
Graph-context Attention Networks for Size-varied Deep Graph Matching

Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue Black, Bryan M. Williams
Lancaster University

Bailrigg, Lancaster, LA1 4WA, United Kingdom
[z.jiang11,h.rahmani,p.angelov,sue.black,b.williams6]@lancaster.ac.uk

Abstract

Deep learning for graph matching has received growing
interest and developed rapidly in the past decade. Although
recent deep graph matching methods have shown excellent
performance on matching between graphs of equal size in
the computer vision area, the size-varied graph matching
problem, where the number of keypoints in the images of the
same category may vary due to occlusion, is still an open
and challenging problem. To tackle this, we firstly propose
to formulate the combinatorial problem of graph matching
as an Integer Linear Programming (ILP) problem, which
is more flexible and efficient to facilitate comparing graphs
of varied sizes. A novel Graph-context Attention Network
(GCAN), which jointly capture intrinsic graph structure and
cross-graph information for improving the discrimination
of node features, is then proposed and trained to resolve
this ILP problem with node correspondence supervision.
We further show that the proposed GCAN model is efficient
to resolve the graph-level matching problem and is able to
automatically learn node-to-node similarity via graph-level
matching. The proposed approach is evaluated on three
public keypoint-matching datasets and one graph-matching
dataset for blood vessel patterns, with experimental results
showing its superior performance over existing state-of-the-
art algorithms for keypoint and graph-level matching.

1. Introduction
Graph matching, which involves establishing correspon-

dences of nodes between graph-structured data, has a wide
range of real-world applications, such as objective keypoint
matching [1], vein pattern matching [2] and 2D/3D shape
matching [3]. Graph matching is a well-known general NP-
hard problem, and is often formulated as a quadratic assign-
ment problem (QAP) [4].

Recently, deep learning based graph matching meth-
ods have demonstrated superior performance over tradi-
tional methods. Research in deep graph matching typi-
cally focuses on two parts: developing graph embedding

networks and resolving combinatorial problems. Generally,
approaches to deep graph matching firstly involve extract-
ing node features from a deep convolutional neural network
(CNN). Since nodes with similar deep CNN features are dif-
ficult to distinguish, a graph embedding network is designed
to model and refine node features, which is expected to cap-
ture intrinsic graph structure and cross-graph information
for improving node differentiation. Driven by the popular
graph convolutional neural networks (GCN) [5], GCNs and
their variants are widely used as graph embedding methods
[6–9]. In recent years, transformer based model [10–13],
which use the attention mechanism to capture the relation-
ships between different words or between different image
portions, has received more attention due to their superior
performance over traditional CNN models. Inspired by this,
we propose a novel Graph-context Attention Network to
jointly capture the relationships of nodes inside a graph
and node-to-node relationships between graphs. In terms
of the combinatorial problem, recent works formulate it as
Lawler’s quadratic assignment programming (QAP) prob-
lem [7, 14] or Koopmans-Beckmann’s QAP problem [6, 9].
These approaches regard the node-to-node correspondence
problem as a binary classification task. The combinato-
rial problem is typically tackled by performing the Hungar-
ian algorithm on a square matrix of predicted classification
scores. However these methods assume that the nodes V2 in
graph G2 include all nodes V1 in graph G1, i.e. V1 ⊆ V2.
If V2 contain some outliers that are invisible in V1, [7, 14]
suggest adding dummy nodes to allow these outliers can
be assigned in the Hungarian Algorithm. However, in a
more general case, matching graphs may contain differ-
ent numbers of nodes and the number of outliers in both
graphs are unknown during testing. We observe that the
Hungarian algorithm has difficulty in handling such size-
varied graphs matching problem. Furthermore, the above
mentioned methods require node correspondence supervi-
sion, in this paper we also explore graph matching without
node-level labeling.

Our main contributions are summarized as follows:

1. To handle more general and more challenging graph

2343

matching problems with sized-varied graphs, we propose to
formulate the combinatorial problem as an Integer Linear
Programming problem.

2. To obtain more distinguishable node features, We
present a novel Graph-context Attention Network with at-
tention mechanism, to capture and model intrinsic graph
structure and cross-graph information.

3. We demonstrate that our network can be trained in
either a supervised way, which is the typical approach to
such problems and requires ground-truth node-to-node cor-
respondence, or in a novel unsupervised way. In the su-
pervised case, we show improved accuracy over the state-
of-the-art using our ILP attention loss. In the unsupervised
case, we avoid the typical requirement of manually-labelled
node correspondence by enabling our network to learn the
node-to-node similarity by reasoning on graph-level match-
ing.

4. We evaluate the proposed approach on both size-equal
and size-varied keypoint matching tasks with three public
keypoint-matching datasets, and on a graph-level matching
task with a vessel graph dataset. Our experimental results
demonstrate that the proposed approach outperforms cur-
rent state-of-the-art methods for all tasks. We also present
an ablation study, which shows the effectiveness of each
component of the proposed approach.

2. Related work
2.1. Graph Neural Networks

GNNs have drawn considerable attention due to their
state-of-the-art performance on graph-related tasks. The
basic idea of GNNs is to use message passing functions
for nodes to aggregate feature messages from their neigh-
bours in the graph. Popular graph convolutional net-
works [5] (GCN) compute node updates by aggregating
information with a mean-pooling operation. GraphSAGE
[15] concatenates the node feature and mean/max/LSTM
pooled neighbourhood information to represent new node
features. Graph Attention Networks [16] aggregate neigh-
bourhood information by introducing trainable attention
weights, which have achieved excellent performance on
node classification. Recently, [17] have noted that previous
models cannot distinguish nodes at symmetric/isomorphic
positions in the network, and additionally computed the dis-
tances of the target node to randomly sampled anchor sets.

2.2. Learning for graph matching

The above work only exploits intrinsic graph structures.
For the graph matching task, recent work has focused con-
siderably on developing advanced graph embedding net-
works, where cross-graph affinity information and match-
ing consistency are encoded. For example, [6] combined
a GCN with a cross-graph node embedding layer to re-

fine the node embeddings provided by the backbone archi-
tecture. [14] further developed a matching aware embed-
ding model, where the predicted soft assignment score is
concatenated to node embeddings. To address the combi-
natorial problem in graph matching tasks, the problem is
generally formulated by [6, 7, 9, 14] as Lawler’s quadratic
assignment programming (QAP) problem or Koopmans-
Beckmann’s QAP problem, which can be resolved using a
Hungarian algorithm. Several combinatorial loss functions
have been applied to train graph matching models in a su-
pervised way. [6] demonstrated that the cross-entropy per-
mutation loss has improved performance over pixel offset
loss. [7] further improve their work by applying a Hungar-
ian attention mechanism. A cost margin loss, which is more
robust to distribution shifts than traditional Hamming dis-
tance loss, is proposed in [18] and is adopted by [8] as the
training loss. Most recently, [9] applied focal loss to ad-
dress the class imbalance issue. While most of the above
mentioned models employ Hungarian algorithm to discre-
tise predicted matching score, which we find is not effi-
cient to handle size-varied graphs. In addition, they require
node-level labelling for supervised training, there remains
the open question of how to extend GNN models to graph
matching without node-level labelling. In this paper, we
also explore the computation of similarity scores between
nodes by reasoning on graph-level matching.

3. Proposed Method
The overall framework of our Graph-context Attention

Network is illustrated in Fig. 1. Given a pair of images
with graphs to be matched, a CNN is firstly adopted to ex-
tract keypoint features via bi-linear interpolation followed
by node positional encoding and channel-attention weight
computing to support our GCA module. Our GCA mod-
ule (as shown in Fig. 2) is designed not only to model the
intrinsic graph structure for learning effective node repre-
sentations, but also the similarity across the root nodes with
k-hop neighbourhood between two graphs. There are two
types of loss function designed for training the whole model
in an end-to-end way. For node matching, integer linear pro-
gramming (ILP) attention loss is introduced after aggregat-
ing and normalizing the matching scores of all GCA mod-
ules. For graph-level matching, a graph-level aggregator is
firstly proposed to compute graph level representations, and
then a margin-based pairwise loss is used to train the pro-
posed model.

3.1. Problem Definition

Given two graphs G1 = (V1, E1, U1) and G2 =
(V2, E2, U2), where V1 and V2 are the set of vertices, E1

and E2 are the set of edges, and U1 and U2 consist of
pseudo-coordinates that locally define the spatial relation-
ship between connected nodes, our model aims to produce

2344

Figure 1: The overall framework of the proposed transformer-based graph matching framework.The node features are ex-
tracted from a CNN network followed by positional encoding and our Graph-context attention (GCA) module. The whole
network can be either trained by our ILP attention loss for node-level matching or trained by margin-based pairwise loss for
graph-level matching

the similarity score S =
{
sk

(
V k
1 , V k

2

)
|Kk=1, s (G1, G2)

}
,

where sk
(
V k
1 , V k

2

)
is the similarity score across the root

nodes with k-hop neighbourhoods between two graphs and
s (G1, G2) is a graph-level similarity in vector space.

3.2. Positional Encoding

In most implementations of transformers for natural lan-
guage processing [10, 11] and vision based tasks [12, 13],
positional encoding/embedding is firstly introduced to cap-
ture positional information of each word in a sequence
(one dimension) or of each patch in a grid (two dimen-
sions). However, sequence or grid based positional encod-
ing/embedding approaches are designed for regular data and
can not be directly applied to irregular data such as a graph.
Although GNNs [5,15,16,19] are able to capture structural
information of the graph, positional information of the node
within the context of the graph structure is ignored [17]. To
encode positional information in 2D spatial space, we de-
fine:

dposi = di +
∑
j∈Ni

dj ⊙ g(u(i, j)) (1)

where di and dj are the feature vectors of nodes i
and j respectively, ⊙ means element-wise product, Ni

denotes the neighbours of node i and g(.) is a kernel
function which is dependent on coordinate u(i, j) =
(|xi − xj | , |yi − yj |) = (∆xi,∆yi) ∈ U1, U2. For the
choice of kernel function, we adopt the B-spline kernel
proposed in [20], since it shows impressive performance
in [8,14]. Let Nm

vert,δ and Nm
hori,δ′

denote B-spline bases of
degree m along the vertical and horizontal in spatial space,

Figure 2: Our Graph-context Attention Module consists of
two major components: the cross-graph attention layer and
self-graph attention layer.

with δ ∗ δ′
kernel size. The kernel function is defined as:

g(u(i, j)) =
∑
p∈P

ωp ·Nm
vert,p(∆xi) ·Nm

hori,p(∆yi) (2)

where, ωp denotes a trainable weight vector for each ele-
ment p, with the same dimension as di. P is the Cartesian
product of B-spline bases Nm

vert,δ and Nm
hori,δ′

, consisting

of δ ∗ δ′
elements.

3.3. Graph-context Attention Module

Here, we introduce GCA modules, where the correspon-
dence is established through preserving the structure sim-
ilarity across two graphs. Each GCA Module consists of
a cross-attention layer and a self-attention layer defined as
follows.

Cross-attention layer In this layer, an attention mecha-
nism is used to firstly measure node-to-node similarity be-

2345

tween graphs, and then refine node features by aggregat-
ing this cross-graph information. We compute node-to-node
similarity between graphs as below:

ai′→i =
exp

(〈
αh ⊙ h

(k)
i , αh ⊙ h

(k)

i′

〉)
∑

î′ exp
(〈

αh ⊙ h
(k)
i , αh ⊙ h

(k)

î′

〉) (3)

where ⟨·, ·⟩ is the inner product, αh is a channel-attention
weight vector for exploiting the inter-channel relationship
of features, inspired by the recent popular channel attention
module [21]. We compute αh as below:

αh = tanh (Favg ∗Wc + Fpool ∗Wc) (4)

where Favg and Fpool denote average-pooled features and
max-pooled features computed from the last convolutional
layer of the CNN model. Wc ∈ RDF×Dh is a trainable
weight matrix, and DF and Dh are the dimension of the
average-/ max-pooled feature F and node feature h respec-
tively. tanh(·) is the hyperbolic tangent function.

To aggregate this cross-graph information, we use ai′→i

as the attention coefficient and define:

fcr

(
h
(k)
i ,

{
h
(k)

i
′

}
i
′∈V

′

)
=h

(k)
i

∥∥∥∥∥∑
i′

ai′→i

(
h
(k)
i − h

(k)

i′

)
(5)

where if i ∈ V = V1 then i
′ ∈ V

′
= V2, or if i ∈ V =

V2 then i
′ ∈ V

′
= V1. ∥ is the concatenation operation,{

h
(k)
i

}
i∈V

denotes a set of node representations before the

cross-attention layer.

Self-attention layer To encode the graph structure, Graph
Convolutional Networks are usually used in graph matching
tasks [1, 6, 9, 22]. However, such models assign equal im-
portance to neighbourhoods during message passing from
neighbourhoods to the center node, and ignores the relation-
ship between the features of neighbourhoods. In contrast,
we utilize an attention mechanism to learn the importance
of neighbourhoods and propose a self-attention layer:

fse

(
hcr
i ,

{
h
(k)
j

}
j∈Ni

)
=

K

∥
k=1

∑
j∈Ni

ak
j→ih

cr
j ∗Ws (6)

where hcr
i and hcr

j are node features after the cross-attention
layer, Ws ∈ RDcr×Dse is a trainable weight matrix, and
Dcr and Dse respectively denote the dimension of node
feature F after the cross-attention layer and after the self-
attention layer, aj→i is a normalized attention coefficient
computed by the kth attention mechanism, defined as:

aj→i =
exp

(〈
hcr
i ∗Ws, h

cr
j ∗Ws

〉)∑
ĵ exp

(〈
hcr
i ∗Ws, hcr

ĵ
∗Ws

〉) (7)

With the above definition, each GCA module can be formu-
lated as:

h
(k+1)
i =fse

(
hcr
i ,

{
h
(k)
j

}
j∈Ni

)
+ hcr

i (8)

This architecture has a nice property that it is able to pre-
serve node-to-node similarity to the next GCA module, and
meanwhile, the discrimination of node features is improved
through self-attention layer.

Graph-level aggregator The proposed GCAN can be
trained for node matching problem in a supervised way
given ground-truth node-to-node correspondence as dis-
cussed in section 3.3.1. To apply the GCAN for graph-level
matching problem or learning node-to-node similarity by
reasoning on graph-level matching, a graph-level aggrega-
tor, which takes the set of node representations

{
h
(K)
i

}
i∈V

of Kth GCA module as input and computes a graph-level
presentation, is then proposed as below:

hG =
∑
i∈V

σ
(
αG ⊙ h

(K)
i ∗WG′

)
∗WG (9)

where WG′ and WG are trainable weight matrix. αG is a
channel-attention weight vector similar to Eq.4, but uses
average-pooled features and max-pooled features computed
from the last GCA module. After the graph representations,
hG1 and hG2 are computed for the pair graph G1 and G2,
their similarity can be computed in the vector space by us-
ing the Euclidean, cosine or Hamming similarities.

3.3.1 Learning

The proposed model takes a pair of graphs with node fea-
tures as input and can be either trained for node-level match-
ing problem or graph-level matching problem. For node
matching, the proposed model can be trained in a supervised
way by utilizing the ground-truth node-to-node correspon-
dence as [6,9,14]. While many previous works [6,9,14,23]
consider the node matching problem as a bijective match-
ing problem, i.e. node matching between two graphs with
the same number of nodes (see Fig. 3), which can be eas-
ily resolved by the Hungarian algorithm. In such cases,
the invisible and occluded nodes are filtered during training
and testing. To target a more flexible assignment problem,
we formulate it as an Integer Linear Programming problem,
which is suitable for not only bijective node matching but
also non-injective node matching. To address the assign-
ment issue of invisible and occluded nodes, we introduce a
placeholder for them and define m ∈ M∗

0 , n ∈ N∗
0 , where

m and n are indexes of source nodes and target nodes. 0 is
a placeholder for a ‘dummy’ node. We define one possible
solution to this assignment problem as:

θ ∈ Θ = {amn |amn ∈ {0, 1} m ∈ M∗
0 , n ∈ N∗

0 } (10)

2346

Figure 3: Description of node matching. All nodes of the
two graphs are shown in the left. Blue solid circles denote
visible nodes. Yellow triangles and green squares denote
the invisible nodes in G1 and G2 respectively. The top and
middle branch show how the most recent work [6, 9, 14, 23]
addresses the bijective matching problem, where keypoints
are filtered by intersection or inclusion filtering. Then the
Hungarian algorithm is used to resolve the node assignment
problem in the square affinity matrix. The bottom branch
shows the more general node matching problem without fil-
tering that is addressed by our approach. We consider all
keypoints for matching by adding row and column dummy
nodes, which allow unmatched nodes to be assigned.

where Θ consists of all possible source-to-target assign-
ments. The score of each possible assignment is defined
as:

S (θ) =
∏

n∈N∗
0 ,m∈M∗

0

S (am
n)a

m
n

(11)

where S (amn) is the aggregated and normalized score of all
GCA modules.

We rewrite the assignment problem as a minimization:

Lt = min
θ∈Θ
− (log (S (θ)))

= min
∑

n∈N∗
0 ,m∈M∗

0

− (logS (am
n) · am

n)
(12)

s.t. ∀m ∈ M∗,
∑

n∈N∗
0

amn = 1 (13)

∀n ∈ N∗,
∑

m∈M∗
0

amn = 1 (14)

The constraints (13), (14) ensure that each source node is
uniquely assigned to a target node or dummy node and each
target node is uniquely assigned to a source node or dummy
node. The branch-and-bound algorithm [24] is then applied
to find optimal solution.

To train the model, due to the sparsity of the ground-truth
node-to-node correspondence, the cross-entropy loss used

by previous approaches tends to back-propagate more gra-
dients of negative samples than positive samples resulting in
prediction bias towards the negative class. Focal-loss, used
by [9], is able to deal with such class imbalance by introduc-
ing class weights, but the class weights are user-defined and
heavily dependant on experimental experience. To resolve
this problem, we propose an ILP attention loss:

Lperm =−
∑
i∈V1
i′∈V2

max {ai,i′ , Yi,i′}
(
Yi,i′ log Ȳi,i′

+(1− Yi,i′) log
(
1− Ȳi,i′

)) (15)

where Yi,i′ and Ȳi,i′ are the ground truth and prediction re-
spectively, ai,i′ is the ILP assignment result. If two graphs
have different number of nodes, then i ∈ V1 = M∗

0 and
i′ ∈ V2 = N∗

0 . Otherwise i ∈ V1 = M∗ and i′ ∈ V2 = N∗.
Note that in this loss function, node matching is regarded as
a binary classification task where 1 and 0 mean matched and
unmatched respectively. By introducing ai,i′ , the proposed
model will focus on minimizing loss at positive samples and
high ILP responses.

For the case that node labels are not given, the proposed
model can still compute similarity scores between nodes
through our cross-graph attention layer. To train the model
with graph-level matching, we use Euclidean similarity and
follow margin-based pairwise loss:

Lgraph =YG ∥hG1 − hG2∥+ (1− YG)max {
0, λ− ∥hG1 − hG2∥}

(16)

where YG is a binary flag equal to 0 for a negative pair and
to 1 for a positive pair, λ > 0 is a margin parameter.

4. Experiments

In this section, we evaluate the proposed graph network
on two types of task: (i) keypoint matching and (ii) graph-
level matching. We compare our graph network with ex-
isting state-of-the-art methods using three public key point
matching datasets and one vessel graph dataset. The results
demonstrate that our graph network consistently outperform
all other approaches.

2347

Algorithm 1 Training algorithm for node matching.
Input: Graph pairs G1, G2; image pairs I1, I2; ground-truth

node-to-node correspondence Y ∗

1: Extract and keypoint features from CNN via bi-linear map-
ping.

2: Concatenate keypoint features extracted from CNN to repre-
sent node features {di}i∈V in our GCAN.

3: Compute average-pooled features Favg and max-pooled fea-
tures Fpool from the last convolutional layer of the CNN.

4: for epoch e ≤ E do
5: for attention module k < K do
6: hcr

i ← fcr

(
h
(k)
i ,

{
h
(k)

i
′

}
i
′∈V

′

)
(Eq. 5)

7: Sk
i,i′ ← ai′→i

8: hse
i ← fse

(
hcr
i ,

{
h
(k)
j

}
j∈Ni

)
(Eq. 9)

9: hk+1
i ← hcr

i + hse
i (Eq. 8)

10: end for
11: Perform row and column normalization on S
12: Solve argmin

{ai,i′}

∑
i,i′ − (logS (ai,i′) · ai,i′) using branch-

and-bound algorithm
13: Update model weights using Eq. 15
14: end for

4.1. Implementation details

Our PyTorch implementation of GCAN involves 3 GCA
modules, which achieve the best performance in our exper-
iment. We employ Adam [25] as an optimizer with an ini-
tial learning rate of 2 × 10−5 for VGG16 and 2 × 10−3

for other models. All experiments were performed using
a Dell Precision 5820 Workstation with a NVidia GeForce
RTX 2080 Ti GPU, 32GB RAM and an Intel(R) Xeon(R)
W-2245 CPU. Our codes is available on github: https:
//github.com/ZhehengJiang/GCAN.

4.2. Keypoint matching

Datasets We evaluate the proposed method for keypoint
matching on three public datasets: Willow ObjectClass
dataset [27], Pascal VOC dataset with Berkeley annota-
tions [28] and SPair-71k [29]. The Pascal VOC dataset
consists of 20 classes of instances with labeled keypoint
locations. This dataset is considerably challenging since
image instances may vary in scale, pose and illumination,
affecting the numbers of available keypoints and the num-
ber of inliers ranges from 6 to 23. We follow [14] to use
7,020 annotated images for training and 1,682 for testing.
The SPair-71k is a larger dataset collected from Pascal
VOC 2012 and Pascal 3D+, containing 70,958 image pairs
with higher image quality and richer keypoint annotations.
Following [8], we use 58,724 image pairs for training and
12,234 for testing. For the input image pairs, we follow [14]
to construct the reference graph by Delaunay triangulation,
and the target graph by full connection. The Willow Ob-

jectClass dataset is a less challenging one than previous two
datasets, which contains five classes (car, duck, face, mo-
torbike and winebottle) from Caltech-256 and Pascal VOC
2007. Each class consists of at least 40 images with differ-
ent instances and each of them is annotated with 10 distinc-
tive image keypoints. Following the default setting in [14],
the first 20 images from each class are used for training and
the rest are for testing.

Baseline methods and metrics We compare the pro-
posed method against 8 state-of-the-art methods, GMN
[1], PCA-GM [6], IPCA-GM [26], CIE-H [7], LCS [23],
BBGM [8] and NGM-v2 [14]. To compare the proposed
ILP attention loss with previous work, we use focal loss
(FL) [9], binary cross-entropy (BCE) [14], cost margin
(CM) [8], pixel offset regression (POR) [1], Hungarian At-
tention Loss (HAL) [7]. For fair comparison, we follow pre-
vious work [1,8,14] and extract node features from relu4 2
and relu5 1 of VGG16 [30] via bilinear mapping. The
matching accuracy is computed as the number of correctly
matched keypoint pairs averaged by the number of all true
matched keypoint pairs.

Results We firstly follow the most common experimental
setting, where intersection filtering is applied to generate
graphs with the equal size, and report matching accuracy of
the 20 classes and average accuracy on Pascal VOC dataset
in Tab. 1. We can see that the proposed approach outper-
form the other state-of-the-art approaches for most classes
and particularly in terms of mean accuracy. Note that
BBGM, NGM-v2 and NHGM-v2 also adopt SplineCNN to
refine the features, but our approach achieves 1.9% higher
accuracy than the best one of them due to our more effi-
cient GCAN and ILP Attention loss function. The matching
accuracy of the proposed approach against the current state-
of-the-art on the SPair-71k and Willow ObjectClass datasets
respectively is reported in Supplementary. Our approach
achieves the best performance in both tables, demonstrating
its generality. To demonstrate the effectiveness of the pro-
posed loss function, we replace our ILP AL with different
types loss function while keeping our GCAN unchanged,
and report their accuracy in Tab. 2 (full table can be found
in Supplementary). Specifically, our ILP AL achieves the
best performance and has more than 1% improvement of
mean accuracy over BCE (used in CIE-H) and HAL (used
in NGM-v2). Comparing the accuracy of BCE and HAL re-
ported in Tab. 2 against the accuracy of CIE-H and NGM-
v2 reported in Tab. 1, we can see that the proposed GCAN
surpasses CIE-H and NGM-v2 even trained by the same
loss function. In the more general setting, matching graphs
may contain different numbers of nodes, which is closer to
the real-world scenario. To evaluate the systems on such
size-varied graph problem, since matching accuracy ignores

2348

Table 1: Matching accuracy (%) on Pascal VOC Keypoint with intersection filtering.
method aero bike bird boat bottle bus car cat chair cow table dog horse mbkie person plant sheep sofa train tv mean

GMN [1] 41.6 59.6 60.3 48.0 79.2 70.2 67.4 64.9 39.2 61.3 66.9 59.8 61.1 59.8 37.2 78.2 68.0 49.9 84.2 91.4 62.4
PCA-GM [6] 49.8 61.9 65.3 57.2 78.8 75.6 64.7 69.7 41.6 63.4 50.7 67.1 66.7 61.6 44.5 81.2 67.8 59.2 78.5 90.4 64.8
IPCA-GM [26] 53.8 66.2 67.1 61.2 80.4 75.3 72.6 72.5 44.6 65.2 54.3 67.2 67.9 64.2 47.9 84.4 70.8 64.0 83.8 90.8 67.7
CIE-H [7] 49.9 63.1 70.7 53.0 82.4 75.4 67.7 72.3 42.4 66.9 69.9 69.5 70.7 62.0 46.7 85.0 70.0 61.8 80.2 91.8 67.6
LCS [23] 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5
BBGM [8] 61.9 71.1 79.7 79.0 87.4 94.0 89.5 80.2 56.8 79.1 64.6 78.9 76.2 75.1 65.2 98.2 77.3 77.0 94.9 93.9 79.0
NGM [6] 50.1 63.5 57.9 53.4 79.8 77.1 73.6 68.2 41.1 66.4 40.8 60.3 61.9 63.5 45.6 77.1 69.3 65.5 79.2 88.2 64.1
NGM-v2 [14] 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2 80.1
NHGM-v2 [14] 59.9 71.5 77.2 79.0 87.7 94.6 89.0 81.8 60.0 81.3 87.0 78.1 76.5 77.5 64.4 98.7 77.8 75.4 97.9 92.8 80.4
ours 63.4 71.2 80.1 81.1 90.4 95.5 89.5 80.4 65.3 80.8 89.9 81.4 80.6 78.1 67.7 98.2 77.5 82.6 98.4 93.4 82.3

Table 2: Matching accuracy (%) of different loss functions
on Pascal VOC Keypoint with intersection filtering.
loss FL [9] CM [8] POR [1] BCE [14] HAL [7] ILP AL

mean acc 77.7 40.2 78.7 81.3 81.2 82.3

false positives, we report mean F1-Score instead in Tab. 3.
We show in Fig. 4-left the distribution of the test set used
in Tab. 3, which has size difference ≤ 14; only 29% of
graph pairs are the same size. Fig. 4-right shows the signif-
icant advantage of the proposed method for handling vary-
ing size differences. As the size difference increases, the
F1 score of Hungarian+NGMv2 decreases, demonstrating
inability to handle large size disparities. Hungarian+GCAN
improves on this considerably while ILP+GCAN gives con-
sistently high performance. We show in Fig. 5 that 82% of
graph pairs in our test set (16445/20000) have at least one
invisible node, and our performance remains strong as the
total number of invisible nodes increases.

Figure 4: L: size distribution. R: impact of size-variance.

Figure 5: Distribution of invisible nodes, showing its impact
on the performance of our approach.

As shown in Tab. 4, we conduct four ablation experi-
ments on the Pascal VOC dataset to quantitatively evaluate

(a) Pascal VOC (b) Hand vessel

Figure 6: ROC curves of different state-of-the-art graphic
models evaluated on Pascal VOC and hand vessel datasets

the effectiveness of each component in the proposed archi-
tecture. All experiments use our proposed ILP attention loss
which has shown superior performance in the previous ex-
periments. The baseline in experiment A is a basic VGG16
network, and a inner-product similarity is used to measure
the similarity between nodes. Each major component of our
Graph-context Attention Network, i.e. attention, positional
encoding and self attention, is evaluated in experiments B,
C and D respectively. We can observe that cross-attention
is critical for graph matching. Positional encoding and self-
attention further improve the accuracy considerably.

4.3. Graph-level matching

Dataset To evaluate the proposed method for graph-level
matching, we use the Pascal VOC dataset and the Bospho-
ros vessel graph dataset [31], which contains 1575 near-
infrared images of the dorsal hand from 100 subjects. For
the Pascal VOC dataset, we adopt the same data partitioning
as in the Keypoint matching experiment. The vessel graph
dataset is split to 600 images from 50 people for training
and 600 images from another group of 50 people for testing.
We then generate training/testing positive and negative pairs
by randomly picking image pairs with the same/different
class. Moreover, we also evaluate the node matching ac-
curacy on Pascal VOC dataset without any node correspon-
dence groundtruth for training.

2349

Table 3: F1 score (%) on Pascal VOC Keypoint with size-varied graphs.
method aero bike bird boat bottle bus car cat chair cow table dog horse mbkie personplant sheep sofa train tv mean F1

BBGM [8] 42.7 70.9 57.5 46.6 85.8 64.1 51.0 63.8 42.4 63.7 47.9 61.5 63.4 69.0 46.1 94.2 57.4 39.0 78.0 82.7 61.4
qc-DGM1 [9] 30.1 59.1 48.6 40.0 79.7 51.6 32.4 55.4 26.1 52.1 47.0 50.1 56.8 59.9 27.6 90.4 50.9 33.1 71.3 78.8 52.0
qc-DGM2 [9] 30.9 59.8 48.8 40.5 79.6 51.7 32.5 55.8 27.5 52.1 48.0 50.7 57.3 60.3 28.1 90.8 51.0 35.5 71.5 79.9 52.6
NHGM-v2 [14] 41.3 66.3 49.1 40.2 88.9 58.0 43.0 52.1 41.2 54.7 38.7 50.2 52.8 61.5 41.7 91.4 41.1 43.7 66.5 74.7 54.8
ours 45.0 66.7 60.6 49.7 89.7 66.3 65.2 64.9 45.5 66.9 54.4 63.1 62.5 63.5 55.0 96.1 63.5 49.7 80.6 83.6 64.6

Table 4: Ablations study of the proposed architecture.
Exp. Setup Accuracy

A baseline+inner-product similarity 58.1
B A+cross-attention 70.2
C B+positional encoding 79.4
D C+self-attention 82.3

Figure 7: Auc/F1 vs. training epoch on Pascal VOC dataset.

Baseline methods and metrics In these experiments, we
explore two questions: (i) Is GCAN able to facilitate graph-
level matching? (ii) Without ground truth node-level label-
ing, can GCAN reason node matching by learning graph
similarity. To address the first question, we compare our
model against several state-of-the-art graphic models, such
as GCN [5], GTA [16] and PGNN [17], which have shown
good performance on graph-level classification. Their per-
formance are evaluated using pair AUC, i.e. area under the
ROC curve for classifying pairs of graphs as similar or not.
To investigate the second question, we only use graph-level
training loss (Eq. 16) to train our GCAN and then report its
node-level matching accuracy on Pascal VOC dataset.

Results Fig. 6 shows the ROC curves and AUC of the
different SOA graphic models evaluated on the Pascal VOC
and Bosphorus [31] datasets. We firstly explore the abil-
ity of our GCAN for node-level matching without node
correspondence supervision, and show AUC/F1 vs. train-
ing epoch on Pascal VOC in Fig. 7. Both AUC and F1
ascend during training, supporting our claim that node-to-
node similarity can be learned by reasoning on graph-level
matching without node correspondence supervision. From
Fig. 6, we can also observe that our model built with
cross-attention and self-attention consistently outperforms
our model with self-attention only and competing models.

4.4. Conclusion

This paper has presented a novel neural graph matching
network that produces more discriminative node features by
capturing intrinsic graph structure and cross-graph informa-
tion. To address the size-varied graph matching problem,
we formulate it as an Integer Linear Programming Problem.
The proposed neural graph matching network trained by
our ILP attention is shown to outperform other competing
methods, particularly for size-varied graph matching prob-
lem. Furthermore, we extend the proposed network to learn
none-to-node matching with graph-level training loss. Our
experiments and ablation studies on three public keypoint-
matching datasets and the vessel graph dataset demonstrate
the state-of-the-art performance of our method.

Broader Impact

Our proposed approach directly addresses a general
graph matching problem, where graph pairs may contain
different numbers of nodes. This paper goes beyond object
identification and comparison by node-to-node correspon-
dence into real world applications by not requiring prior
knowledge of corresponding nodes. This leads to many po-
tential new applications such as pattern matching for person
identification, with the potential for perpetrator identifica-
tion. As with all biometric approaches, there is potential for
misuse. This work can lead to new developments in 3D and
4D reconstruction as well as shape matching, tracking and
identification with wider applications in many areas includ-
ing security, pharmaceutical manufacturing, and astronomy.

Limitations

While the proposed approach achieves impressive speeds
for image comparison and is able to handle the understud-
ied size-varied graph matching problem, the complexity of
much larger graphs that are not typically associated with
this problem would result in increased complexity and train-
ing time. It would be prudent to address this issue in future
research for other applications.

Acknowledgments
The work in this publication is supported by funding

from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 787768).

2350

References
[1] A. Zanfir and C. Sminchisescu, “Deep learning of graph

matching,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2684–2693, 2018.
1, 4, 6, 7

[2] D. Zhong, H. Shao, and X. Du, “A hand-based multi-
biometrics via deep hashing network and biometric graph
matching,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 12, pp. 3140–3150, 2019. 1

[3] X. Bai, Graph-Based Methods in Computer Vision: Devel-
opments and Applications: Developments and Applications.
IGI global, 2012. 1

[4] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto,
P. Hahn, and T. Querido, “A survey for the quadratic assign-
ment problem,” European journal of operational research,
vol. 176, no. 2, pp. 657–690, 2007. 1

[5] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016. 1, 2, 3, 8

[6] R. Wang, J. Yan, and X. Yang, “Learning combinatorial em-
bedding networks for deep graph matching,” in Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pp. 3056–3065, 2019. 1, 2, 4, 5, 6, 7

[7] T. Yu, R. Wang, J. Yan, and B. Li, “Learning deep graph
matching with channel-independent embedding and hungar-
ian attention,” in International conference on learning repre-
sentations, 2019. 1, 2, 6, 7

[8] M. Rolı́nek, P. Swoboda, D. Zietlow, A. Paulus, V. Musil,
and G. Martius, “Deep graph matching via blackbox differ-
entiation of combinatorial solvers,” in European Conference
on Computer Vision, pp. 407–424, Springer, 2020. 1, 2, 3, 6,
7, 8

[9] Q. Gao, F. Wang, N. Xue, J.-G. Yu, and G.-S. Xia, “Deep
graph matching under quadratic constraint,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 5069–5078, 2021. 1, 2, 4, 5, 6, 7, 8

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Advances in neural information processing sys-
tems, pp. 5998–6008, 2017. 1, 3

[11] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and
R. Salakhutdinov, “Transformer-xl: Attentive language
models beyond a fixed-length context,” arXiv preprint
arXiv:1901.02860, 2019. 1, 3

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020. 1, 3

[13] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles,
and H. Jégou, “Training data-efficient image transformers &
distillation through attention,” in International Conference
on Machine Learning, pp. 10347–10357, PMLR, 2021. 1, 3

[14] R. Wang, J. Yan, and X. Yang, “Neural graph matching
network: Learning lawler’s quadratic assignment problem
with extension to hypergraph and multiple-graph matching,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2021. 1, 2, 3, 4, 5, 6, 7, 8

[15] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive rep-
resentation learning on large graphs,” in Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, pp. 1025–1035, 2017. 2, 3

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017. 2, 3, 8

[17] J. You, R. Ying, and J. Leskovec, “Position-aware graph
neural networks,” in International Conference on Machine
Learning, pp. 7134–7143, PMLR, 2019. 2, 3, 8

[18] M. Rolı́nek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis,
and G. Martius, “Optimizing rank-based metrics with
blackbox differentiation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7620–7630, 2020. 2

[19] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?,” arXiv preprint
arXiv:1810.00826, 2018. 3

[20] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller,
“Splinecnn: Fast geometric deep learning with continuous
b-spline kernels,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 869–877,
2018. 3

[21] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Con-
volutional block attention module,” in Proceedings of the
European conference on computer vision (ECCV), pp. 3–19,
2018. 4

[22] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “Revised
note on learning quadratic assignment with graph neural net-
works,” in 2018 IEEE Data Science Workshop (DSW), pp. 1–
5, IEEE, 2018. 4

[23] T. Wang, H. Liu, Y. Li, Y. Jin, X. Hou, and H. Ling, “Learn-
ing combinatorial solver for graph matching,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7568–7577, 2020. 4, 5, 6, 7

[24] P. M. Narendra and K. Fukunaga, “A branch and bound al-
gorithm for feature subset selection,” IEEE Transactions on
computers, vol. 26, no. 09, pp. 917–922, 1977. 5

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014. 6

[26] R. Wang, J. Yan, and X. Yang, “Combinatorial learning of ro-
bust deep graph matching: an embedding based approach,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020. 6, 7

[27] M. Cho, K. Alahari, and J. Ponce, “Learning graphs to
match,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 25–32, 2013. 6

2351

[28] L. Bourdev and J. Malik, “Poselets: Body part detec-
tors trained using 3d human pose annotations,” in 2009
IEEE 12th International Conference on Computer Vision,
pp. 1365–1372, IEEE, 2009. 6

[29] J. Min, J. Lee, J. Ponce, and M. Cho, “Spair-71k: A
large-scale benchmark for semantic correspondence,” arXiv
preprint arXiv:1908.10543, 2019. 6

[30] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014. 6

[31] A. Yüksel, L. Akarun, and B. Sankur, “Biometric identifica-
tion through hand vein patterns,” in 2010 International Work-
shop on Emerging Techniques and Challenges for Hand-
Based Biometrics, pp. 1–6, IEEE, 2010. 7, 8

2352

