
NeuralHOFusion: Neural Volumetric Rendering under Human-object
Interactions

Yuheng Jiang1 Suyi Jiang1 Guoxing Sun1 Zhuo Su2 Kaiwen Guo3

Minye Wu4 Jingyi Yu1,5 Lan Xu1,5

1ShanghaiTech University 2Tencent 3Meta Reasearch Lab 4KU leuven
5Shanghai Engineering Research Center of Intelligent Vision and Imaging

Abstract

4D modeling of human-object interactions is critical for
numerous applications. However, efficient volumetric cap-
ture and rendering of complex interaction scenarios, es-
pecially from sparse inputs, remain challenging. In this
paper, we propose NeuralHOFusion, a neural approach
for volumetric human-object capture and rendering using
sparse consumer RGBD sensors. It marries traditional
non-rigid fusion with recent neural implicit modeling and
blending advances, where the captured humans and objects
are layer-wise disentangled. For geometry modeling, we
propose a neural implicit inference scheme with non-rigid
key-volume fusion, as well as a template-aid robust object
tracking pipeline. Our scheme enables detailed and com-
plete geometry generation under complex interactions and
occlusions. Moreover, we introduce a layer-wise human-
object texture rendering scheme, which combines volumet-
ric and image-based rendering in both spatial and temporal
domains to obtain photo-realistic results. Extensive exper-
iments demonstrate the effectiveness and efficiency of our
approach in synthesizing photo-realistic free-view results
under complex human-object interactions.

1. Introduction

Human-centric 4D content generation enables numerous
applications for VR/AR, telepresence and education. How-
ever, conveniently reconstructing and rendering human ac-
tivities under human-object interactions remain unsolved.

Early high-end solutions [5,7,12,13,20,29] require dense
cameras and custom-designed lighting conditions for high-
fidelity reconstruction. But such a complicated and expen-
sive system setup is undesirable for consumer-level usage.
Light-weight volumetric performance capture is more prac-
tical and attractive. Early solutions [14, 21, 22, 51] rely
on pre-scanned templates which are unsuitable for on-the-
fly human-object interaction modeling. The volumetric fu-
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Figure 1. Our NeuralHOFusion achieves layer-wise and photo-
realistic reconstruction results, using only 6 RGBD cameras.

sion approaches Fusion4D [9] and Motion2Fusion [8] fur-
ther reconstruct complex human-object interaction scenes
with topology changes in real-time. But they heavily
rely on high-quality depth sensors and up to 9 high-end
GPUs, which are infeasible for consumer usage. Besides,
the low-end fusion approaches [34, 43, 44, 57, 63] adopt
the most handy monocular setup with a temporal fusion
pipeline [35], but suffer from the inherent self-occlusion
constraint. Moreover, the appearance results of the fusion
methods are restricted by the limited geometry resolution.

Recent learning-based techniques enable robust human
modeling from only light-weight inputs. In particular, vari-
ous approaches [40,41,48] utilize implicit function to model
human geometry, which is also widely adopted in the vol-
umetric capture pipeline [25, 26, 44, 62]. But these meth-
ods are restricted to only human without modeling human-
object interactions, let alone generating compelling photo-
realistic texture. Similarly, despite the progress for realis-
tic human rendering [30, 32, 33, 48, 56], few researchers ex-
plore the neural rendering strategies for human-object inter-
actions, especially under the volumetric capture framework.
On the other hand, various researchers [16,17,38,50,64–67]
model the interactions between humans and the surrounding
objects or environments. But they only recover the paramet-
ric human model rather than reconstructing and rendering
the interaction scenes. Only recently, a few methods [45,47]
explicitly model human and object simultaneously in the
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volumetric capture framework. But they still cannot handle
the interaction scenes, which highly limit the practicality.

In this paper, we present NeuralHOFusion – a neural
volumetric human-object capture and rendering system us-
ing light-weight consumer RGBD sensors (see Fig. 1 for
overview). In stark contrast with existing systems, our ap-
proach handles various complex human-object interaction
scenarios and even multi-person interactions. It achieves
photo-realistic layer-wise geometry and texture rendering in
novel views for both the performers and interacted objects.

Generating such a human-object free-viewpoint video
with the layer-wise visual effect whilst maintaining light-
weight and efficient setting is non-trivial. Our key idea is to
organically combine traditional volumetric non-rigid fusion
pipeline with recent neural implicit modeling and blend-
ing advances, besides embracing a layer-wise scene decou-
pling strategy. To this end, we first utilize off-the-shelf
instance segmentation approach to distinguish the human
and object from the six RGBD streams. For human recon-
struction, we propose a fusion-based neural implicit scheme
to reason about the human-only geometry details in novel
views. Specifically, it combines pixel-aligned features with
an occlusion-aware truncated projective SDF (TSDF) fea-
ture [62], by utilizing a traditional key-volume non-rigid
fusion pipeline [9, 57] in a human-only manner. Such a
key-volume fusion-based implicit scheme handles occlu-
sions effectively. For object reconstruction, inspired by
the recent work [45], we adopt a template-aid robust ob-
ject tracking pipeline with a specific initialization process
for the following neural blending. Finally, based on the
human-object geometry proxy above, we propose a layer-
wise neural blending scheme to disentangle human and ob-
ject for photo-realistic performance rendering. For the hu-
man phase, we combine the image-based rendering with the
traditional per-vertex texturing using albedo volume [59],
through occlusion-aware blending weight learning. It en-
ables accurate human appearance rendering in the target
view with the level of texture detail in the spatially adjacent
input. For the object rendering, we extend the spatial neural
blending into the temporal domain, which learns the blend-
ing weight from both the spatial and temporal candidate in-
put views for photo-realistic rendering. To summarize, our
main contributions include:

• We present the first neural volumetric capture and ren-
dering system for human-object interaction scenarios
using light-weight consumer RGBD sensors.

• We propose a fusion-based neural implicit inference
scheme for detail-preserved human-object reconstruc-
tion in an occlusion-aware manner.

• We introduce a layer-wise neural rendering scheme,
which combines volumetric and image-based render-
ing in both spatial and temporal domains.

2. Related Work
Human-Object Capture. Markerless human-object per-
formance capture techniques have been widely investigated
to achieve free-viewpoint video or immersive telepresence.
Early high-end works [7, 13] use dense cameras for re-
construction and rendering of human and objects through
mesh reconstruction and motion tracking, but it is ex-
pensive to build the synchronized and calibrated multi-
camera systems. The recent low-end approaches enable
light-weight performance capture under the single-RGB
setup [23, 60, 64], single-RGBD setup [6, 45] or sparse
RGBs setup [47,48]. In another line, [16,17,38,50,65–67]
model the interaction between humans and the objects or
the surrounding environments. PHOSA [64] runs human-
object capture without any 3D supervision, considering the
relationship between human and objects to eliminate ambi-
guity. But they only recover the naked human template and
produce a visually reasonable spatial arrangement. Robust-
Fusion [45] captures human and objects by volumetric fu-
sion, as well as tracks object by Iterative Closest Point. But
they cannot handle topology changes and their texture suf-
fers from blur artifacts. HOI-FVV [47] utilizes a decoupling
strategy to process human and object respectively under six
RGB cameras. Though they show impressive rendering re-
sults for human-object interactions, they only process sim-
ple pose of human and the inference speed is very slow.
Comparably, our approach achieves high-fidelity capture
and rendering for various human-object interactions with
complex human pose and severe occlusions at fast speed.
Human Volumetric Capture. Volumetric fusion based
methods [34, 58, 61, 63, 69] allow free-form dynamic re-
construction in a template-free, single-view, real-time way,
through updating depth into the canonical model and per-
forming non-rigid deformation. A series of works are pro-
posed to make volumetric fusion more robust with SIFT
features [18], human articulated skeleton prior [61, 63], ex-
tra IMU sensors [69], data-driven prior [44], learned cor-
respondences [4] or neural deformation graph [3]. Since
these single-view setups suffer from tracking error in the
occluded parts, multi-view setups are introduced to mit-
igate this problem with improved fusion methods. Fu-
sion4D [9] proposes a key volume updating strategy. Mo-
tion2fusion [8] incorporates learning-based surface match-
ing into pipeline. UnstructuredFusion [59] achieves an un-
structured multi-view setup. Function4D [62] combines
temporal volumetric fusion and implicit functions to gener-
ate complete geometry. However, these methods either can-
not handle modeling human-object interactions or generate
photo-realistic rendering results. Comparably, our approach
realizes the abilities of high-fidelity capture and rendering
of human-object interactions.
Neural Rendering and Blending. In the area of photo-
realistic novel view synthesis and 3D scene reconstruc-
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Figure 2. Our approach consists of twos stages. The geometry module includes neural human reconstruction(Sec. 4.1) and template-aid
object fusion (Sec. 4.2), and the blending module includes neural human blending (Sec. 4.3) and temporal neural object blending(Sec. 4.4).

tion, neural rendering shows great power and huge po-
tential. Various data representations are adopted to ob-
tain better performance and characteristics, such as point-
clouds [1,49,56], voxels [30], texture meshes [28,52] or im-
plicit functions [33,36] and hybrid neural blending [47,48].
NHR [56] embeds spatial features into sparse dynamic
point-clouds, Neural Volumes [30] transforms input im-
ages into a 3D volume representation by a VAE network.
More recently, [24, 37, 39, 53, 68] extend neural radiance
field [33] into the dynamic setting. However, for all ap-
proaches above, dense spatial views or full temporal frames
are required in training for high fidelity novel view render-
ing. Blending based methods learn blending weight for ad-
jacent views and synthesize photo-realistic novel views in a
light-weight way. [48] uses the occlusion map as guidance
for blending weight estimation. [47] incorporates the direc-
tion information to reduce artifacts in wide baseline. How-
ever, they cannot handle the occlusion region. Comparably,
our blending with spatial-temporal information, enables re-
covery of photo-realistic texture of human and objects even
under the extreme occlusion region.

3. Overview

Given human-object interaction videos under sparse
RGBDs setting, NeuralHOFusion can reconstruct high-
quality geometries and synthesize layer-wise photo-realistic
free-viewpoint videos even in challenging scenarios with
extreme poses, occlusions. As illustrated in Fig. 2, Neu-
ralHOFusion includes two streams for human and objects
separately, and each stream includes two steps: Geometry
Generation and Neural Blending.

Geometry Generation. To achieve high-quality human-
object geometry for neural rendering under sparse RGBD
cameras setting, NeuralHOFusion incorporates global tem-
poral information into key volumes. For humans, we dy-
namically maintain a key TSDF volume Vk and its albedo

volume Ck. NeuralHOFusion generates a complete geome-
try of the non-rigid human via a proposed pixel-aligned ap-
proach that accompanies either fused TSDF volume Vt of
current frame or Vk to assist global reconstruction. Besides,
normal refinement helps to restore more geometry details.
We then utilize complete geometry for accurate neural tex-
ture blending and key TSDF volume Vk updating. For ob-
ject, we adopt rigid tracking and volumetric fusion to recon-
struct the geometry with the aid of the template generated
by an occupancy regression network.

Neural Blending. To produce photo-realistic textures
based on the above geometries, we propose neural blend-
ing schemes to extract features from input textures and pre-
dict their blending weights. For human, the blending net-
work takes a projected image from albedo volume and ad-
jacent warped RGB images as input, and then predict the
blending weight to blend the final texture. As for object, we
reserve non-occluded spatial-temporal observations into an
observation-angle group. We then retrieve “adjacent views”
from this group to perform temporal blending. After assem-
bling blended human and object textures, NeuralHOFusion
outputs final rendering results.

4. Method
4.1. Neural Human Reconstruction

To reconstruct complete and fine-detailed human geom-
etry, we sequentially perform fusion-based implicit recon-
struction and key volume update.
Fusion-based Implicit Reconstruction. Neural networks
based on implicit functions are good at complete recon-
struction but lack geometry details and temporal consis-
tency, while traditional volumetric capture methods [9, 34,
59] have enabled the temporal-consistent reconstruction re-
sults. From the insight of this complementarity, we follow
Function4d [62] to combine the non-rigid fusion with im-
plicit functions by extracting features from TSDF volume.
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However, when facing severe occlusions in human-object
interactions, [62] will fail since their non-rigid fusion in
a sliding way could not provide complete TSDF features.
Therefore, we non-rigidly fuse a key volume Vk as a ref-
erence model, in which we track the motion field from the
live frame to it and integrate each depth into this TSDF vol-
ume. Note that the motion field is represented by embedded
deformation graph(ED-graph) [46] and SMPL model [31],
please refer to [44, 59, 63] for details about this non-rigid
fusion process. Then we combine the key volume Vk with
current volume Vt which is extracted from current depth
and RGBD images to our implicit reconstruction network
f for inferring detailed and complete geometry, as shown in
Fig. 3. We follow the network architecture of PIFu [40] to
regress an implicit function f to predict occupancy of every
3D point X in the space and formulate it as:

f(ϕ(X), α(X), z(X)) = s : s ∈ [0.0, 1.0],

ϕ(X) =
1

n

n∑
i

Fi(πi(X)),
(1)

where πi(·) denotes projection matrix of i-th camera; z(·)
is the depth value of X . Fi(πi(X)) = g(Ii(πi(X))) is the
image feature of X on RGBD images, g(·) is feature extrac-
tion network, Ii is input image. α(·) represents the queried
TSDF value from Vk or Vt of the 3D point X , in which Vt

gives the detailed geometry information of current frame,
while Vk reserves global information in the occluded region.
To make the most of them, we introduce a dynamic selec-
tion strategy: when the point X is close to the visible human
body, we choose Vt’s value, α(X) = Vt(X), otherwise, we
choose the value in warped Vk. This operation ensures our
method to reconstruct high fidelity geometry in the visible
area and reasonable geometry in the occluded part.
Key volume update. Our Vk provides a global prior to
support the network to infer a complete and temporal-
consistent human reconstructions in occlusion scenarios.
In practice, we reset Vk periodically to reduce misalign-
ment caused by its difference to live frame and enable to
handle the topology-changing issues. More specifically,
we not only fuse the TSDF volume Vk with current depth
and the final geometry output through the estimated motion
fields [63] for each frame, we also reset key volume and
update ED-graph through re-sampling nodes on the output
mesh and SMPL model to re-initialize the motion field at a
fixed frequency(40 frames in the paper).

4.2. Template-aid Object Fusion.

Although naive volumetric fusion [45] provides a gen-
erally correct object geometry, deteriorated surface caused
by the partial depth loss and limited overlap between the
matched point-clouds may also occur, as shown in Fig. 7
(b). To achieve stable and accurate object reconstruction,
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we also incorporate an object template generation module.
Specifically, this module provides a global cue to regulate
object tracking, which greatly improves the robustness of
tracking, thus leading to more accurate geometry results.

Firstly, we utilize a data-driven occupancy regression
network to generate a complete object template from multi-
view RGBD images, in which the formulation resembles
Eqn. 1 without TSDF features. We then optimize the rigid
motions T of the corresponding object point-clouds under
the ICP framework as:

Eobject (T ) =λgeo

∑
(p,q)∈Rgeo

(
nT
p (p− Tq)

)2
+

λtem

∑
(pt,q)∈Rtem

(
nT
pt

(pt − Tq)
)2

+

λsp oEsp o ,

(2)

where Rgeo is the correspondence pair sets between source
point-clouds and fused point-clouds, Rtem is the correspon-
dence pair sets between source point-clouds and template
point-clouds. q is the point from source, p is the point from
fused model and pt from template. Esp o is a term to punish
mesh interpenetration, please refer to [45] for more details.
Finally, with the estimated T , source point-clouds are fused
into a TSDF volume to update the object geometry.

4.3. Neural Human Blending

To enable fast novel view synthesis, we adopt a neu-
ral blending pipeline to generate photo-realistic and non-
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occluded human textures under novel view, which incorpo-
rates information from the albedo volume maintained in the
key frame [15], adjacent input views and local fine-detailed
geometry, as illustrated in Fig. 4.

We expand the work [48] to define the variance and oc-
clusion maps to learn our blending network. Specifically,
we obtain the albedo image and depth map in target view
(Ik and Dk) using the key albedo volume and occupancy
field respectively in 4.1. The albedo image Ik lacks de-
tails but reserves complete texture. It has rich information
for a blending pipeline in the occluded part through pro-
viding color candidate and help finding occluded part. We
then warp adjacent RGBD maps into target view denoted
by ˆI1,t, ˆI2,tD̂1,t, D̂2,t. Subsequently, we calculate the oc-
clusion maps as Oi = Dk − D̂i,t, i = 1, 2, and compute
a per-element variance maps Vi,t = ( ˆIi,t − Ik)

2, i = 1, 2.
Our blending network ΘHBN utilizes the color information
from albedo image and adjacent images, the variance infor-
mation Vi,t and occlusion information Oi to predict pixel-
wise blending map W , which can be formulated as:

W = ΘHBN ( ˆI1,t, V1,t, O1, ˆI2,t, V2,t, O2). (3)

Our novel view result of human In can be formulated as:

In = Ŵ1 · ˆI1,t + Ŵ2 · ˆI2,t + Ŵ3 · Ik, (4)

where Ŵi denotes blending weights with the sum of 1.0.
Normal Refinement. To further improve the quality of ge-
ometry in novel view, we follow [48] to perform a normal
refinement to infer the displacement of the target depth by
a normal refinement network ΘHRN . We apply [55] to
source view RGBD images Ii,t, Ik with novel depth Dk,
and In with novel depth Dk respectively, we get normal
map of source Ni,t, albedo novel view Nk, and novel view
Nn. We blend adjacent Ni,t and Nk with Ŵi to get the
blended normal map Nb. ΘHRN takes Nn, Nb and Dk as
input, and finally predicts the depth displacement.

4.4. Temporal Neural Object Blending.

With the temporal observations from object fusion and
subsequent tracking, we introduce a strategy to com-
bine these observations into our object blending pipeline
smoothly and effectively. In the initialization stage of ob-
ject capture, we intentionally show non-occluded images to
the cameras and the system works on-line with rigid track-
ing to collect a group Goa of observation-angle pairs. In
the tracking stage, non-occluded observation-angle pairs are
also added into Goa. For novel view generation, we inter-
polate “nearby views”. More specifically, we follow [54]
to identify a pool of 18 “nearby views” from Goa and then
randomly sample 6 views from the pool. In this manner,
our blending can collect more information in a wider base-
line. We then introduce a temporal neural object blending
pipeline to predict novel view object textures as illustrated
in Fig. 5. This blending network can be formulated as:

W = ΘTBN ({Îj , Oj |j = 1, 2..., 6}). (5)

Îj is the warped image of nearby source view Ij from Goa.
Oj denotes the occlusion map. Novel view images will be
generated like Eqn. 4. Although the albedo volume of ob-
ject can also be used for object blending, we find our blend-
ing strategy with Goa observations is sufficient to get good
and complete rendering results.

4.5. Implementation Details

For human-object segmentation, we first use [27] for
background separation then train [2] to get the initial ob-
ject coarse mask. Subsequently, We follow [45] to refine
the mask. For image encoders g, we follow [48] to use a U-
Net, which outputs 64 channels feature maps. For implicit
decoders f , we use MLP with skip connections as [62], in
which the hidden neurons are (128,128,128,128,128). Fur-
thermore, the loss function of MLP f minimizes the aver-
age of mean squared error like [40]. ΘHBN ,ΘHRN and
ΘTBN adopt the U-Net structure. For geometry training,
we firstly collect 100 human sequences and 40 objects in a
dome and utilize existing object meshes from 3D-FUTURE
[11]. Then, we place a human in the center of our cam-
era setting and add objects with predefined trajectories to
simulate human-object interactions. We then render RGBD
images under our camera parameters and add synthesized
noises according to [10]. For training blending networks,
we render the RGBD images, normals and masks under 180
novel views as ground truth. Besides, both L1 loss and per-
ceptual loss [19] are used. For template-aid object fusion,
we use the following empirically determined parameters:
λgeo = 0.8, λtem = 0.2, λsp o = 1.0.
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Figure 6. The geometry and texture results of our NeuralHOFusion on various interaction sequences, including “floral dress”, “nesting in
a sofa”, “undressing coat” and “shaking hands”.
5. Experimental Results

In this section, we evaluate our NeuralHOFusion in var-
ious extremely challenging human-object interactions. All
the experiments are run on a PC with an Nvidia GeForce
RTX3090 GPU and an Intel i7-8700k CPU. Capturing six
RGBD streams from a synchronized-Kinect system, our
method produces high-quality geometry and texture results.
In order to achieve fast performance, we follow [62] and
[48] to implement our entire pipeline on GPU. For each
part, the human geometry generation takes 129 ms and 7
GB, the following neural human blending pipeline costs 20
ms and 2.3 GB. The object geometry initialization takes 10
s where the robust object rigid fusion takes around 33 ms.
Finally, the neural object blending costs 42 ms. The whole
object branch takes around 7 GB of memory consumption.
Various geometry and texture results of our NeuralHOFu-
sion are shown in Fig. 6, including different type interac-
tions, and even severe occlusion and topology changes, such
as nesting in a sofa, shaking hands, and removing clothes.

5.1. Comparison

We compare our NeuralHOFusion against the start-of-art
methods UnstructuredFusion [59], RobustFusion [45] and

NeuralHumanFVV [48] both in geometry and texture. As
illustrated in Fig. 7, UnstructuredFusion [59] fails to han-
dle the human-object interactions, RobustFusion [45] does
not support topology changes, and NeuralHumanFVV [48]
cannot reconstruct correct geometry facing different ob-
ject types. While our NeuralHOFusion achieves more de-
tailed, complete, and isolated geometry results and signifi-
cantly more photo-realistic rendering results, even under the
challenging interactions and extreme human pose. Please
note that our approach can also enable layer-wise rendering
which is not supported by UnstructuredFusion and Neural-
HumanFVV. The quantitative results in Tab. 1 and Tab. 2
also demonstrate that our approach can achieve consistent
better results on all the metrics.

5.2. Ablation Study

Neural Human Geometry Generation. As shown in Fig. 8
(b), without the TSDF feature, the generation model is un-
able to recover the occluded human part, and lacks of de-
tails, while after encoding the TSDF feature in Fig. 8 (c),
the model can generate a complete human body with mid-
level geometry details such as the clothing wrinkles but still
suffers from over-smooth results, especially on the facial
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Figure 7. Qualitative comparison. (a) Input images. (b-e) are the geometry and texture results in a novel view from UnstructuredFusion [59],
RobustFusion [45], NeuralHumanFVV [48] and ours, respectively.

Table 1. Quantitative comparison of rendering results.
Method PSNR↑ SSIM↑ MAE ↓
UnstructuredFusion [59] 22.456 0.937 3.058
RobustFusion [45] 26.537 0.941 1.868
NeuralhumanFVV [48] 27.526 0.979 1.131
Ours 33.59 0.984 0.627

Table 2. Quantitative comparison of geometry reconstructions.
Method P2S×10−4↓ Chamfer×10−4↓
Multi-PIFu [40] 14.475 10.564
RobustFusion [44] 5.770 6.375
Ours 2.692 2.853

area. In contrast, our full approach with normal refinement
achieves detailed human geometry reconstruction as shown
in Fig. 8 (d). For further quantitative analysis, we evalu-
ate each component using CD and P2S as shown in Tab. 3,
which highlights the contributions of our each component.
Template-aid Object Fusion. As shown in Fig. 9 (b),
without the template produced by MLP, simple rigid ICP
is prone to slight mismatches, which affects the generation
of fused mesh. Furthermore, due to the limitation of volume
resolution, template-aid rigid ICP still suffers from the over-
smooth issues as shown in Fig. 9 (c). In contrast, our full
pipeline with refinement can recover more detailed object
geometry. Further quantitative analysis in Tab. 3 demon-
strates that our method achieves higher accuracy.
Neural Human Blending. In Fig. 10, we evaluate differ-
ent variants of texturing schemes with the same geometry
proxy. The texture extracted from albedo volume as shown
in Fig. 10 (b) is blurred, while the naive neural blending re-
sults in Fig. 10 (c) suffer from severe block artifacts, which
blends the object texture to the human. In contrast, our
full neural human blending scheme achieves both photo-
realistic and complete texture results as shown in Fig. 10
(d). Besides, we also make a comparison on a synthetic se-
quence with 400 frames and generate 180 different target
views to evaluate. The Tab. 4 demonstrates that our method

Table 3. Quantitative evaluation of reconstruction schemes.
Method P2S×10−4 ↓ Chamfer × 10 −4 ↓
w/o TSDF (human) 7.7407 7.969
w/o normal refinement (human) 3.1425 3.4086
neural human geometry generation 2.855 3.239
w/o template (object) 35.138 19.383
w/o normal refinement (object) 11.529 9.256
template-aid object fusion 11.480 9.166

Table 4. Quantitative evaluation of texturing schemes.
Method PSNR↑ SSIM↑ MAE ↓
albedo volume (human) 26.758 0.925 2.167
naive neural blending (human) 25.983 0.962 1.735
neural human blending 30.040 0.968 0.945
albedo volume (object) 33.455 0.950 0.564
naive neural blending (object) 30.760 0.968 1.255
temporal neural object blending 37.901 0.971 0.376

achieves higher accuracy.
Temporal Neural Object Blending. As for evaluation of
object texturing, Fig. 11 (b) demonstrates that texture fusion
scheme leads to blur, Fig. 11 (c) shows that the naive neu-
ral texturing blending scheme wrongly recovers the texture
which belongs to the human part. In contrast, our temporal
neural object blending makes full use of both the previous
non-occluded frames and the current frame. Therefore, we
can faithfully recover the accurate texture even when some
parts are sereve occluded in Fig. 11 (d). The quantitative ex-
periments on synthetic object sequences can refer to Tab. 4.
Camera Number. We evaluate the influence of input view
number in our multi-view setting, where the cameras are
placed around a circle uniformly and numbered from 0 to
5. We compare the results of two-camera system (0, 3),
four-camera system (0, 1, 3, 4) and six-camera system. As
shown in Fig. 12, without sufficient camera views, the re-
constructed geometry is a little downgrading, while the tex-
tured results significantly get worse. Empirically, we find
the system with six-camera produces good results in a com-
promise of camera number and quality.
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(c)(b)(a) (d)

(c)(b)(a) (d)

Figure 8. Qualitative evaluation of human geometry generation.
(a) Input images. (b) Geometry without TSDF feature; (c) Geom-
etry without normal refinement; (d) Ours.

(c)(b)(a) (d)

(c)(b)(a) (d)

Figure 9. Qualitative evaluation of object geometry generation.
(a) Input images. (b) Geometry without template; (c) Geometry
without normal refinement; (d) Ours.

(a) (b) (c) (d)(c)(b)(a) (d)

Figure 10. Qualitative evaluation of neural blending. (a) Input
image; (b) Per-vertex texture; (c) Naive neural blending; (d) Ours.
5.3. Limitation

Although NeuralHOFusion can perform detailed and
complete reconstruction and layer-wise photo-realistic ren-
dering under complex human-object interactions by fully
utilizing temporal observations, it still owns some limita-
tions. First, our method heavily relies on instance segmen-
tation method, bad segmentation will lead to awful geome-
try and interlaced texture. Besides, since depth sensors lack
observations from specific materials such as shaggy hair and

(c)(b)(a)        (d)
Figure 11. Qualitative evaluation of neural blending scheme on
objects. (a) Input images; (b) Per-vertex texture; (c) Naive neural
texture blending; (d) Ours.

(b) (d)(c)(a) (e)

Figure 12. Evaluation of the number input camera views. (a) Ref-
erence image. (b, c, d) Our reconstructed texture results using
two, four and six cameras, respectively. (e) Cumulative distribu-
tion function of the mean absolute error.

yarn clothes, our method cannot get good geometry to these
areas. A semantic-aware implicit function on different hu-
man parts will be critical for such problem. Furthermore,
our approach will produce texture-copy artifacts after nor-
mal refinement. Our current pipeline models human and
objects separately, and it is an interesting direction to build
a physical framework such as [42].

6. Conclusion
We have presented a practical neural volumetric capture

and rendering approach for complex human-object interac-
tion scenes, using sparse RGBD cameras. By combining
traditional non-rigid fusion with neural implicit modeling
and blending, our system achieves detailed and realistic re-
sults with the unique layer-wise viewing experience. Our
fusion-based neural implicit inference and template-aid ob-
ject tracking enable detailed and complete geometry genera-
tion under occlusions, while our texturing scheme combines
volumetric and image-based rendering in both spatial and
temporal domains to synthesize photo-realistic texture. Our
experimental results demonstrate the effectiveness of Neu-
ralHOFusion in complex interaction scenarios with various
poses and clothing types. We believe that our approach is
a critical step to virtually but realistic teleport human per-
formances under complex interactions, with many potential
applications like consumer-level telepresence, active object
scanning and human behavior analysis.
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