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Abstract

E-commerce images are playing a central role in attract-
ing people’s attention when retailing and shopping online,
and an accurate attention prediction is of significant impor-
tance for both customers and retailers, where its research
is yet to start. In this paper, we establish the first dataset
of saliency e-commerce images (SalECI), which allows for
learning to predict saliency on the e-commerce images. We
then provide specialized and thorough analysis by high-
lighting the distinct features of e-commerce images, e.g.,
non-locality and correlation to text regions. Correspond-
ingly, taking advantages of the non-local and self-attention
mechanisms, we propose a salient SWin-Transformer back-
bone, followed by a multi-task learning with saliency and
text detection heads, where an information flow mechanism
is proposed to further benefit both tasks. Experimental re-
sults have verified the state-of-the-art performances of our
work in the e-commerce scenario.

1. Introduction
Nowadays, online retailing has revolutionized the shop-

ping habits in daily life, which provides significantly im-
proved efficiency and hands-on experiences for both cos-
tumers and retailers. The sudden break of Coronavirus-19
further emphasized the importance and popularity of online
shopping. Since “a picture is worth a thousand words”, the
e-commerce image, exhibiting rich and heuristic content,
has been a workhorse in promoting products on online shop-
ping and it therefore plays a vital role in the shopping activ-
ities, including introducing products, aiding visual search,
attracting costumers, and affecting their final decisions.

Due to the intrinsic nature of retailing, the main goal of
e-commerce images is to attract costumer attentions at a
glimpse; this is mainly two-fold: 1) attracting costumers to
focus on the product when they are wandering on shopping,
and 2) attracting to focus on specific parts in images that
highlight distinguishable and “have-to-buy” features of the
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Figure 1. Saliency maps of ground-truth, DeepGace IIE [26],
UNISAL [7], and the proposed method. As shown, the exist-
ing methods on natural images trend to over- or under-predict the
saliency values of text regions in e-commerce images.

product. Consequently, the e-commerce image is typically
a combination of pictures and texts, to achieve the goal of
both effectively attracting and introducing to the costumers.
Thus, saliency prediction on e-commerce images is of sig-
nificant importance to provide both enhanced guiding infor-
mation and shopping experience for costumers.

The existing works of saliency prediction almost focus
on the natural images, from the perspective of either low-
level handcrafted cues [14, 44] or data-driven deep neu-
ral networks (DNNs) [7, 18, 27, 29]. However, with the
fundamental goal of retailing, the e-commerce images are
specially designed, especially with short but precise texts.
Thus, the e-commerce images are basically different from
the widely analysed natural images, which for example,
are created by the goals of beauty, recording, etc. Con-
sequently, the existing methods are inadequate in predict-
ing saliency of the e-commerce images. For example, the
object region in natural images, one of the most important
high-level cues when predicting saliency in existing meth-
ods [13, 17], may be equally and even less salient than the
text regions in e-commerce images that highlight key fea-
tures and brands of products. Fig. 1 illustrates the limitation
of the existing saliency prediction methods on e-commerce
images, where the most recent methods on natural images,
i.e., DeepGace IIE [26] and UNISAL [7], trend to over- or
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under-predict the saliency value of the text regions. Thus,
it is necessary and important to develop a new DNN for
e-commerce images, by addressing the text priors. Mean-
while, the lack of e-commerce image dataset also impedes
applying DNN-based models for saliency prediction.

To this end, we propose a novel work on saliency pre-
diction for e-commerce images. More specifically, we es-
tablish the first eye-tracking dataset of e-commerce im-
ages, called SalECI, with recorded fixations from the eye-
tracking experiments. We further analyse the proposed
dataset, obtaining 4 observations. Upon the observations,
we validate the non-locality nature of saliency maps. Due to
the fact that saliency explicitly points out human attentions
when looking at e-commerce images, we take the advan-
tages of non-local and attention mechanisms of Transform-
ers [40], and propose a salient Swin-Transformer (SSwin-
Transformer) backbone that incorporates the saliency infor-
mation to improve the learnt self-attention maps. More im-
portantly, our observations also point out a consistent and
strong relationship between the salient and text regions.
Therefore, we propose to simultaneously predict saliency
and detect text regions by two learnable heads, together with
an information flow to let the two heads interact between
each other. The experimental results have verified the state-
of-the-art performance of our work. A further application
to e-commerce image compression further achieves signifi-
cant bit-rate saving. Our main contributions are as follows,

• We establish the first SalECI dataset, enabling ad-
vanced data-driven architectures to predict saliency on
e-commerce images;

• We provide thoroughgoing and comprehensive analy-
sis on the SalECI dataset, paving the way of special-
ized and insightful methods on e-commerce images;

• We propose a novel multi-task learning framework in-
cluding the SSWin-Transformer, multiple heads and
information flow mechanism, achieving the state-of-
the-art performances on e-commerce scenarios.

2. Related Work

Saliency Prediction. Traditional saliency prediction
methods aim to predict pixel-wise human attention, mainly
relying on low-level hand-designed features, including con-
trast [4], color [14], luminance [38], and texture [44]. As
one of the most pioneer works, Itti et al. [14] proposed a
bottom-up method for image saliency prediction, by con-
structing multi-scale feature maps of color, intensity and
orientation. Different from Itti’s method [14], Guo et al. [8]
transformed the images/videos into a quaternion Fourier do-
main, to extract spatio-temporal features for saliency pre-
diction. Most recently, with the rapid development of deep
learning, large-scale eye-tracking datasets [13, 17, 42] and

advanced DNN structures [5,7,16,26] were proposed to sig-
nificantly improve the performance on saliency prediction.
Specifically, Huang et al. [13] conducted mouse-contingent
experiments to collect clicks over the images as the repre-
sentations of fixations, and established a saliency dataset
with 20k images. On the other hand, DNN architectures
were developed and verified to be effective on saliency
prediction, e.g., fully convolutional network [19], gener-
ative adversarial network (GAN) [37], convolutional long
short-term memory network [17], dilated convolution [18],
complex-valued network [16], transformer [33], etc. How-
ever, none of the above datasets and methods deal with
the saliency prediction for the e-commerce images, which
play an important role in digital shopping. To this end, the
brand-new dataset and method are proposed in this paper
for saliency prediction on the e-commerce images.

Text Detection. Traditional text detection methods are
mainly based on connected components analysis (CCA)
[12,36,45] and sliding windows [20,41]. For example, Neu-
mann et al. [36] proposed to first extract candidate compo-
nents, and then a support vector machine (SVM) was de-
veloped to filter out the non-text candidates. In [20], win-
dows with different sizes were used to slide over the im-
age, and each window was classified by morphological op-
erations. Most recently, DNN based text detectors have
been developed by relating text detection to object detec-
tion [23, 43, 46, 48] and instance segmentation [6, 9, 24, 32].
Specifically, Liao et al. [23] adapted the object detection
framework called the SSD [28], to capture the texts with
various orientations and shapes. Similarly, Zhang et al.
[46] used FPN [25] to detect the text candidates, and then
conducted a localization branch to progressively refine the
bounding boxes. Moreover, EAST [48] directly detected the
quadrangles of words in an end-to-end manner without pro-
posals and anchors. In addition to the detection-based meth-
ods, the segmentation-based methods aim to detect text re-
gions in the pixel level. For instance, PixelLink [6] straight-
forwardly extracted the text bounding areas from the seg-
mentation maps. Besides, Long et al. [32] proposed to de-
tect text instances by predicting the geometry attributes and
the center line of the text, based on the segmentation net-
work of FCN [31]. Liao et al. [24] sped up the traditional
segmentation-based pipeline by developing threshold maps.
Different from the above methods, Baek et al. [1] proposed
a character level text detector, in which both components
and links between characters were predicted.

3. SalECI Dataset
To study human perceptual behaviours on the e-

commerce images, we establish the new SalECI dataset,
including 972 e-commerce images with collected fixa-
tions and annotated text boundaries. All images collected
from mainstream platforms, including Taobao, Amazon and
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Figure 2. Main categories and sub-categories in our SalECI
dataset. The number of images in each main category is also listed.

Wish. Fig. 2 shows 13 categories and their corresponding
image numbers in SalECI. In summary, our SalECI dataset
includes 257, 302 fixations from the eye-tracking experi-
ment of 25 subjects, and 10, 833 text bounding boxes an-
notated by 3 volunteers. The details about dataset estab-
lishment is introduced in the supplementary. SalECI is re-
leased in https://github.com/leafy-lee/E-
commercial-dataset.

3.1. Data Analysis

Observation 1: In e-commerce images, the visual atten-
tion is easy to be attracted by the texts, in comparison with
semantic objects.

Analysis: According to the previous works [17, 42], the
visual attention is more likely to be attracted by semantic
objects. Here, given the ground-truth saliency maps and
text bounding boxes, we further evaluate the correlation be-
tween visual attention and texts in SalECI. As for the com-
parison, we also apply YOLOv5 [39] to detect the bound-
ing boxes of the objects in SalECI. Some examples in our
SalECI are shown in Fig. 3-(a), with text and object regions
in blue and green, respectively. As shown in this figure, the
text regions are more consistent with the visual attention.
To verify this, we calculate the fixation densities (per 1, 000
piexels) of the text and object regions, by counting the num-
ber of fixations falling into the text and object regions, re-
spectively. Fig. 3-(b) shows the above fixation densities of
each category and all images in SalECI. Note that the fixa-
tion density of randomly extracted regions is also illustrated
in the figure as a baseline. As shown in Fig. 3-(b), the fix-
ation density of the text regions is considerably larger than
that of object regions. For some categories, such as gar-
dening, tops, bottoms, and tools, the text regions averagely
draw around 5 times as much attention as the object regions,
implying that these categories are more sensitive to the text.
The above results indicate that, for e-commerce images, the
visual attention is highly likely to be attracted by the texts.

Observation 2: Although visual attention can be signif-
icantly attracted by the texts in e-commerce images, there
are still remarkable fixations out of the text regions.

Analysis: As introduced in Observation 1, the visual
attention can be greatly attracted by the texts. However,
we might ask, does it mean we can directly use text detec-
tion method for e-commerce image saliency prediction? To
this end, we further count the fixation numbers outside the
text regions, against all fixations in the image. Fig. 4-(a)
presents the proportion of fixations out of text regions. In
this figure, each point represents an e-commerce image in
SalECI, and the horizontal axis indicates the text area of
each image. As shown in Fig. 4-(a), for most of the im-
ages, around 40% to 70% fixations are out of the text re-
gions. This implies that, beyond the texts, the visual atten-
tion is also attracted by multiple regions with either bottom-
up or top-down saliency. Similarly, in Fig. 4-(b), we cal-
culate the proportion of text regions without any fixations
inside. It is not surprising to find that a large number of
text regions do not attract any visual attention. Besides, as
shown Fig. 4, similar trends occur in different categories
of SalECI. The above results indicate that saliency predic-
tion for e-commerce images is complicated, and cannot be
simply solved by applying text detection method.

Observation 3: In e-commerce images, the visual atten-
tion is consistent among subjects, especially for the atten-
tion inside the text regions.

Analysis: Regarding natural images [13] and videos
[17], there exists high consistency of visual attention among
subjects. Here, we measure the visual consistency in
SalECI, by calculating linear correlation coefficient (CC)
between the fixation maps of single subject and the rest of
subjects, which is also called one-vs-rest CC. As listed in
Table 1, the CCs of the whole image, text regions, and ob-
ject regions are calculated, respectively. Meanwhile, in or-
der to evaluate the location bias in the SalECI dataset, we
also measure the CC between the fixation map of 2 ran-
domly selected e-commerce images. Besides, as reported
in [17], the one-vs-rest CC results of 2 other eye-tracking
datasets, i.e., LEDOV [17] and Hollywood [34], are also
listed as the baselines. As shown, we can conclude that the
visual consistency in the SalECI dataset is similar to the
other eye-tracking datasets. Moreover, the visual consis-
tency improves when only considering the fixations inside
the text regions. This again implies that the subjects tend to
focus on the texts when viewing e-commerce images.

Observation 4: The fixation transition in e-commerce
images is typically much larger than the fovea region, in-
dicating that the visual attention tends to be attracted by
non-local content in e-commerce images.

Analysis: As shown in Fig. 5-(a), the salient regions of
e-commerce images tend to be separated from each other.
This implies that the human visual attention may be eas-
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(a) (b)
Figure 3. The analysis of observation 1. (a) Images in SalECI with corresponding ground-truth saliency maps, text regions (in blue
rectangulars), and object regions (in green rectangulars). (b) The fixation densities in text, object, and random regions.

Table 1. The visual consistency across subjects in our SalECI, LEDOV [17] and Hollywood [34], in terms of one-vs-rest CC.

SalECI SalECI Text SalECI Object Location Bias LEDOV [17] Hollywood [34]
CC 0.356 0.482 0.410 0.152 0.403 0.349

Figure 4. The analysis of observation 2. (a) The proportion of
fixations that are out of text regions. (b) The proportion of text
regions that are without any fixations inside.

ily attracted by the non-local content. Thus, we evaluate
the fixation transition in SalECI, by calculating the visual
angle between two consecutive fixations of same subject.
Since our eye-tracking experiment fixed the size of screen
and the distance between the subject and screen, we can
calculate the visual angle via the trigonometric function, as
illustrated in Fig. 5-(b). As a result, the proportion of the
visual angle of fixation transition are listed in Fig. 5-(c).

According to [35], the human visual attention only focuses
on the fovea region with visual angles less than 2 degrees.
However, as shown in the figure, 26.2%, 14.9%, and 10.2%
fixation transition are two, three, and four times larger than
the fovea region, respectively. The distant fixation transition
indicates that, in e-commerce images, the human attention
is easier to be attracted by the non-local content. That is
probably because the e-commerce images are specially de-
signed to contain the semantic objects and texts all over the
image, rather than in a part of the image.

4. Proposed Method
4.1. SSwin-Transformer Backbone

As analysed in Observation 4, the saliency information,
indicating human non-local attention, is of indispensable
relation with the attention mechanism of the Transformer
[40] and therefore is highly potential to improve the atten-
tion backbone learnt from the Transformer. In our work,
the SSwin-Transformer builds upon the Swin-Transformer,
which achieves the state-of-the-art performance across a
wide range of tasks [30]. More importantly, we incorporate
the saliency information in each Swin Transformer block to
aid shaping the attention maps, as illustrated in Fig. 6.

More specifically, towards the last basic layer of each
stage, we propose an attention loss La with the usage of
saliency maps, to supervise the learnt attentions in the back-
bone. The saliency map Sl, in a size of hl × wl for the l-th
basic layer, is reshaped correspondingly to keep the same
size of the self-attention map processed by the patch merg-
ing operation. Then, for the l-th basic layer, the attention
loss La is calculated in a channel-wise manner as follows,

La=
1

2

Hl∑
h=1

||cor(Sl)−cor(Al,h)||22 (1)

where Al,h represents the self-attention map at the h-th
multi-head output from the shifted Swin-Transformer block
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(a) (b) (c)

Figure 5. The analysis of observation 4. (a) Images and corresponding ground-truth saliency maps in SalECI. (b) The illustration of
calculating visual angle on two consecutive fixations. (c) The statistics of fixation transition in terms of the visual angle.

Figure 6. Illustration of our proposed framework. The framework consists of SSwin-Transformer backbone, saliency and text detection
heads, together with an information flow structure that takes advantages of the fine-grained output (namely, saliency maps and text masks)
as the feedback to further improve the learning of the proposed backbone and functional heads. Note that SOR represents the score of
region, while AFF stands for the affinity scores.

in the l-th basic layer. Hl is the number of multi-heads for
the l-th layer. Moreover, cor(·) denotes the non-local corre-
lation that is calculated by

cor(X) = softmax
(
vec(X)·vec(X)T

)
, (2)

where vec(X) vectorizes the matrix X of the size hl × wl

to a vector with a size (hl×wl)×1, and softmax(·) denotes
the soft-max operation.

The basic idea of the proposed attention loss is to
guide our proposed SSwin-Transformer backbone so as to
learn non-local correlations according to human percep-
tions, whilst maintaining the diversity enabled by multi-
head self-attention maps. This, one one hand, encourages
the proposed SSwin-Transformer to focus on non-local re-
gions that human valued most, given the observations that
people consistently focused on text regions when they are
looking at the e-commercial images. On the other hand, this
also imposes global and unified prior on the network that is
important in multi-task learning. Consequently, the output
features from the backbone are enhanced with global cues
for multi-task learning and therefore benefit the following
saliency and text detection heads.

4.2. Saliency and Text Detection Heads

We employ a light but effective saliency head to pre-
dict saliency maps given the feature map of our SSWwin-

Transformer backbone. To be more specific, the fea-
ture map is first fed into 3 dense blocks [11], and with
the aim to extract multi-scale information when predict-
ing saliency maps, we employ the atrous spatial pyramid
pooling (ASPP) [3] afterwards and then use 3 deconvolu-
tion blocks to recovery the saliency map. The loss of our
saliency head is calculated by the Kullback-Leibler (KL)
divergence KL(·||·) between the predicted Sp and ground-
truth Sgt saliency maps as follows,

Ls = KL(Sp||Sgt). (3)

Additionally, the basic structure of the CRAFT [1] is de-
veloped in our work for the text detection, which is able to
achieve character-level (rather than the word-level) text de-
tections. Specifically, we first preliminarily generated the
character-level annotations by precisely using the same net-
work structure and pre-trained models in its official imple-
mentations. We further manually adjusted the annotations
with an incomplete or inaccurate coverage of texts in the E-
commerce images, and then obtained the ground-truth for
training our text detection head. We show in Fig. 3-(a) the
ground-truth text annotations by red rectangulars.

In our text detection head, since the input of the head
is the feature map from our SSWin-Transformer backbone,
we employ the deconvolution modules whilst discarding the

2092



feature encoding module as in [1]. Furthermore, to en-
hance the information aggregation across different resolu-
tions, 5 middle attention maps at multi-scale resolutions in
our SSwin-Transformer backbone are fed into the decon-
volution modules, as illustrated in Fig. 6. Therefore, in
the proposed text detection head, 4 deconvolution modules
are used to output the final region and affinity scores, and
their difference from the ground-truth scores are evaluated
by the mean squared error (MSE). However, due to the in-
trinsic nature of advertising, texts in e-commerce images are
mainly in short and precise forms (e.g., phrases and logos),
leading to rather sparse text regions and affinity score maps.
Therefore, directly applying MSEs as our text head loss
can cause the overwhelming on negative predictions, that
is, outputting zero values almost everywhere. To overcome
this issue of imbalanced samples, we develop a balanced
MSE loss BMSE to relieve the ill-posed training where the
network simply outputs 0. More specifically, when calculat-
ing the MSE, we randomly select Npos positive samples and
Nneg negative samples, and calculate the balanced MSE as
follows,

BMSE(X,Y) =

∑
(i,j)∈P∪N ||X(i, j)−Y(i, j)||22

Npos+Nneg
, (4)

where P and N denote the indices of positive and nega-
tive samples. Note that X(i, j) represents the position (i, j)
given the matrix X. Upon the balanced MSE, we employ
the following loss Lt for our text detection head in training

Lt = BMSE(Tp
r ,T

gt
r ) + BMSE(Tp

a,T
gt
a ), (5)

where Tp
r and Tgt

r are the predicted and ground-truth scores
of region (SORs), whereas Tp

a and Tgt
a represent the pre-

dicted and ground-truth affinity scores (AFFs), respectively.

4.3. Information Flow

As indicated by Observations 1 and 2, in E-commerce
images, although not fully attracting human fixation points,
the text regions consistently attract visual attention. The
detection of text regions, is therefore helpful in tailoring the
accuracy of saliency prediction. In contrast, an accurate pre-
diction of saliency can also be of help on precisely detecting
text regions since the saliency information almost includes
all text regions in the E-commerce images.

Correspondingly, we flow the information output from
the saliency head back to the input of the text detection
head, and also flow the output from the text detection head
to the input of saliency head. Such an interactive informa-
tion flow is able to improve both the learning of saliency
prediction and text detection. Specifically, the initial pre-
diction is made by the saliency head to refine the text head.
The forward process of the saliency head now becomes

Sp = SalHead
(
f(

T̃p
r + T̃p

a

2
)⊙ F

)
, (6)

where SalHead(·) represents the saliency head, T̃p
r and T̃p

a

denote the resized predicted region and affinity scores so
that they have the same size of the feature map F, and
⊙ denotes the element-wise product. More importantly,
f(·) is an element-wise scaling function, which is set as
f(x) = ρ · (x − 0.5) + 1 in our work given 0≤ x≤ 1 and
ρ being a scaling factor. In this way, compared to the back-
ground regions with zero outputs, the detected text regions
that have positive values can properly increase the impor-
tance of corresponding locations so that the saliency predic-
tion can be further improved through this extra information.

Afterwards, the prediction from the text head is em-
ployed to refine the saliency head, completing the interac-
tion of information flow. Given the resized saliency output
S̃p, the text detection head process is as follows,

Tp
r ,T

p
a = TextHead

(
f(S̃p)⊙ F

)
. (7)

Therefore, after our SSWin-Transformer backbone, we
first initialize the text head output by all ones matrix when
forwarding the saliency head of (6) and obtain a coarse pre-
diction Sp, after which is fed into (7) to obtain text detec-
tions Tp

r and Tp
a. A fine-grained saliency prediction is then

obtained by forwarding (6) again upon the obtained text de-
tections Tp

r and Tp
a. We may need to point out that although

iterating this procedure might obtain further enhanced pre-
dictions, we empirically find that the gain is slight, whereas
at the cost of computational complexity. For the ease of
computation efficiency, we only flow the information once
for each head. Finally, our cost is given by

L = λaLa + λsLs + λtLt, (8)

where λa, λs and λt are used to adjust the scales of losses.

5. Experiments
5.1. Implementation Details

In our experiments, SalECI are randomly divided into
the training and test sets with 871 and 101 images, re-
spectively. For stable training, Batch normalization, leaky
ReLU, and GeLU [10] are used as the normalization and ac-
tivation functions in SSwin-transformer. The resolution of
input and output images are set as 896× 896, and the chan-
nel number of the embed feature from SSwin-transformer is
96. The scaling factor ρ and the loss weights {λa, λs, λt},
are set to be 0.2 and {1, 1, 3}. During training, the proposed
method is optimized based on stochastic gradient descent
with a Adam optimizer. Besides, the initial learning rate is
5 × 10−7, and a warm-up cosine learning schedule is con-
ducted for the first 20 epochs. The whole training process
takes about 1.5 hours on a RTX 3090Ti GPU for 50 epochs.

5.2. Evaluation on SalECI Dataset

In this section, we evaluate the performance of our
method on e-commerce image saliecny prediction, com-
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Figure 7. Qualitative results of our and 11 other compared methods over 8 randomly selected e-commerce images in SalECI. From the
left to right are: input images, the saliency maps of ground-truth, ours, BMS [47], SalGAN [37], SALICON [13], SAM-ResNet [5],
SAM-VGG [5], DeepGaze I [26], DeepGaze IIE [26], UNISAL [7], MSI [18], EML-Net [15], and GazeGAN [2].

Table 2. Mean value and standard deviation of saliency prediction accuracy for our and 11 other methods over SalECI.

Methods CC KL AUC NSS SIM sAUC

BMS [47] 0.411±0.173 1.108±0.291 0.768±0.079 1.025±0.507 0.395±0.090 0.726±0.080
SalGAN [37] 0.552±0.174 0.873±0.311 0.826±0.069 1.449±0.574 0.496±0.100 0.766±0.082

SALICON [13] 0.507±0.149 0.967±0.296 0.805±0.073 1.334±0.507 0.461±0.091 0.767±0.077
SAM-ResNet [5] 0.535±0.181 0.855±0.336 0.832±0.067 1.452±0.632 0.500±0.103 0.766±0.084
SAM-VGG [5] 0.551±0.178 0.844±0.342 0.833±0.066 1.515±0.640 0.512±0.104 0.771±0.078

DeepGaze I [26] 0.407±0.158 1.250±0.225 0.760±0.093 0.969±0.404 0.326±0.052 0.741±0.092
DeepGaze IIE [26] 0.561±0.124 0.995±0.215 0.842±0.055 1.327±0.318 0.399±0.065 0.811± 0.058

UNISAL [7] 0.605±0.148 0.768±0.262 0.845± 0.056 1.574±0.522 0.514±0.094 0.777±0.075
MSI [18] 0.603±0.173 0.804±0.310 0.834±0.066 1.555±0.554 0.514±0.104 0.771±0.086

EML-Net [15] 0.597±0.154 0.788±0.328 0.841±0.063 1.595±0.561 0.534±0.101 0.780±0.080
GazeGAN [2] 0.522±0.194 0.987±0.453 0.797±0.090 1.321±0.575 0.481±0.117 0.706±0.114

SSwin transformer(Ours) 0.687±0.175 0.652±0.478 0.868±0.072 1.701±0.497 0.606±0.101 0.783±0.064

pared with 11 other state-of-the-art saliency prediction
methods, i.e., BMS [47], SalGAN [37], SALICON [13],
SAM-ResNet [5], SAM-VGG [5], DeepGaze I [26],
DeepGaze IIE [26], UNISAL [7], MSI [18], EML-Net [15],
and GazeGAN [2]. Note that except for BMS, all compared
methods are based on DNN. Specifically, except BMS (not
learning based) and DeepGaze (no released training code),
all compared methods are fine-tuned over SalECI with the
similar experimental setting as ours. Then, 6 metrics are
applied to measure the performance of saliency prediction:
CC, KL divergence, the area under the receiver operating
characteristic curve (AUC), normalized scanpath saliency
(NSS), simliarity (SIM), shuffled AUC (sAUC). Note that
the larger values of CC, AUC, NSS, SIM or sAUC, and
smaller KL, indicate more accurate saliency prediction. As
tabulated in Table 2, our method significantly outperforms
the compared methods in all metrics. Compared with the

second best method UNISAL, the proposed method can
achieve 0.082, 0.116, 0.023, 0.127, and 0.072 improve-
ments in terms of CC, KL, AUC, NSS, and SIM, respec-
tively. In addition to the quantitative results, Figure 7 shows
the qualitative results of our and 11 other methods over 8
randomly selected test images in SalECI. We can see from
figure that our method is capable of well locating the salient
regions, making the predicted saliency map closer to the
ground-truth than the other methods. Particularly, as shown
in the first two rows of this figure, our method can correctly
detect the text regions that attract visual attention, compared
with other methods. That verifies the effectiveness of the
multi-task learning framework in our method.

5.3. Ablation Study

Here we further conduct the ablation experiments to
analyse the contribution of each component proposed in our
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(a) HM-16.0: 20.90dB (b) UNISAL [7]: 26.19dB (c) MSI [18]: 26.31dB (d) Ours: 28.00dB

Figure 8. Subjective results and EW-PSNRs of the original HM-16.0 and the perceptual codec [21] fed by saliency prediction from the
UNISAL [7], MSI [18] and ours methods.

Table 3. Ablation study on the proposed method in terms of CC,
KL, AUC and NSS.

Modules CC KL AUC NSS

A + B 0.629 0.847 0.833 1.537
A + B + C 0.670 0.759 0.848 1.662
A + B + D 0.633 0.780 0.843 1.603
A + B + C + D 0.678 0.703 0.854 1.690
A + B + D + E 0.661 0.677 0.863 1.709
A + B + C + D + E 0.687 0.652 0.868 1.701
Module notations: A: SSwin-Transformer; B: Saliency head;
C: Attention loss; D: Text head; E: Information flow

method. Each ablated model is trained and tested in the
same experimental setting. As a result, the CC, KL, AUC
and NSS values of each ablated model are listed in Table
3. Note that the basic components of SSwin-trnasformer
and saliency head can not be ablated, otherwise the saliency
map is inaccessible. We can see from this table that, for dif-
ferent ablated models, the multi-scale attention loss can sta-
bly bring the improvements. For instance, compared with
the model only with SSwin-trnasformer and saliency head,
the attention loss is able to further improves the perfor-
mance of saliency prediction, by 0.041 CC, 0.088 KL, 0.015
AUC, and 0.125 NSS. This indicates that the non-local at-
tention in the Transformer can benefit from the supervision
of real human attention. Besides, similar improvements are
achieved by adding text head or the developed information
flow. This again verifies one of the main motivations of this
work, that is, there exists a strong correlation between the
salient and text regions in e-commerce images.

5.4. Application in Video Compression

In this section, we further show that the improvement on
the saliency prediction on e-commerce images could wit-
ness practical gains when compressing e-commerce images.
More specifically, we followed the work of [21] to com-
press the images upon the state-of-the-art high efficiency

video coding (HEVC) standard, with the aim of improving
the perceptual quality of compressed images. We imple-
mented the perceptual codec [21] on the official platform
HM-16.0 and evaluated the perceptual quality in terms of
the eye-tracking weighted PSNR (EW-PSNR), which has
been verified with a strong relationship with the subjective
quality [22]. The subjective results as well as the EW-PSNR
are shown in Fig. 8, with more results shown in the supple-
mentary material. From this figure, it is obvious that for
the e-commerce images, our method, being able to more
accurately prediction saliency, achieves the best subjective
quality, with clear details on the product and brand.

6. Conclusion
This paper has set out a first attempt for saliency pre-

diction on e-commerce images. The first eye-tracking
e-commerce image dataset, called SalECI, has been es-
tablished to enable training DNN for e-commerce image
saliency prediction. Based on the newly-built dataset, we
conducted thorough data analysis, leading to 4 important
observations on e-commerce images. Insipred by the obser-
vations, we proposed a new multi-task learning framework
for e-commerce image saliency prediction, which is com-
posed of the developed SSWin-Transformer, saliency head,
text head, and information flow mechanism. The experi-
mental results showed that our methods significantly out-
perform the state-of-the-art image saliency prediction.
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