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Abstract
3D room layout estimation by a single panorama us-

ing deep neural networks has made great progress. How-
ever, previous approaches can not obtain efficient geometry
awareness of room layout with the only latitude of bound-
aries or horizon-depth. We present that using horizon-
depth along with room height can obtain omnidirectional-
geometry awareness of room layout in both horizontal and
vertical directions. In addition, we propose a planar-
geometry aware loss function with normals and gradients
of normals to supervise the planeness of walls and turn-
ing of corners. We propose an efficient network, LGT-Net,
for room layout estimation, which contains a novel Trans-
former architecture called SWG-Transformer to model ge-
ometry relations. SWG-Transformer consists of (Shifted)
Window Blocks and Global Blocks to combine the local and
global geometry relations. Moreover, we design a novel
relative position embedding of Transformer to enhance the
spatial identification ability for the panorama. Experi-
ments show that the proposed LGT-Net achieves better per-
formance than current state-of-the-arts (SOTA) on bench-
mark datasets. The code is publicly available at https:
//github.com/zhigangjiang/LGT-Net.

1. Introduction

The goal of estimating the 3D room layout by an indoor
RGB image is to locate the corners or the floor-boundary
and ceiling-boundary, as shown in Fig. 3a, which plays a
crucial role in 3D scene understanding [24]. The panoramic
images have wider (360◦) field of view (FoV) than perspec-
tive images and contain the whole-room contextual infor-
mation [30]. With the development of deep neural networks
and the popularity of panoramic cameras in recent years,
3D room layout estimation by a single panorama has made
great achievements [23, 28, 32].

Most room layouts conform to the Atlanta World as-
sumption [20] with horizontal floor and ceiling, along with
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Figure 1. Overall architecture of the proposed LGT-Net. The net-
work estimates the room layout from a single panorama using the
omnidirectional-geometry aware loss of horizon-depth and room
height and the planar-geometry aware loss of normals and gra-
dients of normals. We visualize the predicted boundaries (green)
by the horizon-depth and room height, and the floor plan (red)
with post-processing by Manhattan constraint, finally output the
3D room layout.

vertical walls [18]. Thus the room layout can be repre-
sented by floor-boundary and room height, as shown in
Fig. 3a. However, previous approaches [23,24,26] estimate
the room height by ceiling-boundary. And the networks pre-
dict the floor-boundary and ceiling-boundary with the same
output branch, which affects each other since they need to
predict both horizontal shape and vertical height of room
layout. Meanwhile, most previous approaches [23, 28, 32]
use Manhattan constraint [3] or directly simplify bound-
aries [18] in post-processing without considering the pla-
nar attribute of the walls to constrain the network output
results. In addition, for models [23, 24, 26] which formu-
late the room layout estimation task as 1D sequence predic-
tion, a sequence processor is needed to model the geometry
relationship. Bidirectional Long Short-Term Memory (Bi-
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LSTM) [11, 21] is used in [23, 26]. Transformer [25] is an
efficient framework for sequence processing and has made
great success in natural language processing (NLP) tasks.
Vision Transformer (ViT) [5] has demonstrated strong abil-
ities in the computer vision field recently. Nevertheless,
there is no specially designed Transformer architecture for
panoramas as we know.

Due to the above problems, we propose an efficient net-
work called LGT-Net for panoramic room layout estima-
tion. It contains a feature extractor to convert the panorama
to feature sequence and a Transformer architecture as se-
quence processor. Our proposed network directly predicts
the room height and floor-boundary by two branches in
the output layer, as shown in Fig. 1. Inspired by Wang et
al. [26], we represent the floor-boundary by horizon-depth.
Thus, we propose an omnidirectional-geometry aware loss
function that computes the errors of horizon-depth and
room height, which brings better geometry awareness of
the room layout in both horizontal and vertical directions.
In addition, we observe the planar attribute of the walls and
the turning attribute of the corners. Thus we propose to use
the planar-geometry aware loss function of normal consis-
tencies and gradient of normal errors to supervise these at-
tributes.

Moreover, we design a novel Transformer architecture
called SWG-Transformer as the sequence processor for our
network, which consists of (Shifted) Window Blocks [15]
and Global Blocks to combine the local and global geome-
try relations, as shown in Fig. 1. With the attention mech-
anism [16], our SWG-Transformer can better process the
left and right borders of the panoramas than Bi-LSTM. In
addition, we design a novel relative position embedding
[13, 19, 22] of Transformer architecture to enhance the spa-
tial identification ability for the panoramas.

In order to demonstrate the effectiveness of our proposed
approach, we conduct extensive experiments on benchmark
datasets, including ZInD [4] dataset. Meanwhile, we con-
duct ablation study on MatterportLayout [33] dataset in the
following aspects: loss function, network architecture, and
position embedding of Transformer to demonstrate the ef-
fectiveness of each component. Experiments show that our
proposed approach performs better than SOTA. The main
contributions of our work are as follows:

• We represent the room layout by horizon-depth and
room height and output them with two branches of
our network. Furthermore, we compute the horizon-
depth and room height errors to form omnidirectional-
geometry aware loss function and compute normal and
gradient errors to form planar-geometry aware loss
function.

• We show that exploiting Transfomer as a sequence pro-
cessor is helpful for panoramic understanding. And
our proposed SWG-Transformer can better establish

the local and global geometry relations of the room
layout.

• We specially design a relative position embedding of
Transformer to enhance the spatial identification abil-
ity for the panoramas.

2. Related Work
Panoramic Room Layout Estimation Previous ap-
proaches mainly follow the Manhattan World assumption
[3] or the less restrictive Atlanta World assumption [20] to
estimate the room layout from a panorama and constrain
post-processing.

Convolutional neural networks (CNNs) have been used
to estimate the room layout with better performance. Zou
et al. [32] propose LayoutNet to predict probability maps
of boundaries and corners and use layout parameter regres-
sors to predict the final layout. Meanwhile, they extend
the cuboid layout annotations of the Stanford [1] dataset.
Yang et al. [28] propose Dula-Net to predict floor and ceil-
ing probability maps under both the equirectangular view
and the perspective view of the ceiling. Fernandez et al. [8]
propose to use equirectangular convolutions (EquiConvs)
to estimate the room layout. Sun et al. [23] simplify the
layout estimation task from 2D dense prediction to 1D se-
quence prediction. They propose HorizonNet to extract the
sequence by a feature extractor based on ResNet-50 [10],
then use Bi-LSTM as a sequence processor to establish the
global relations. We also use a framework composed of a
feature extractor and a sequence processor. Zou et al. [33]
propose improved version, LayoutNet v2 and Dula-Net v2,
which have better performance on cuboid datasets than orig-
inal approaches, and propose the general MatterportLay-
out dataset. However, their experiments show that Hori-
zonNet [23] is more efficient on general datasets. Pintore
et al. [18] propose AtlantaNet to predict floor and ceiling
boundary probability maps by same network instance and
directly simplify [6] output boundaries as post-processing.

Recently, Wang et al. [26] propose LED2-Net [26] to
formulate the room layout estimation as predicting depth on
the horizontal plane (horizon-depth), and they can pre-train
on synthetic Structured3D [31] dataset with deep informa-
tion. Sun et al. [24] propose HoHoNet to improve Horizon-
Net by re-designing the feature extractor with the Efficient
Height Compression (EHC) module and employing multi-
head self-attention (MSA) [25] as a sequence processor in-
stead of Bi-LSTM.

Geometry Awareness Wang et al. [26] propose a
geometry-aware loss function of the room layout estima-
tion by horizon-depth, which is only effective on horizontal
direction. Hu et al. [12] propose to use losses of normal and
gradient of depth to improve the performance for depth esti-
mation on perspective images. Eder et al. [7] propose plane-
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Figure 2. The mapping relationships between 3D points and a
panorama. (a) The coordinate relations in 3D space, where hf (h̄c)
is the ground truth distance from camera center to the floor (ceil-
ing). (b) The longitude and latitude (θ, φ) relations on a panorama.

aware loss that leverages curvature, normal, and point-to-
plane distance to improve the performance for depth esti-
mation on panoramic images. These works inspire us to
propose a more effective geometry awareness loss function.

Transformer Recently, ViT shows that Transformer ar-
chitecture can compete with CNNs in visual classifica-
tion tasks. Moreover, improved ViT networks (e.g., T2T-
ViT [29], PVT [27], and Swin-Transformer [15]) demon-
strate that Transformer architecture is capable of surpassing
CNNs. Inspired by Swin-Transformer, we exploit window
partition to reduce computation and enhance local modeling
ability in SWG-Transformer. However, using window parti-
tion alone leads to lower global modeling ability. Thus, our
proposed SWG-Transformer consists of (Shifted) Window
Blocks and Global Blocks to combine the local and global
geometry relations.

3. Approach
Our proposed approach aims to estimate the 3D room

layout from a single panorama. We first describe the room
layout representation with horizon-depth and room height
and show that they can achieve omnidirectional-geometry
awareness (Sec. 3.1). Then, we introduce our proposed
loss function, which consists of omnidirectional-geometry
aware loss and planar-geometry aware loss (Sec. 3.2). Fi-
nally, we describe the network architecture of LGT-Net and
use the SWG-Transformer to establish the local and global
geometry relations of the room layout (Sec. 3.3).

3.1. Panoramic Room Layout Representation

We represent the room layout by the floor-boundary and
room height, as shown in Fig. 3a. We adopt a sampling ap-
proximation scheme to compute the floor-boundary. Specif-
ically, sample N points {pi}Ni=1 with equal longitude inter-

vals from the polygon of floor-boundary, where N is 256
by default in our implementation. The longitudes of the
sampling points are denoted as {θi = 2π( iN − 0.5)}Ni=1.
Then, we convert the points {pi}Ni=1 to the horizon-depth
sequence {di = D(pi)}Ni=1:

p = (x, y, z),

D(p) =
√
x2 + z2.

(1)

Thus, we can estimate the room layout by predicting the
horizon-depth sequence and room height.

The floor-boundary on the ground plane is sensitive in
the horizontal direction, as shown in Fig. 3a. HorizonNet
[23] predicts latitudes of ceiling and floor boundaries and
calculates errors. However, when the latitude errors of two
sampling points are equal (e.g., |φ1− φ̄fi | = |φ2− φ̄

f
i |), the

corresponding horizon-depth errors may be different (e.g.,
|D(p1)−D(p̄fi )| > |D(p2)−D(p̄fi )|), as shown in Fig. 2.
Thus, we predict horizon-depth and calculate errors to make
better geometry awareness of the room layout in the hori-
zontal direction.

Moreover, the room height is sensitive in the vertical
direction, as shown in Fig. 3a. LED2-Net [26] also pre-
dicts latitudes but converts the latitudes of floor (ceiling)
boundary to horizon-depth by projecting to ground truth
floor (ceiling) plane to compute errors. During inference,
it calculates the room height by the consistency between
the horizon-depth of ceiling and floor boundaries. However,
when the ceiling horizon-depth errors of the two sampling
points are equal (e.g., |D(p′3)−D(p̄ci )| = |D(p′4)−D(p̄ci )|),
the corresponding room height errors may be different (e.g.,
p′3 and p′4 are converted to p3 and p4 by the consistency
of ground truth horizon-depth D(p̄ci ), and |h3 − h̄c| <
|h4 − h̄c|), as shown in Fig. 2. Thus, we directly predict
the room height and compute error to make better geometry
awareness of the room layout in the vertical direction.

As a result, we propose an omnidirectional-geometry
aware loss function that computes the errors of horizon-
depth and room height. Tab. 4 shows the improvement in
our approach.

3.2. Loss function

Horizon-Depth and Room Height For the horizon-depth
and room height, we apply the L1 loss:

Ld =
1

N

∑
i∈N
|di − d̄i|,

Lh = |h− h̄|,
(2)

where d̄i (h̄) is the ground truth horizon-depth (room
height), and di (h) is the predicted value.

Normals As shown in Fig. 3, each wall is a plane, but
the positions on the same wall may have different horizon-
depth (e.g., D(pi−1) 6= D(pi)). However, the normals at
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Figure 3. Illustration of geometry awareness for the room layout.
(a) The horizontal and vertical directions influence the room lay-
out. We propose omnidirectional-geometry aware loss function by
horizon-depth and room height. (b) The planar-geometry aware-
ness by normals.

different positions on the same wall plane are consistent.
Thus we use normal consistency to supervise the planar at-
tribute of the walls. Specifically, when the network pre-
dicts the horizon-depth sequence {di}Ni=1, we convert each
horizon-depth di to the corresponding 3D point pi and ob-
tain the normal vector ni that is always perpendicular to the
y-axis. Then we compute the cosine similarity to get the
normal loss:

pi = (di sin(θi), h
f , di cos(θi)),

ni = Mr(
pi+1 − pi
‖pi+1 − pi‖

)T ,

Ln =
1

N

∑
i∈N

(−ni · n̄i),

(3)

where Mr is the rotation matrix of π2 , n̄i is the ground truth
of normal vector, and ni is the predicted normal vector.

Gradients of normals The normals change near the cor-
ners, as shown in Fig. 3b. In order to supervise the turning
of corners, we compute the angle between ni−1 and ni+1

to represent gradient gi of normal angle, then apply the L1
loss:

gi = arccos(ni−1 · ni+1),

Lg =
1

N

∑
i∈N
|gi − ḡi|,

(4)

where ḡi and gi are the ground truth and predicted gradients,
respectively.

Total Loss The loss terms related to horizon-depth and
room height enhance the omnidirectional-geometry aware-
ness. And the loss terms corresponding to the normals and
gradients enhance the planar-geometry awareness. There-
fore, to enhance both aspects, we use a total loss function as
follows:

L = λLd + µLh + ν(Ln + Lg), (5)

where λ, µ, ν ∈ R are hyper-parameters to balance the con-
tribution of each component loss.

3.3. Network

Our proposed LGT-Net consists of a feature extractor
and a sequence processor, as shown in Fig. 1. The fea-
ture extractor extracts a feature sequence from a panorama.
Then, our proposed SWG-Transformer processes the fea-
ture sequence. In the end, our network respectively predicts
the horizon-depth sequence and a room height value by two
branches in the output layer.

Feature Extractor In our implementation, the feature
extractor uses the architecture proposed in HorizonNet
[23] based on ResNet-50 [10]. The architecture takes a
panorama with dimension of 512×1024×3 (height, width,
channel) as input and gets 2D feature maps of 4 different
scales by ResNet-50. Then, it compresses the height and
up samples width N of each feature map to get 1D feature
sequences with same dimension RN×D

4 and connect them,
finally outputs a feature sequence RN×D, where D is 1024
in our implementation. Moreover, we can also use the EHC
module proposed by Sun et al. [24] or Patch Embedding [5]
of ViT [5] (described in Sec. 4.4) as the feature extractor to
extract the feature sequence.

SWG-Transformer In our proposed SWG-Transformer,
each loop contains four successive blocks, in the follow-
ing order: Window Block, Global Block, Shifted Window
Block, Global Block. The default loop is repeated twice
(×2) for a total of 8 blocks, as shown in Fig. 1. Each block
follows the basic Transformer [25] encoder architecture, as
shown in Fig. 4a, and the difference lies in the operations
before and after MSA. Moreover, the dimension of the se-
quence and corresponding positions of tokens are the same
in the input sequence and output sequence of each block.

In Window Block, we use window partition for the in-
put feature sequence and get N

Nw
window feature sequences

RNw×D before MSA, whereNw denotes the window length
and is set to 16 by default in our implementation. The
window partition enhances local geometry relations and
reduces the computation when calculating self-attention.
Moreover, the window feature sequences are merged after
the MSA, as shown in Fig. 4b.

Shifted Window Block aims to connect adjacent win-
dows to enhance information interaction, and it is based on
the Window Block. We roll the input feature sequence with
Nw

2 as its offset before the window partition. To restore
the original positions of feature sequence after merging the
window feature sequences, we perform a reverse roll oper-
ation, as shown in Fig. 4c.

In Global Window Block, operations like window parti-
tioning and rolling are unnecessary. It follows the original
Transformer [25] encoder architecture and aims to enhance
the global geometry relations, as shown in Fig. 4d.

Position Embedding Since the pure attention module is
insensitive to positions of distinguishing tokens, the spatial
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Figure 5. (a)The feature sequence from panorama is a circular
structure. (b) Illustration of relative position bias matrix for Global
Block.

recognition ability is weakened. Thus, in computing self-
attention, we use the relative position embedding of T5 [19]
to enhance the spatial identification ability. Specifically, we
denote the input sequence of MSA as X = {xi}Mi=1, where
M is the sequence length and xi ∈ RD. A bias matrix
B ∈ RM×M is added to Scaled Query-Key product [25]:

αij =
1√
D

(xiW
Q)(xjW

K)T +Bij ,

Attention(X) = Softmax(α)(XWV ),

(6)

where WQ,WK ,WV ∈ RD×D are learnable project ma-
trices, each bias Bij comes from a learnable scalar table.

In (Shifted) Window Block, M = Nw. We denote
the learnable scalar table as {bk}Nw−1

k=−Nw+1, and Bij cor-
responds to bj−i. This scheme is denoted as W-RPE and
integrated into MSA, as shown in Fig. 4b and Fig. 4c.

In Global Block, M = N . As shown in Fig. 5a, the
feature sequence is a circular structure. If we use a scheme
similar to Window Block and denote the learnable scalar ta-
ble as {bk}N−1k=−N+1, it will result in the same distance rep-
resented twice from different directions. Specifically, Bij
corresponds to bj−i and also corresponds to bj−N−i. Thus,
we propose a symmetric representation of only distance and
denote the learnable scalar table as {bk}nk=0, where n = N

2 .

When |j − i| ≤ N
2 , Bij corresponds to b|j−i|, otherwise

Bij corresponds to bN−|j−i|. A visualization of bias matrix
is shown in Fig. 5b. We denote this scheme as G-RPE and
integrate it into MSA, as shown in Fig. 4d.

4. Experiments
We implement LGT-Net using PyTorch [17] and use the

Adam optimizer [14] with β1 = 0.9, β2 = 0.999, and the
learning rate is set to 0.0001. We train the network on a sin-
gle NVIDIA GTX 1080 Ti GPU for 200 epochs on ZInD [4]
dataset and 1000 epochs on other datasets, with batch size of
6. We adopt the same data augmentation approaches men-
tioned in Horizon-Net [23], including standard left-right
flipping, panoramic horizontal rotation, luminance change,
and pano stretch during training. In addition, we set hyper-
parameters as λ = 0.9, µ = 0.1, ν = 0.1 in Eq. (5).

4.1. Datasets

PanoContext and Stanford 2D-3D PanoContext [30]
dataset contains 514 annotated cuboid room layouts. Stan-
ford 2D-3D [1] dataset contains 552 cuboid room layouts la-
beled by Zou et al. [32] and has a smaller vertical FoV than
other datasets. We follow the same training/validation/test
splits of LayoutNet [32] to evaluate these two datasets.

MatterportLayout MatterportLayout [33] dataset is a
subset of Matterport3D [2] dataset. It contains 2,295 gen-
eral room layouts labeled by Zou et al. [33]. We follow the
same training/validation/test splits for evaluation.

ZInD To the best of our knowledge, ZInD [4] dataset is
currently the largest dataset with room layout annotations.
It better mimics the real-world data distribution since it in-
cludes cuboid, more general Manhattan, non-Manhattan,
and non-flat ceilings layouts. ZInD [4] dataset contains
67448 panoramas from 1575 real unfurnished residential
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Method 3DIoU(%) CE(%) PE(%)

Train on PanoContext + Whole Stnfd.2D3D datasets

LayoutNet v2 [33] 85.02 0.63 1.79
DuLa-Net v2 [33] 83.77 0.81 2.43
HorizonNet [23] 82.63 0.74 2.17
Ours 85.16 - -
Ours [w/ Post-proc] 84.94 0.69 2.07

Train on Stnfd.2D3D + Whole PanoContext datasets

LayoutNet v2 [33] 82.66 0.83 2.59
DuLa-Net v2 [33] 86.60 0.67 2.48
HorizonNet [23] 82.72 0.69 2.27
AtlantaNet [18] 83.94 0.71 2.18
Ours 85.76 - -
Ours [w/ Post-proc] 86.03 0.63 2.11

Table 1. Quantitative results of cuboid layout estimation evalu-
ated on PaonContext [30] (top) and Stanford 2D–3D [1] (bottom)
datasets.

homes1 and separates a “simple” subset that every room
layout does not have any contiguous occluded corners. We
experiment on the “simple” subset and use the “raw” layout
annotations, and follow the official training/validation/test
splits at the per-home level. In addition, we filter 0.8% of
layout annotations that do not contain the camera center. In
total, we have the training, validation, and test splits con-
sisting of 24882, 3080, and 3170 panoramas, respectively.

4.2. Evaluation Metrics

We use the standard evaluation metrics proposed by Zou
et al. [32]: intersection over union of floor shapes (2DIoU)
and 3D room layouts (3DIoU), corner error (CE), and pixel
error (PE). Meanwhile, we evaluate the depth accuracy with
root mean squared error (RMSE) by using the camera height
of 1.6 meters and the percentage of pixels (δ1) where the
ratio between prediction depth and ground truth depth is
within a threshold of 1.25 mentioned in Zou et al. [33].

4.3. Cuboid Room Results

Since data in a single dataset is limited, it may lead to
bias. We use a combined dataset scheme mentioned in Zou
et al. [33] for training. The combined dataset contains a
training split of the current evaluation dataset and another
whole dataset. We provide the quantitative results of the
cuboid layout in Tab. 1. In addition, some baseline results
include post-processing. We also report results with a post-
processing of DuLa-Net [28] (denoted as “Ours [w/ Post-
proc]”). Meanwhile, CE and PE values are reported.

PanoContext LayoutNet v2 [33] gives slightly better CE
and PE performance than ours. And we argue that its
2D convolution for corner location and the post-processing

1https://github.com/zillow/zind

Method 2DIoU(%) 3DIoU(%) RMSE δ1

LayoutNet v2 [33] 78.73 75.82 0.258 0.871
DuLa-Net v2 [33] 78.82 75.05 0.291 0.818
HorizonNet [23] 81.71 79.11 0.197 0.929
AtlantaNet [18] 82.09 80.02 - -
HoHoNet [24] 82.32 79.88 - -
LED2-Net [26] 82.61 80.14 0.207 0.947
Ours 83.52 81.11 0.204 0.951
Ours [w/ Post-proc] 83.48 81.08 0.214 0.940

Table 2. Quantitative results of general layout estimation evaluated
on MatterportLayout [33] dataset.

Method 2DIoU(%) 3DIoU(%) RMSE δ1

HorizonNet [23] 90.44 88.59 0.123 0.957
LED2-Net [26] 90.36 88.49 0.124 0.955
Ours [w/ Pure ViT] 88.93 86.19 0.146 0.950
Ours 91.77 89.95 0.111 0.960

Table 3. Quantitative results of general layout estimation evaluated
on ZInd [4] dataset.

method of gradient ascent is more effective for cuboid lay-
outs. However, our approach offers better performance than
all the other SOTA approaches with respect to 3DIoU.

Stanford 2D-3D Dula-Net v2 [33] gives slightly better
3DIoU than ours, and we argue that it uses perspective view,
which is more effective for panoramas with small vertical
FoV. However, our approach offers better performance than
similar approaches [23, 26] predicting on equirectangular
view.

4.4. General Room Results

MatterportLayout Evaluation of MatterportLayout [33]
dataset is shown in Tab. 2. The results of LED2-Net [26]
are obtained from their official code2 with re-training and
re-evaluating by the standard evaluation metrics. Moreover,
we also report results with the post-processing of DuLa-
Net [28] (denoted as “Ours [w/ Post-proc]”). Our approach
offers better performance than all other approaches with re-
spect to 2DIoU, 3DIoU, and δ1.

We observe that similar approaches [23, 24, 26] of ex-
tracting the 1D feature sequence on equirectangular view
are better than those using 2D convolutions [28, 32]. In our
opinion, Bi-LSTM [11, 21] and our SWG-Transformer are
based on 1D horizontal feature sequence, which are better
at establishing relations of the room layout.

Qualitative comparisons are shown in Fig. 6a. The first
column shows that HorizonNet [23] and LED2-Net [26]
predict discontinuous layouts at the left and right borders of
the panorama because they use Bi-LSTM [11,21] to process
the feature sequence and need to span the entire sequence

2https://github.com/fuenwang/LED2-Net
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(a) Qualitative comparison on MatterportLayout [33] dataset.
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(b) Qualitative comparison on ZInd [4] dataset.

Figure 6. Qualitative comparison of general layout estimation. We show the room layouts without post-processing by HorizonNet [23],
LED2-Net [26], and ours on MatterportLayout [33] dataset (top) and ZInd [4] dataset (bottom). We show the boundaries of room layout
on panorama (left) and the floor plan (right). The blue lines are ground truth, and the green lines are prediction. Moreover, we visualize the
predicted horizon-depth, normal, and gradient below each panorama and the ground truth in the first row. The dashed white lines highlight
the errors generated by the baselines.

while processing tokens at the first and last position. How-
ever, our proposed SWG-Transformer treats tokens equally
at all positions. The second and third columns show that
our approach better estimates the boundaries far from the
camera center and those of complex room layouts. Mean-
while, the visualizations of floor plans, normals, and gradi-
ents show that our approach offers better results by planar-
geometry awareness.

ZInd Evaluation on ZInd [4] dataset is shown in Tab. 3.
The results of HorizonNet [23] and LED2-Net [26] are ob-
tained from their official codes23 with training and eval-
uating by the standard evaluation metrics. Our approach

3https://github.com/sunset1995/HorizonNet

has higher accuracy than all other approaches under all set-
tings. Moreover, similar to the idea of ViT [5], we split
the panorama into patches by Patch Embedding [5] and
feed them into our proposed SWG-Transformer (denoted
as “Ours [w/ Pure ViT]”). The results show that such ViT
architecture achieves comparable performance on the large
dataset.

Qualitative comparisons are shown in Fig. 6b. The first
column shows that our SWG-Transformer can better pro-
cess the left and right borders of the panoramas. The second
column shows that our proposed omnidirectional-geometry
awareness has advantage on non-flat ceilings layouts since
our approach is not affected by ceiling-boundary. The third
column shows that our approach performs better with furni-
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Figure 7. The 3D visualization results of our approach on MatterportLayout [33] dataset (first row) and ZInd [4] dataset (second row). The
green lines are predicted boundaries by our network, and the red lines are results with post-processing of the prediction.

Method 2DIoU(%) 3DIoU(%) RMSE δ1

w/o Height 82.82 80.44 0.205 0.945
w/o Nomal+Gradient 84.24 81.86 0.196 0.954
w/o Gradient 84.27 81.89 0.194 0.954

w/ Pure ViT 64.05 60.44 0.434 0.782
w/o Global Block 83.02 80.40 0.212 0.947
w/ Bi-LSTM 83.98 81.32 0.201 0.950
w/o Window Block 83.96 81.47 0.197 0.958

w/o PE 83.78 81.50 0.197 0.951
w/ APE 83.90 81.55 0.201 0.951

Ours [Full] 84.38 82.01 0.194 0.955

Table 4. Ablation study on MatterportLayout [33] dataset.

ture occlusion than other approaches [23, 26].
The 3D visualization results of our approach on Matter-

portLayout [33] dataset and ZInd [4] dataset are shown in
Fig. 7. These examples show that our approach is effective
in room layout estimation. See supplemental material for
more qualitative results and quantitative results of different
corners number and cross-dataset evaluation.

4.5. Ablation Study

Ablation study is shown in Tab. 4. We reported results of
the best performance of each configuration on the test split
of MatterportLayout [33] dataset. It should be noted that all
experiments of ablation study select the best epoch in the
test split. Thus, the results of “Ours [full]” are higher than
the corresponding quantitative results.

Loss Function We replace the loss function in our ap-
proach with floor and ceiling horizon-depth errors like
LED2-Net [26] (denoted as “w/o Height”) and show
that our proposed omnidirectional-geometry aware loss of
horizon-depth and room height significantly improves per-
formance. Moreover, our experiments without the normal
and gradient errors (denoted as “w/o Normal+Gradient” and
“w/o Gradient”) show that our proposed planar-geometry
aware loss by normals and gradients of normals improves

the performance.

Network Architecture We experiment with ViT architec-
ture (denoted as “w/ Pure ViT”) and show that ViT architec-
ture does not achieve comparable performance in Matter-
portLayout [33] dataset. We argue that ViT architecture re-
lies on large datasets like ZInd [4] to perform better. More-
over, our experiments without Global Blocks or (Shifted)
Window Blocks (denoted as “w/o Global Block” and ‘w/o
Window Block”) demonstrate that using Window Blocks or
Global Blocks alone leads to lower performance. We re-
place SWG-Transformer with Bi-LSTM [11, 21] (denoted
as “w Bi-LSTM”) and show that our SWG-Transformer of-
fers better performance than Bi-LSTM.

Position Embedding We experiment without position
embedding (denoted as “w/o PE”) and only use absolute
position embedding [9] with learnable parameters (denoted
as “w/ APE”). These experiments show that absolute posi-
tion embedding does not bring much improvement, but our
designed relative position embedding offers the best perfor-
mance. We believe that since the contexts of panoramas
constantly change in the horizontal direction, it is difficult
to map the changes with a fixed absolute position embed-
ding.

5. Conclusions
In this paper, we proposed an efficient model, LGT-Net,

for 3D room layout estimation. Horizon-depth and room
height offer omnidirectional geometry awareness. Normals
and gradients of normals offer planar geometry awareness.
Moreover, the proposed SWG-Transformer with the noval
relative position embedding can better establish the local
and global geometry relations of the room layout. We eval-
uate our approach on both cuboid and general datasets and
show better performance than the baselines.
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