-stage iterative refinement to SINet [8].

which is a recent and competitive baseline in the field. Com-
paring the results from Stage-1 to Stage-4 in Table 5, SINet
gains 4.4%, 7.7%, and 18.0% improvements in terms of Sα,
αE, and wF , validating our potential and strong generaliza-
tion to other alternatives.

4.4. Limitations and Discussions

We discuss two potential limitations in this work:
Q1: Why the whole SegMaR framework is not end-to-

end trainable. The main reason is the object magnification
module we introduce is a non-parametric approach. Alter-
natively, we did consider leveraging a neural network to im-
plement the magnification module. However, this solution
requires new ground-truth annotations with respect to the
magnified objects. Otherwise, it is hard to supervise the
magnification network and achieve desirable results. We
will devote to learning an unsupervised magnification net-
work, with no need of extra annotations.

Q2: When to terminate the iterative refinement stages.
Here, we terminate the iterative refinement when the loss
difference between two successive stages is subtle. As a re-
sult, our SegMaR reaches saturation after four stages only.
This training process is simple yet lacks theoretical evi-
dence. Instead, it is promising to design new algorithms to
optimize the multi-stage training process, so as to reiterate
more stages and achieve better performance.

5. Conclusion

To simulate humans attention which segments camou-
flaged objects in a coarse-to-fine manner, we have proposed
an iterative refinement framework SegMaR to integrate Seg-
ment, Magnify and Reiterate in a multi-stage detection fash-
ion. We also designed a new discriminative mask and dis-
traction module to make the network segment more object
regions. Extensive experiments have demonstrated our top-
performing performance on three benchmarks especially for
small camouflaged objects. In the future, it is promising to
study more sophisticated magnification algorithms.
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