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Abstract

We propose SelfRecon, a clothed human body recon-

struction method that combines implicit and explicit repre-

sentations to recover space-time coherent geometries from

a monocular self-rotating human video. Explicit methods

require a predefined template mesh for a given sequence,

while the template is hard to acquire for a specific subject.

Meanwhile, the fixed topology limits the reconstruction ac-

curacy and clothing types. Implicit representation supports

arbitrary topology and can represent high-fidelity geometry

shapes due to its continuous nature. However, it is difficult

to integrate multi-frame information to produce a consistent

registration sequence for downstream applications. We pro-

pose to combine the advantages of both representations. We

utilize differential mask loss of the explicit mesh to obtain

the coherent overall shape, while the details on the implicit

surface are refined with the differentiable neural rendering.

Meanwhile, the explicit mesh is updated periodically to ad-

just its topology changes, and a consistency loss is designed

to match both representations. Compared with existing

methods, SelfRecon can produce high-fidelity surfaces for

arbitrary clothed humans with self-supervised optimization.

Extensive experimental results demonstrate its effectiveness

on real captured monocular videos. The source code is

available at https://github.com/jby1993/SelfReconCode.

1. Introduction

Clothed body reconstruction has been an important and

challenging research topic in the community for years. In

the film and gaming industry, high-fidelity human recon-

struction usually requires pre-captured templates, multi-

camera systems, controlled studios, and long-term works

of talented artists. However, these requirements exceed the

application scenarios of general customers, such as person-

alized avatars for telepresence, AR/VR, anthropometry, and

virtual try-on, etc. Therefore, directly reconstruction high-

fidelity digital avatar from monocular video will have sig-

nificant practical application value.
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The state-of-the-art marker-less monocular human per-

formance capture approaches [17, 18, 52] are mainly de-

signed based on explicit mesh representation. They re-

quire actor-specific rigged templates and utilize detected

2D/3D joints and silhouettes to estimate per frame’s pos-

ture and non-rigid deformation. DeepCap [18] addition-

ally uses multi-view information during training to resolve

deep ambiguity and improve tracking accuracy for monoc-

ular inference. The explicit representation has some ad-

vantages, including space-time coherence and compatibility

with existing graphics control pipelines, like texture edit-

ing and reposing. Moreover, skinning deformation is suit-

able under this paradigm to model the body’s large-scale ar-

ticulated deformations. However, actor-specific templates

limit the extension of these methods to unseen human se-

quences. For videos of self-rotation humans under rough A-

pose, VideoAvatar [2] can estimate general clothed humans

with the SMPL+D parametric representation [1–3,6,31,49],

while it can not recover folds and loose clothing, like skirts.

Recently, some neural implicit representation based

monocular human reconstruction approaches have demon-

strated compelling results [10, 20, 21, 23, 41, 42, 46, 50, 55,

56]. These methods can handle various topologies, and

thus can represent various clothing and hairstyles. How-

ever, they require high-quality 3D data for supervision, and

they only reconstruct for a specific frame and can not keep

the space-time coherence of surface vertices for the whole

sequence. A simple solution to guarantee the coherence

and correct body structure is to maintain an implicit tem-

plate surface in the canonical space, and then utilize back-

ward deformation fields to map current points to canonical

space to assist their implicit function queries. The back-

ward deformation strategy has been widely applied recently

and works well for small-scale deformations [29,36,40,45].

However, it is not very suitable for articulated skinning de-

formation due to its irreversibility in some parts of current

space [11, 24]. To this end, technologies such as pose-

related skinning weights prediction [24,38,47] and specific

inverse articulated deformation design [13] are proposed at

the cost of high complexity and poor generalization.

In this work, we propose SelfRecon, which combines the

explicit and implicit representations together to reconstruct
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high-fidelity digital avatar from a monocular video. Specif-

ically, SelfRecon utilizes a learnable signed distance field

(SDF) rather than a template with fixed topology to repre-

sent the canonical shape. To improve the generalization of

the deformation and reduce the optimization difficulty, we

adopt the forward deformation to map canonical points to

the current frame space [11, 54]. During optimization, we

periodically extract the explicit canonical mesh and warp it

to each frame with the deformation fields. For these meshes,

we utilize mask loss and smooth constraints to recover the

overall shape. For the implicit part, a differential formula-

tion is designed to intersect the deformed surface and fol-

low IDR’s neural rendering [53] to refine the geometry. A

consistency loss is designed to match both geometric repre-

sentations as close as possible.

SelfRecon alleviates the dependence on actor-specific

templates and extracts a space-time coherent mesh sequence

from a monocular video. Extensive evaluations on self-

rotating human videos demonstrate that it outperforms ex-

isting methods. We believe that SelfRecon will inspire more

studies on combining implicit and explicit representations

for 3D reconstruction for articulated object.

2. Related Work

Implicit Human Reconstruction. PIFu [41] adopts a

deep network to extract image features and concatenates

pixel’s feature and its corresponding 3D point depth in-

formation as the input of a Multi-Layer Perceptron (MLP)

to obtain high-fidelity 3D clothed human occupancy field.

However, it may generate incorrect body structures for hu-

mans under challenging poses. StereoPIFu [22] aims at

binocular images, utilizes volume alignment feature and

predicted high-precision depth to guide implicit function

prediction, can effectively alleviate the depth ambiguity and

restore absolute scale information. PIFuHD [42] utilizes

higher resolution features and predicted normal information

to refine the geometric details of PIFu. PaMIR [55] uti-

lizes parameterized human body to decrease the influence of

deep ambiguity in implicit function training, reduces the oc-

currence of abnormal human body structure, and improves

the reconstruction accuracy. These methods train an MLP to

represent the human’s implicit geometry from single or sev-

eral images and achieve impressive results. However, they

require the corresponding high-quality 3D data of color im-

ages to train the model, which is hard to obtain and thus

limits their generalization to in-the-wild images.

Besides, overfitting the implicit neural representation of

a person’s movement sequence to acquire actor-specific re-

constructions becomes popular. NASA [13] coarsely mod-

els the naked body as the union of articulated parts, and

each part is an implicit occupancy field. SCANimate [43]

proposes an end-to-end trainable framework that turns raw

3D scans of a clothed human into an animatable avatar.

SNARF [11] learns a forward deformation field to improve

its generalization for unseen human poses. All these meth-

ods need 4D scan data to train their clothed body represen-

tation, and thus are difficult to be widely used for general

image data.

Recently, some implicit representation methods, which

can extract geometry and synthesize novel views based on

multi-view images, attract researchers’ attention. Neural-

Body [39] reconstructs per frame’s NeRF [34] field condi-

tioned at body structured latent codes and utilizes the NeRF

field to synthesize new images. However, the extracted ge-

ometry from NeRF suffers from noise. H-NeRF [51] uti-

lizes an implicit parametric model [4] to reconstruct the

temporal motion of humans. Neural Actor [30] integrates

texture map features to refine volume rendering. IDR [53]

combines implicit signed distance field and differential neu-

ral rendering to generate high-quality rigid reconstruction

from multi-view images. Concurrent IMAvatar [54] expand

IDR to learn implicit head avatars from monocular videos.

Explicit Human Reconstruction. With the help of hu-

man statistical model [5, 25, 31], some works utilize im-

age cues to automatically obtain model parameters [9, 16,

28, 35]. To represent human clothing, some methods add

displacements on SMPL [31] vertices to model tight cloth-

ing [2, 7, 33, 37]. However, this SMPL+D representation

can only support tight clothing types and recover coarse

level geometry shape. To improve the representation abil-

ity, some works adopt separate clothing representation and

combine with SMPL body to do reconstruction [26,32], but

they need clothing type and high-quality 3D supervision.

Besides, to capture the performance of a specific person,

many prior works use an actor-specific template to assist

tracking. Monoperfcap [52] optimizes the deformation of

template mesh to match 2D cues. LiveCap [17] refines the

optimization pipeline and achieves real-time tracking for a

specific person with monocular RGB input. DeepCap [18]

adopts a network to predict per frame’s template deforma-

tion for a specific person. However, the requirement for

pre-defined templates limits their broader applications.

3. Method

SelfRecon aims to reconstruct a high-fidelity and space-

time coherent clothed body shape from a monocular video

depicting a self-rotating person, and the whole algorithm

pipeline is given in Fig. 1. Both explicit and implicit geo-

metric representations are utilized to achieve the above tar-

get. Specifically, we utilize the forward deformation field

to generate space-time coherent explicit meshes. The de-

formation fields are decomposed into two parts, where the

first one represents per frame’s non-rigid deformation with

a learnable MLP, and the second is the skinning deforma-

tion field. Differentiable masks, regular and smooth losses

are adopted to control the shape of explicit meshes. To
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Figure 1. The pipeline of SelfRecon. We simultaneously maintain the explicit and implicit geometry representations and use forward

deformation fields to transform canonical geometry to the current frame space. For explicit representation, we mainly use differentiable

mask loss to recover the overall shape. As for implicit representation, sampled neural rendering loss and predicted normals are used to

refine geometry details. Finally, a consistency loss is used to keep both geometric representations matched.

update the shape of implicit neural representation, we use

non-rigid ray-casting (sec 3.3) to find the differentiable in-

tersection points of rays and the deformed implicit surface.

Then, the implicit rendering network (sec 3.4) will utilize

the rays’ color information to improve the geometry. Un-

less otherwise indicated, we also utilize the predicted nor-

mal map [42] to refine the details. Finally, a consistency

loss is designed to match both representations.

For a self-rotating video with N frames, we adopt the

method described in VideoAvatar [2] to generate the ini-

tial shape parameter β and per-frame’s pose parameters

{θi|i ∈ {1, ..., N}} of SMPL model. We pre-defined a tem-

plate pose and generate initial canonical SMPL body mesh

B with β and this pose parameter. Our implicit and explicit

representations are both initialized with B. In the following,

we present the algorithm details of each component.

3.1. Canonical Implicit SDF

In the similar work of VideoAvatar [2], they adopt the

SMPL+D representation for clothed human body. However,

SMPL+D has limited resolution and representation ability,

and thus it can not represent high-fidelity geometry shape

and various clothing types. In this work, we represent the

canonical template shape Sη as the zero isosurface of a SDF,

which is expressed by an MLP f with learnable weights η:

Sη = {p ∈ R
3|f(p; η) = 0}. (1)

To avoid unexpected solution, we use IGR [15] to initialize

Sη as the initial canonical body B.

3.2. Deformation Fields

Following prior works [21, 23], we utilize skeleton skin-

ning transformation to control human body’s large-scale

movements due to the articulated structure. However, gar-

ments’ non-rigid deformation cannot be fully represented

by skinning transformation. Therefore, we extend to model

non-rigid deformation with another MLP.

Non-rigid Deformation Field. We use an MLP d with

learnable weights φ to represent the non-rigid deformation

field. For i-th frame, d takes its optimizable conditional

variable hi as input and deform points in the canonical

space with i-th frame’s specific non-rigid deformation.

Skinning Transformation Field. Given i-th frame’s

pose parameter θi, we have to define a canonical-to-current

space skinning transformation field W . As the initial tem-

plate body B has well-defined skinning weights relate to

its SMPL skeleton, an intuitive idea is to expand the skin-

ning weights of B’s vertices to the whole canonical space

to define the skinning transformation field. Specifically, we

first pre-defined a sparse grid containing B in the canonical

space. For each grid point, we find its nearest 30 vertices

on B and average their skinning weights with IDW (inverse

distance weight) as its initial weight. Then, we smooth all

grid points’ weights with Laplace smoothing. Finally, given
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a point in the canonical space, we compute its skinning

weights by trilinear interpolation in the grid. During our

optimization, the grid is pre-computed and fixed. This for-

ward deformation design avoids the trouble of inverse skin-

ning transformation [11, 13, 24, 47] and provides a regular

constrain for human articulated movement.

Finally, by compositing d and W , we get the final de-

formation field D = W(d(·)). It takes i-th frame’s con-

ditional variable hi and SMPL pose parameter θi as input,

and transform canonical points to the i-th frame space. For

brevity of description, we use Di to denote i-th frame’s de-

formation field, Si for i-th frame’s zero isosurface Di(Sη)
and ψi for Di’s optimizable parameters {φ,hi,θi}.

3.3. Differentiable Non-rigid Ray-casting

For rigid scenes, the sphere tracing algorithm [19,27,53]

is widely used to find the intersection point of a ray and the

SDF. However, it is not feasible here due to the deformation

fields. Inspired by the method in [44], which proposes a

strategy to render a deformed SDF, we utilize the explicit

mesh to help find the intersection point of a ray and Si.

As shown in Fig 2, we extract an explicit template mesh

T from the canonical surface Sη . With deformation Di,

we can get i-th frame’s mesh Ti. Theoretically, Ti is a

piecewise linear approximation of Si. Therefore, consider a

ray emitted from the camera position c along the direction

v, its first intersection x̂ with Ti is a good approximation

of its intersection with Si. Moreover, with the intersected

triangle on Ti, we can find x̂’s corresponding point p̂ on the

template T by consistent barycentric weights. Obviously, p̂

is close to Sη and is a good approximation of D−1

i (x̂). With

p̂ as good initialization, we can find a point p on Sη , whose

deformed point x = Di(p) is exactly the intersection point

of the ray r and Si. Specifically, we solve p by:

p = argmin
p̂

ω|f(p̂)|+
‖(Di(p̂)− c)× v‖2

‖Di(p̂)− c‖2
, (2)

where the first item constrains p̂ to be close with Sη and the

second item restricts Di(p̂) on the ray. In our implemen-

tation, we set ω = 3.05 and execute 10 gradient descent

iterations to solve p. To guarantee accuracy, we reject those

samples with large losses.

Differentiable Formula. The above-mentioned solving

process of p is an iterative optimization process, which is

not differentiable. For the ray in i-th frame, camera posi-

tion c, view direction v, Di’s parameters ψi and f ’s param-

eter η uniquely determine the p. Therefore, p can be seen

as a function of these parameters, and we need to compute

partial derivatives of p to all these parameters. For brevity,

we only clarify our calculation for η here, and other partial

derivatives are computed similarly.

Through the above analysis, p satisfies the surface and

ray constraints: f(p) ≡ 0 and (Di(p) − c) × v ≡ 0. We
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Figure 2. Some related symbols and illustration about differen-

tiable non-rigid ray-casting and implicit neural rendering.

differentiate these two equations w.r.t η to get:

∂f

∂p

T ∂p

∂η
= −

∂f

∂η
[v]×

∂x

∂p

∂p

∂η
= 0, (3)

where x = Di(p) and [v]× is v’s cross product matrix. We

concatenate these two equations to get a 4×3 linear system,

then ∂p
∂η

is computed by solving its normal equation.

3.4. Implicit Rendering Network

IDR [53] proposes an MLP M to approximate the ren-

dering equation and demonstrates certain disentangle abil-

ity of lighting and material. In their rigid configuration, M

takes the zero isosurface’s point, its normal, the view di-

rection and its global geometry feature vector as input to

estimate the point’s color along the view direction. We sub-

tly transfer their design to non-rigid scenarios by convert-

ing related current frame’s attributes to canonical space. As

shown in Fig. 2, considering a ray emitted from camera cen-

ter c along a sampled pixel, whose direction v is determined

by camera’s intrinsic parameters τ , we compute its intersec-

tion point p on Sη with the algorithm described in sec 3.3.

In the meantime, we compute its normal np = ∇f(p; η) by

gradient calculation. Then, the view direction vp in canon-

ical space can be computed by transferring v with the Jaco-

bian matrix Jx(p) of the deformed point x = Di(p) w.r.t p.

As for the global geometry feature, we similarly use a larger

MLP F (p; η) = (f(p; η), z(p; η)) to additionally compute

it, which implies the geometry information around p and

can be used to help the prediction of global shadow [53].
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Finally, we use an MLPM with learnable weights γ to com-

pute p’s color Lp(η, ψi, γ, τ), formulated as:

Lp(η, ψi, γ, τ) =M(p,np,vp, z(p; η); γ)

np = ∇f(p; η)

x = Di(p)

vp = Jx(p)
−1v,

(4)

where related symbols have been described above. It can be

seen that the color along direction v of the deformed point

x in i-th frame is determined by the MLP weights η and γ,

camera parameters τ and deformation field parameters ψi.

3.5. Loss Function

According to the description above, for a N -frame self-

rotating video, the set X of all optimizable parameters is:

X = {η, γ, φ, τ} ∪ {hi,θi|i ∈ 1, ..., N},

which includes camera parameters, the learnable weights

of MLPs shared by the whole sequence and per frame’s

specific pose parameters and non-rigid deformation field’s

conditional variable. Our target is to design a loss func-

tion and optimize X to match the mask and RGB images

{Oi, Ii|i ∈ 1, ..., N} of the input video. Besides, a pre-

dicted normal map {Ni|i ∈ 1, ..., N} is added to the opti-

mization. As SelfRecon maintains both explicit and implicit

geometry, the loss terms can be divided into two parts.

3.5.1 Explicit Loss

During the computation of explicit losses, we temporarily

regard the canonical mesh vertices T as an optimizable vari-

able and compute its gradient together with X . Then in the

consistency loss, we associate its variations with our im-

plicit representation. At present, explicit losses mainly in-

clude mask loss, deformation regularization loss, and the

smoothness loss of the skeleton.

Mask Loss. We utilize a differentiable renderer [48]

based on point cloud to render the mask O(Ti) of i-th

frame’s mesh Ti = Di(T) with camera parameters, and

compute the IoU loss with target mask Oi:

lossIoU = 1−
‖O(Ti)⊗Oi‖1

‖O(Ti)⊕Oi −O(Ti)⊗Oi‖1
, (5)

where ⊗ and ⊕ are the operators that perform element-wise

product and sum respectively.

Deformation Regularization Loss. As stated in Sec.

3.2, the i-th frame’s deformation field Di contains variable

d and fixed W . d represents the deformation that can not be

represented by skinning transformation W , and this defor-

mation should be relatively small. To associate the skeleton

pose, we design the following regularization loss:

lossregu =
1

|T|

∑

t∈T

ρ(‖W(t;θi)−Di(t)‖2), (6)

where t is a vertex coordinate of T, |T| is the vertices num-

ber of T, and ρ is the Geman-McClure robust loss [14].

Skeleton Smoothness Loss. The motion trajectory of

the joints should be low frequency. Similar with MonoP-

erf [52], we smooth the skeleton coordinates of 30 consecu-

tive frames by minimizing the distance to a 10 dimensional

linear subspace B ∈ R
30×10 spanned by the 10 lowest fre-

quency basis vectors of the discrete cosine transform:

lossske =
1

30
‖JNull(B)‖2F . (7)

Here, Null(B) denotes the nullspace of the B matrix, the

matrix J ∈ R
72×30 stacks all skeleton coordinates of con-

secutive 30 frames, and ‖ · ‖F denotes the Frobenius norm.

Finally, the loss for the explicit representation is:

Lossexp = lossIoU + λe1lossregu + λe2lossske. (8)

λe1 and λe2 adjust the weights of related losses. After each

iteration, we reserve X ’s gradients and wait for the implicit

loss iteration to update together. For canonical mesh ver-

tices, we use SGD to update T to T̂, which will be used in

consistency loss to match two representations.

3.5.2 Implicit Loss

We sample pixels within the ground truth mask and utilize

Sec. 3.3 to get the ray’s intersection p on Sη and its cor-

responding ground truth color Ip and predicted normal Np

if available. Then, based on this sampled points set P, we

construct two losses.

Color Loss. By referring to Eq. (4), we formulate the

color loss as:

lossRGB =
1

|P|

∑

p∈P

|Lp(X )− Ip|. (9)

Here, we use X to substitute related parameters in Eq. (4).

Intuitively, this loss requires that the rendered images

should match the input images.

Normal Loss. We utilized the predicted normal map

by PIFuHD [42] to further refine the geometry shape. Re-

ferring to Eq. (4), we can easily compute p’s normal np.

Besides, we need to transform the corresponding predicted

normal Np from the space of current frame to canoni-

cal space, which can be computed with Jx(p)
TNp, where

Jx(p) is the Jacobian matrix of the forward deformation

field at p [44]. Thus, the normal loss is:

lossnorm =
1

|P|

∑

p∈P

ωp‖np − unit(Jx(p)
TNp)‖2. (10)
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Here, unit(·) means to normalize the vector. ωp is the

weight defined by the cosine of angle between np and cor-

responding view direction. Since the predicted normals are

noisy and inconsistent between frames, we use this weights

to alleviate the impact of normal that deviates from its view

direction and avoid geometry artifacts.

We also design regular losses for the implicit represen-

tation, and these losses are defined on the set of sampled

points S near the implicit surface [15].

Rigidity Loss. We require the first deformation field d

to be as rigid as possible to avoid distortion. Following Park

et al. [36], we design our loss as:

lossrigid =
1

|S|

∑

p∈S

ρ(‖logΣp‖F ), (11)

where Σp is the singular value diagonal matrix of the Jaco-

bian of d on p and ρ is the robust function [14].

Eikonal Loss. We adopt the regular loss of IGR [15] to

make f to be sign distance function:

losssdf =
1

|S|

∑

p∈S

(‖np‖2 − 1)2, (12)

where np is obtained by differentiating f at p.

Finally, the implicit loss can be represented as:

Lossimp = lossRGB+λi1lossnorm+λi2lossrigid+λi3losssdf ,
(13)

where λi1, λi2 and λi3 are balancing weights.

3.5.3 Explicit/Implicit Consistency

After explicit iteration, the canonical mesh has been up-

dated to T̂, to make the implicit SDF consistent with the

updated explicit mesh during implicit iteration, we design a

consistency loss:

Losscons =
1

|T̂|

∑

t̂∈T̂

|f(t̂; η)|, (14)

where t̂ is a vertex coordinate of T̂. Intuitively, the loss

requires T̂ to match the implicit surface Sη .

In each optimization step, we first perform the explicit

iteration to obtain T̂ and reserve X ’s gradients. Then, we

compute implicit and consistency losses to accumulate new

X ’s gradients. Finally, Adam is utilized to update X with

computed gradients.

4. Experiments

We conduct quantitative and qualitative experiments to

demonstrate the effectiveness of SelfRecon. For quantita-

tive evaluation, we synthesize several sequences with com-

mercial software due to the lack of high-quality geometry

Table 1. The errors (cm) on the synthetic five sequences. We report

three error metrics: the average distance from reconstructed to GT

meshes (Recon), the average distance from GT to reconstructed

meshes (GT), and the Chamfer distance. For each error metric, we

report the values of VideoAvatar and ours in two consecutive rows.

Subject f1 f2 f3 m1 m2 mean

Recon
1.59 1.71 1.93 1.81 1.27 1.66

1.67 1.32 1.63 1.53 1.17 1.46

GT
2.08 1.50 2.40 1.92 1.42 1.86

1.62 1.16 1.92 1.53 1.17 1.48

Chamfer
1.84 1.60 2.17 1.86 1.34 1.76

1.64 1.24 1.77 1.53 1.17 1.47

data of human body with general clothing. For qualitative

evaluation, we mainly utilize the PeopleSnapshot [2] dataset

and several real sequences collected by ourselves. We also

present ablation study for the loss term design and present

an avatar generation application.

4.1. Quantitative Evaluation

We synthesize data to quantitatively evaluate our recon-

struction algorithm. Specifically, we use Blender [8] to de-

sign the self-rotating motions for male and female avatars.

Then, we utilize CLO3D [12] to design several clothes and

animate the clothed body with motions. Finally, we syn-

thesized two sets of male and three sets of female dressing

sequences. We reconstruct these sequences with VideoA-

vatar [2] and our method, and report the registration error

for the canonical posture results in Tab. 1. Compared with

VideoAvatar, our method significantly reduces the values of

various error metrics. In Fig. 3, we also present four group

results and their error maps. Intuitively, our results cap-

ture the overall shape and have some reasonable details. As

VideoAvatar is based on the SMPL+D representation, it has

plausible results for tighter clothing, like the male exam-

ples, but lacks detailed reconstruction ability. Moreover, it

can not correctly reconstruct loose clothing, especially for

the females dressed in skirts.

4.2. Qualitative Evaluation

We also qualitatively compare SelfRecon with multi-

frame prediction algorithm PaMIR [55], optimization

method VideoAvatar [2] and NeRF [34] based neural ren-

dering method NeuralBody [39] on several sequences of

PeopleSnapshot dataset. In Fig. 4, we present the first

frame of input video, our rendered image, and reconstruc-

tion results of all methods from two perspectives. And we

compare with PaMIR in the first two rows and the oth-

ers with NeuralBody. As we can see, VideoAvatar based

on SMPL+D can only approximately capture the overall

shape, but details such as hairstyle and clothing folds are

lost. PaMIR uses multi-frame input to improve its results,
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Figure 3. Reconstructions in canonical pose and their error maps for four synthetic self-rotating sequences. In each group, we show the

GT mesh, results of VideoAvatar and SelfRecon in turn (red means ≥ 6cm).

Input rendered Ours PaMIR/NeuralBody VideoAvatar

Figure 4. Comparison results with methods that use video or

multi-frame images, including PaMIR [55], NeuralBody [39] and

VideoAvatar [2]. For the second comparison group, the method in

the first two rows is PaMIR, and the rest is NeuralBody. We also

present our rendered image as reference. SelfRecon can recon-

struct high-fidelity geometry shape of standing posture, including

facial features and clothing folds.

but still suffers from the deep ambiguity. As in the sec-

ond example, its reconstructed human is not upright from

the side view. Besides, its results have some details but

miss facial features, while our method has better details and

can recover certain facial features. Similar with SelfRecon,

NeuralBody also inputs a video to do self-supervised op-

timization. It mainly focuses on novel view synthesis, but

still can extract geometry from underlying NeRF represen-

tation. We can see that its reconstructions alleviate deep am-

biguity and conform to the human’s overall structure while

suffering from large noise on the surface, which may be

caused by excessive freedom of volume rendering. Differ-

ent from their method, implicit surface representation based

SelfRecon can recover high-fidelity geometry shape with-

out noises.

Figure 5. Reconstruction results from videos taken by smart-

phones. Each group shows the first image of the video, corre-

sponding neural rendered image and reconstructed shape.

Fig. 5 shows reconstruction results on our collected

videos with smartphones. For each group, we present the

first frame of the video, our rendered image and reconstruc-

tion. Our results have high-fidelity geometry shapes for

kinds of clothing and body, and our neural rendered images

are also quite close to the input images.

4.3. Ablation Study

Our complete algorithm requires color images, masks

and normal maps as inputs. Fig. 6 shows ablation exper-

iments of two examples on three inputs. As the results

show, if only using the mask loss, the recovered geome-

try shape is inside the convex hull formed by the silhou-

ettes but lacks details and has noticeable concavities. After

adding the color loss, it significantly improves the details

and reduces the unnatural concavities. For the second ex-

ample, the result has been very close to the result obtained

by adding the normal loss. However, for the first example, it

can not completely eliminate the depressed geometry with-
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only mask w/o normal complete losses

Figure 6. Ablation study for color, mask and normal losses. With

mask loss only, the results lack details and have much concave

geometry. After adding color loss, geometry is significantly im-

proved but can not completely eliminate the concavities. With the

predicted normals, the results are further improved. In the last col-

umn, we also show the neural rendering images as reference.

Figure 7. Without the adaptive weights in Eq. (10) and small λi1 in

Eq. (13), normal loss will result artifacts (middle). After adjusting

the weights, the corresponding result (right) is more plausible.

out normal loss. This may be caused by lacking rich texture

and multi-view observations in these areas. With the normal

loss, our results are further improved, and the unnatural pits

are eliminated while the details are preserved.

Since the normal prediction network [42] is trained with

synthetic images, its prediction may be not accurate for real

tests and may be not consistent for different frames. As

shown in Fig. 7, without the adaptive weights in Eq. (10),

the normal loss might result unexpted results.

4.4. Avatar Generation

Thanks to our forward deformation field design, we can

extract a mesh sequence with consistent topology. Based on

the tracking results, we can extract a texture template mesh

from the images with bound skinning weights from the skin-

ning transformation field. Then, an animatable avatar is

generated and can be driven with SMPL pose parameters.

For texture extraction, we follow the method of VideoA-

vatar [2]. Fig. 8 shows two examples of texture gener-

ation and driving from the PeopleSnapshot dataset. Our

method recovers better geometric details like facial, shoes

Figure 8. The reconstructed texture mesh and driving results.

The left shows the reference image, texture meshes generated by

VideoAvatar and SelfRecon. On the right, we use three pose pa-

rameters to drive our texture mesh and generate plausible results.

and clothing folds thanks to more accurate tracking results.

Besides, our driving results look plausible and may be of

sufficient quality for some applications.

5. Conclusion and Discussion

We proposed SelfRecon, a self-supervised reconstruc-

tion method based on neural implicit representation and

neural rendering. With forward deformation, our method

can be easily applied to body movement and recover space-

time coherent surfaces, which is convenient for downstream

applications. Moreover, combining the explicit representa-

tion, we proposed a non-rigid ray casting algorithm, which

makes it possible for differentiable intersecting with the de-

formed implicit surface. SelfRecon can reconstruct high-

fidelity clothed body shape from a self-rotating video with-

out pre-computed templates. We also show high-fidelity

avatar generation with our tracking results, demonstrating

potential applications of SelfRecon.

SelfRecon still has several limitations. First, it requires

relatively long time to optimize, which limits its convenient

applications. However, this problem can be alleviated with

the help of body priors and the fast growing field of neural

rendering. Second, current method relies on the predicted

normal maps to improve the geometric details. How to re-

cover the geometric details directly from the self-supervised

rendering loss is worthy of future study. Third, the proposed

method mainly works well for self-rotating motions, and it

is worthy of study for more general motion sequences.
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Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-

rigid neural radiance fields: Reconstruction and novel view

synthesis of a dynamic scene from monocular video. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 12959–12970, 2021. 1

[46] Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas

Geiger, and Siyu Tang. Metaavatar: Learning animatable

clothed human models from few depth images. In Advances

in Neural Information Processing Systems, 2021. 1

[47] Chung-Yi Weng, Brian Curless, and Ira Kemelmacher-

Shlizerman. Vid2actor: Free-viewpoint animatable per-

son synthesis from video in the wild. arXiv preprint

arXiv:2012.12884, 2020. 1, 4

[48] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a sin-

gle image. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7467–

7477, 2020. 5

[49] Donglai Xiang, Fabian Prada, Chenglei Wu, and Jessica

Hodgins. Monoclothcap: Towards temporally coherent

clothing capture from monocular rgb video. In 2020 Inter-

national Conference on 3D Vision (3DV), pages 322–332.

IEEE, 2020. 1

[50] Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J

Black. Icon: Implicit clothed humans obtained from nor-

mals. arXiv preprint arXiv:2112.09127, 2021. 1

[51] Hongyi Xu, Thiemo Alldieck, and Cristian Sminchisescu.

H-nerf: Neural radiance fields for rendering and temporal

reconstruction of humans in motion. Advances in Neural In-

formation Processing Systems, 34, 2021. 2

[52] Weipeng Xu, Avishek Chatterjee, Michael Zollhöfer, Helge
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