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Abstract

As RGB-D sensors become more affordable, using RGB-
D images to obtain high-accuracy 6D pose estimation re-
sults becomes a better option. State-of-the-art approaches
typically use different backbones to extract features for RGB
and depth images. They use a 2D CNN for RGB images and
a per-pixel point cloud network for depth data, as well as a
fusion network for feature fusion. We find that the essential
reason for using two independent backbones is the “projec-
tion breakdown” problem. In the depth image plane, the
projected 3D structure of the physical world is preserved
by the 1D depth value and its built-in 2D pixel coordinate
(UV). Any spatial transformation that modifies UV, such as
resize, flip, crop, or pooling operations in the CNN pipeline,
breaks the binding between the pixel value and UV coordi-
nate. As a consequence, the 3D structure is no longer pre-
served by a modified depth image or feature. To address
this issue, we propose a simple yet effective method denoted
as Uni6D that explicitly takes the extra UV data along with
RGB-D images as input. Our method has a Unified CNN
framework for 6D pose estimation with a single CNN back-
bone. In particular, the architecture of our method is based
on Mask R-CNN with two extra heads, one named RT head
for directly predicting 6D pose and the other named abc
head for guiding the network to map the visible points to
their coordinates in the 3D model as an auxiliary module.
This end-to-end approach balances simplicity and accu-
racy, achieving comparable accuracy with state of the arts
and 7.2× faster inference speed on the YCB-Video dataset.

1. Introduction
6D pose estimation plays a fundamental role in emerg-

ing applications, e.g., autonomous driving [1–3], intelligent
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(a) Projection breakdown caused by the RoI transformation, including
crop, resize and RoI-Align [8]: The red dotted line connects a 3D object
and its projected RoI in the depth image. Any pixel (d, u, v) in the RoI
and its corresponding point (a, b, c) on the 3D object follow the projection
equation. The equation no longer holds if the built-in coordinate (UV) is
modified by RoI-Align, as though the RoI was moved to the top left corner
of the image.
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(b) Introducing UV data fixes the problem of projection breakdown and
improve the 6D pose estimation performance with various spatial transfor-
mations. x axis is the training epoch, and y axis is the testing accuracy.

Figure 1. Visualization and experiment results of projection break-
down problem.

robotic grasping [4–6] and augmented reality [7]. RGB-D
sensors provide a direct signal of the surface texture and ge-
ometry of the physical 3D world, and as their prices fall,
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RGB-D images are becoming a more attractive data source
for 6D pose estimation.

However, state of the arts [2,9–13] typically use two sep-
arate backbone networks to extract features for RGB and
depth images, with a 2D CNN for RGB images and per-
pixel PointNet [14] or PointNet++ [15] for depth data. After
these features have been obtained, an additional fusion pro-
cess is designed to blend them. Existing methods use differ-
ent backbones to account for the heterogeneity of these two
types of data. However, the key reason they can’t extract
features with a single backbone is hidden in the classic 3D
vision projection equation:uv
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(1)
which describes a point (a, b, c)1 first rotated by the rota-
tion matrix R ∈ SO(3) and translated by T ∈ R3 to the
position (x, y, d) in camera coordinate system. It is then
projected to the pixel at (u, v) in image plane using the in-
trinsic matrix K of the camera. The 3D structure of the
visible points in the 3D model seen from the camera’s per-
spective is preserved by the depth value (d) of each pixel
and its coordinate (u, v) in the depth image. It implies in a
single-channel depth image, each pixel value is linked to its
built-in coordinates. The plain UV can be used to preserve
the 3D structure and changing it will break the 3D projec-
tion equation. However, in the traditional CNN pipeline,
spatial transformations such as pooling, crop, RoI-Align [8]
in the convolution operator, and resize, crop, and flip in data
augmentation do change the UV. As shown in Fig. 1a, when
those spatial transformations are applied to a depth image,
the projection equation is broken, and we call this “projec-
tion breakdown”. This is the primary reason why the tradi-
tional CNN pipeline struggles to process RGB images and
depth data at the same time.

In this paper, we propose a simple yet effective method
to save the projection breakdown: explicitly feeding extra
UV data along with depth to 2D CNN. D+UV acts as 3D
data, making the value (d, u, v) at each pixel self-complete
and decoupling d from its built-in coordinate in the image
plane. Given the self-complete information at each pixel,
the projection equation still holds after spatial transforma-
tions. As a result, we can extract features from RGB-D im-
ages using the traditional CNN pipeline, including its data
augmentation methods. As shown in Fig 1b, the accuracy
of 6D pose estimation is greatly improved with extra UV
data. Extensive experiments show that transformations in
data augmentation greatly harm the accuracy without using
UV data, but improve the accuracy with UV data is used.

Eq. 1 also indicates that the network should map visible

1We refer a point by its coordinate in object coordinate system.

points in an RGB-D image to their original coordinates in
the 3D model. As far as we know, Existing keypoint-based
6D pose estimation approaches, such as [6] and [16], learn
the 3D offset from visible points to selected keypoints and
produce state-of-the-art accuracy. However, these meth-
ods require the iterative voting and regression mechanism
as a post-process operation, which accounts for 92.9% of
total frame processing time in FFB6D [16] and 79.2% in
PVN3D [6] on the multiple-object dataset [17]. To achieve
an accurate, real-time and practical pipeline, we propose
Uni6D, an end-to-end 6D pose estimation network based
on Mask R-CNN [8] that uses a unified backbone to ex-
tract feature from RGB-D images. Mask R-CNN performs
the object detection and instance segmentation with paral-
lel multi-head networks. On its basis, we add an extra RT
head to predict the rotation matrix R and the translation vec-
tor T directly, with another abc head to carry out the map-
ping of visible points, instead of using the time-consuming
post-processing used in previous works. Without any bells
and whistles, Uni6D achieves 95.2% in terms of AUC of
ADDS-0.1 on YCB-Video dataset and a real-time inference
with 25.6 FPS, which is 7.2× faster than the state of the art.
To summarize, the main contributions of this paper are as
follows: (1) We expose the “projection breakdown” prob-
lem that exists beneath CNN-based depth image processing
and introduce the extra UV data into input to fix it, which
indicates that a single CNN backbone is all you need for
RGB-D feature extraction. (2) We propose an efficient and
effective method denoted as Uni6D. The proposed abc head
and RT head are optimized in a multitask manner, and we
use RT head to directly obtain the pose estimation results.
(3) We provide extensive experimental and ablation studies
to highlight the benefits of our method, and the results show
that our method outperforms existing methods in terms of
the time efficiency and achieve promising performance.

2. Related Work

2.1. 6DoF Pose Estimation from RGB Images

Holistic methods, keypoint-based approaches and dense
correspondence methods are the three types of RGB-only
pose estimation methods. Holistic methods [18–26] directly
estimate the 6D pose of objects in an RGB image. They use
rigid templates to compute the best match pose or directly
regress the 6D pose with deep neural networks. However,
non-linearity of the rotation space limits generalization abil-
ity of DNN based methods. On the contrary, keypoint-based
approaches [27–31] detect the keypoints of objects and then
estimate the pose by finding the 2D and 3D correlations at
these points. Dense correspondence methods [32–40] uti-
lize the correspondence between image pixels and mesh
vertexes to estimation the pose with the Perspective-n-Point
(PnP) method to recover poses. Although these dense corre-
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spondence method can improve robustness in occlusion sit-
uations, the performance is damaged by the unlimited out-
put space. However, the performance of all these methods
which only uses RGB images are limited by the loss of ge-
ometry information. Therefore, many point clouds based
methods have been proposed.

2.2. 6DoF Pose Estimation from Point Clouds

As the cost of depth sensors decreases and accuracy in-
creases, several point clouds based methods has been pro-
posed. The mainstream methods usually use 3D Con-
vNets [41, 42] or point cloud network [43, 43] to extract
the feature and estimate the 6D pose. However, the perfor-
mance of these methods are limited by the essential noise
and shortcomings of the point clouds data. They do not per-
form well with the sparse and weakly textured point cloud,
which indicates the necessity of RGB data.

2.3. 6DoF Pose Estimation from RGB-D Data

Recently, most of 6D pose estimation state-of-the-art
approaches utilize the RGB images and depths or point
cloud data to achieve a higher accuracy. Classical meth-
ods [33, 34, 44–48] adopt the correspondence grouping and
hypothesis verification for the rule based feature and tem-
plates of RGB-D data. With the development of deep learn-
ing, most data-driven methods use deep neural networks
to extract features instead of hand-coded features. They
extract features of RGB images and point clouds with in-
dependent feature extractors and then fuse them. Most of
them [2, 9–11, 16] use 2D CNN for RGB images and point
cloud network for depth data considering the data hetero-
geneity between them. Since the appearance and geome-
try features are extracted separately, they need to add more
complex structure to iterative fuse two features into one in
order to predict poses [9–11, 16] and enable the communi-
cation between the RGB and depth information [16].

2.4. Analysis on State-of-the-art Approaches

As far as we know, the best result is obtained by two
keypoint-based approaches, PVN3D [6] and FFB6D [16]
for now. As the name implies, keypoint-based approaches
design a network to predict the 3D offset from a visible
point to some selected keypoints. Based on this offset, each
visible point gives a prediction of keypoints in the cam-
era coordinates system, i.e. (x, y, z). An iterative voting
mechanism is designed [6] to find the best prediction of
keypoints by choosing the clustering with most votes. The
coordinates of the keypoints, i.e. (a, b, c) in 3D model,
is known before inference. Given some matched pairs of
(a, b, c) and (x, y, z), an iterative least-square regression is
adopted to get the final 6D pose. We believe that the suc-
cess of keypoint-based approaches is relies on two reasons:
1) Dense prediction and intelligent de-noising: each visible

point will give prediction to visible points and voting is used
to filter out bad predictions. Given depth images contain a
lot of noise, voting is a great way of de-noising. 2) The 3D
offset loss is useful to guide the network mapping visible
points to its 3D model at pixel level.

PointNet++ [14,15] requires finding K-nearest neighbors
in 3D space. We believe KNN for each pixel, iterative vot-
ing and regression are quite heavy when porting to real ap-
plications. We find that the essential reason is the aforemen-
tioned projection breakdown caused by the change opera-
tion on UV. In our work, we reveal and solve the projection
breakdown problem and adopt a unified feature extractor
of the RGB-D data. Benefited from a unified CNN back-
bone to extract feature from RGB-D images, we propose a
straightforward 6D pose estimation pipeline which directly
outputs the detection and pose estimation in an end-to-end
manner instead of using time-consuming post-processes.

3. Methodology of the Uni6D
Our goal is to propose an accurate, real-time and prac-

tical 6D pose estimation method. To this end, we develop
an end-to-end framework named Uni6D, which extracts the
feature of RGB-D images through a unified backbone net-
work and directly outputs the 6D pose with a straightfor-
ward pipeline. Our framework inherits the concise design
of Mask R-CNN [8] and introduces a novel RT head and an
abc head into it to obtain the 6D pose. With these two heads,
we perform multitask joint optimization for the object clas-
sification, detection, segmentation and pose estimation. The
overall proposed architecture is illustrated in Fig. 2. In this
section, we discuss how to inherit the legacy of the Mask R-
CNN (Section 3.1), how to encode UV to fix the projection
breakdown (Section 3.2), the structure of the RT head and
abc head (Section 3.3), the loss function (Section 3.4) and
the inference process (Section 3.5).

3.1. Legacy of Mask R-CNN

Object detection and instance segmentation are usually
the first steps in 6D pose estimation. As a widely used prac-
tical algorithm, Mask R-CNN is capable of achieving them
with satisfactory results. Therefore, we use the Mask R-
CNN as the basic network. As shown in Fig. 2. Uni6D
inherits the basic network structure from Mask R-CNN, in-
cluding the ResNet [49] backbone, the FPN [50] for feature
pyramid, the RPN to propose RoIs of potential objects, a
mask head for segmentation, and a bbox head for object de-
tection and classification. Using one backbone for two het-
erogeneous data becomes possible after we solve the pro-
jection breakdown problem. As a result, rather than using
separate backbone networks for RGB images and depth data
as in other methods, we simply use a unified backbone net-
work that can be implemented by making minor changes to
Mask R-CNN. Furthermore, feature fusion is no longer re-
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Figure 2. Overview architecture of our Uni6D, which inherits the basic network structure and the simplicity from Mask R-CNN. We add
the RGB-D, UV encoding and NRM with PE in a channel-wise manner and feed this new input into the single backbone network. No
fusion operation for RGB and depth feature is further required. The red part in the backbone network denotes the channel modification
to adapt the RGB-D+UV+NRM (with PE) input, which is to increase the input channel of the first convolutional layer. RT head is used
to predict rotation and translation directly and abc head aims to map visible points to their 3D coordinate in its 3D model. With above
components, our Uni6D predicts object categories, localization and its RT matrix directly without any post-processing.

quired. Meanwhile, it is very natural to add the regression
task of the RT matrix and abc points in parallel on the origi-
nal basis of Mask R-CNN. An RT head is proposed to guide
the network to map visible points to its 3D model, and an
extra abc head is proposed to predict 6D pose directly.

3.2. Encoding UV Data as Input

To overcome the issue of projection breakdown, we add
the UV data into the input RGB-D data and feed them to-
gether into the unified backbone. For the RGB-D data, we
directly combine the RGB image and corresponding depth
data along the channel dimension. There are three ways
to encode positional information. 1) Plain UV coordinates
UV: we directly concatenate this coordinates data with the
RGB-D data along the channel dimension. Plain UV is the
same height and width with RGB-D images. It has two
channels, one channel stores the coordinate of U and the
other V, i.e., the value at pixel (u, v) in U-channel is u, and
in V-channel is v. 2) Inverse projected XY: given camera
intrinsic matrix K and depth image, we encode correspond-
ing plain UV coordinates (u, v) of each pixel into inverse
projected XY (x, y) based on Equation 1. XY has two chan-
nels, too. We also concatenate XY with RGB-D data along
the channel dimension. 3) Positional encoding PE [51, 52]:
positional encoding is widely used in many other fields such

as vision transformers [52]. We encode the position with
the trigonometric function and add it into the input data.
Overall, the aforementioned three forms of UV encoding
information have their own advantages. Plain UV is more
direct, XY implies the internal reference information, and
PE can be added to other input channels to be more inte-
grated. They work together to complete each other and get
the best performance. Since depth normal vector is a widely
used for depth image, we also concatenate it to the input and
denote it as “NRM”.

3.3. RT head and abc head for Multitask Learning

We propose RT head and abc head to predict RT matrix
and the points of 3D model, where R is the rotation matrix
in the form of quaternion and T ∈ R3 is the translation ma-
trix. These heads are added to Mask R-CNN as two novel
parallel branches and take the features of all proposals ex-
tracted through RoI-Align as input. As shown in Fig. 3,
the RT head in our method has a similar structure with the
bbox head in Mask R-CNN, which contains two shared and
two independent fully connected layers to obtain the RT ma-
trix. The abc head is similar with the mask head as an FCN
structure, which is developed with four 3× 3 and one 1× 1
convolutional layers to output the 3D points.
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Figure 3. Details of RT head and abc head. Features of all propos-
als extracted through RoI-Align are used as the input of them. N
in the RT head is the number of the input dimension.

3.4. Loss Function

In addition to the classification, detection and segmenta-
tion loss functions in the original Mask R-CNN, there are
two new loss functions for RT head and abc head. The for-
mula of the RT head loss Lrt is:

Lrt =
1

m

∑
x∈O

||(Rx+ T )− (R∗x+ T ∗)||, (2)

where O is the vertex set sampled from the object’s 3D
model, R is the rotation matrix and T is the translation vec-
tor. The loss of abc head is:

Labc = |a− a∗|+ |b− b∗|+ |c− c∗|, (3)

where (a, b, c) are the coordinate of points. Thus, the over-
all loss function is:

L = λ0 · Lrt + λ1 · Labc + λ2 · Lmask

+ λ3 · (Lbbox + Lcls) + λ4 · Lrpn, (4)

where λ0, λ1, λ2, λ3 and λ4 are the weights for each loss.

3.5. Inference

Different with other state of the arts of 6D pose es-
timation, our method does not use any additional time-
consuming post-processing and directly outputs the estima-
tion results from the RT head. The straightforward pipeline
of our method significantly improves its inference efficiency
and practicality. Corresponding quantitative results of es-
timation accuracy and time efficiency are shown in Sec-
tion 4.3.

4. Experiments
4.1. Benchmark Datasets

To evaluate our method, we perform experiments on
three 6D pose estimation datasets, including YCB-Video,
LineMOD and Occlusion LineMOD.

YCB-Video [17] includes 92 videos with a variety of
textures and shapes of RGBD data from 21 YCB objects.
All of this data is annotated with 6D poses and instance-
level masks. We follow previous work [6, 11, 53] to split
the training and testing dataset. We also take the synthetic
images for training through the same method in [53] and
apply the hole completion algorithm used in [6] for hole
filling to the depth images.

LineMOD [44] contains 13 videos of 13 low-textured
objects with the annotation of 6D pose and instance-level
mask. We follow previous work [30,53] to split the training
and testing sets, and we also obtain synthesis images for the
training set as the same with [6, 53].

Occlusion LineMOD [33] is extracted from the
LineMOD dataset to evaluate the robustness under heavily
occluded situations.

4.2. Evaluation Metrics

We evaluate our method following [11, 16, 53] with the
average distance metrics ADD and ADD-S. The ADD met-
ric calculates the point-pair average distance between ob-
jects vertexes transformed by the predicted pose [R, T ] and
the ground truth pose [R∗, T ∗]:

ADD =
1

m

∑
x∈O

||(Rx+ T )− (R∗x+ T ∗)||, (5)

where x indicates the vertex sampled from the object’s 3D
model. ADD-S is applied to symmetric objects based on the
closest point distance:

ADD-S =
1

m

∑
x1∈O

min
x2∈O

||(Rx1 + T )− (R∗x2 + T ∗)||.

(6)

For YCB-Video dataset, we follow [6, 11, 16, 53] to com-
pute the ADD-S and ADD(S) under the accuracy-threshold
curve obtained by varying the distance threshold with max-
imum threshold 0.1 meter (ADD-0.1). For LineMOD
dataset, we follow [16,30] to report the accuracy of distance
less than 10% of the objects’ diameter (ADD-0.1d).

4.3. Quantitative Comparison with Other Methods

We compare the proposed method with others on YCB-
Video, LineMOD, and Occlusion LineMOD datasets. Ex-
perimental results of YCB-Video dataset are reported in
main paper and the results of LineMOD and Occlusion
LineMOD are in Appendix.

Evaluation results on YCB-Video dataset. We report
the quantitative results of the proposed Uni6D on YCB-
Video dataset in Table 1. In comparison to other meth-
ods, our approach achieves 95.2% on the ADD-S metric and
88.8% on the ADD(S) metric with a succinct and straight-
forward pipeline. Although the previous method DenseFu-
sion [11] does not use post-processing like our method, our
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Table 1. Evaluation results (ADDS-S AUC, ADDS(S) AUC) on the YCB-Video dataset. Symmetric objects are denoted in bold.

PoseCNN [53] DenseFusion [11] PVN3D [6] FFB6D [16] Our Uni6D

Object ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

002 master chef can 83.9 50.2 95.3 70.7 96 80.5 96.3 80.6 95.4 70.2
003 cracker box 76.9 53.1 92.5 86.9 96.1 94.8 96.3 94.6 91.8 85.2
004 sugar box 84.2 68.4 95.1 90.8 97.4 96.3 97.6 96.6 96.4 94.5
005 tomato soup can 81.0 66.2 93.8 8.47 96.2 88.5 95.6 89.6 95.8 85.4
006 mustard bottle 90.4 81.0 95.8 90.9 97.5 96.2 97.8 97.0 95.4 91.7
007 tuna fish can 88.0 70.7 95.7 79.6 96.0 89.3 96.8 88.9 95.2 79.0
008 pudding box 79.1 62.7 94.3 89.3 97.1 95.7 97.1 94.6 94.1 89.8
009 gelatin box 87.2 75.2 97.2 95.8 97.7 96.1 98.1 96.9 97.4 96.2
010 potted meat can 78.5 59.5 89.3 79.6 93.3 88.6 94.7 88.1 93.0 89.6
011 banana 86.0 72.3 90.0 76.7 96.6 93.7 97.2 94.9 96.4 93.0
019 pitcher base 77.0 53.3 93.6 87.1 97.4 96.5 97.6 96.9 96.2 94.2
021 bleach cleanser 71.6 50.3 94.4 87.5 96.0 93.2 96.8 94.8 95.2 91.1
024 bowl 69.6 69.6 86.0 86.0 90.2 90.2 96.3 96.3 95.5 95.5
025 mug 78.2 58.5 95.3 83.8 97.6 95.4 97.3 94.2 96.6 93.0
035 power drill 72.7 55.3 92.1 83.7 96.7 95.1 97.2 95.9 94.7 91.1
036 wood block 64.3 64.3 89.5 89.5 90.4 90.4 92.6 92.6 94.3 94.3
037 scissors 56.9 35.8 90.1 77.4 96.7 92.7 97.7 95.7 87.64 79.58
040 large marker 71.7 58.3 95.1 89.1 96.7 91.8 96.6 89.1 96.66 92.76
051 large clamp 50.2 50.2 71.5 71.5 93.6 93.6 96.8 96.8 95.93 95.93
052 extra large clamp 44.1 44.1 70.2 70.2 88.4 88.4 96.0 96.0 95.82 95.82
061 foam brick 88.0 88.0 92.2 92.2 96.8 96.8 97.3 97.3 96.1 96.1
Avg 75.8 59.9 91.2 82.9 95.5 91.8 96.6 92.7 95.2 88.8
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Figure 4. Performance of difference approaches under increasing
level of occlusion on YCB-Video Dataset. Our per-RoI method is
effective at identifying and handling occlusion.

method improves the ADD-S by 4%. In contrast to Dense-
Fusion, which requires two different backbones, CNN and
PointNet [14], our method only needs a unified CNN to
extract RGB-D features. It is worth emphasizing that al-
though the performance of our method is a little bit lower
than the current state-of-the-art methods [6, 16], it does not
use any additional iterative refinement and post-process op-
erations which are required in state-of-the-art methods. We
discuss the time efficiency of our method below. Follow-
ing [11, 16], we also evaluate the robustness towards occlu-
sion in YCB-Video dataset through calculating how the ac-
curacy (ADD-S < 2cm) changes with extent of occlusion.
As indicated in Fig. 4, the performances of our methods

Table 2. Time cost and frames per second (FPS) on YCB-Video
Dataset. Our Uni6D is 7.2× faster than FFB6D, and 13.6× than
PVN3D. It is capable of estimating 6D pose in real-time. Note that
the results of PoseCNN and DenseFusion comes from [11], which
does not state their device type.

Method Network Post-process ALL FPS

PoseCNN+ICP [53] 200 10400 10600 0.094
PoseCNN [53] 200 0 200 5

DenseFusion [11] 50 10 60 16.67
PVN3D [6] 110 420 530 1.89
FFB6D [16] 20 260 280 3.57

Ours 39 0 39 25.64

has the minimal drop compared with DenseFusion [11] and
FFB6D [16]. In particular, the performance under increas-
ing level of occlusion decrease by 0.3%, which is compa-
rable to FFB6D. Occlusion should be better identified and
handled because our RT prediction is based on a RoI.

Time efficiency. To highlight the inference efficiency
of our straightforward pipeline, we compare the infer-
ence speed of our method with PoseCNN+ICP [53],
PoseCNN [53], DenseFusion [11], PVN3D [6] and
FFB6D [16] in Table 2. Post-processing accounts for 92.9%
of the total time in FFB6D and 79.2% in PVN3D. Dense-
Fusion has a faster inference speed compares to them, while
our method further speeds up the inference, benefited from
our straightforward pipeline which does not need any post-
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Figure 5. Balance the simplicity/speed and accuracy.

processing. Our Uni6D is 7.2× faster than FFB6D, and
13.6× than PVN3D. Comparison results of inference time
and performance are shown in Fig 5.

4.4. Implementation Details

In all experiments, we adopt ResNet-50 [49] as the back-
bone network with FPN [50]. We train all models with
16 GPUs (three images per GPU) for 40 epochs with an
SGD optimizer which momentum is 0.9 and weight-decay
is 0.0001. The initial learning rate is set to 0.0075 with a
linear warm-up, and decreased by 0.1 after 15, 25 and 35
epochs. The weight hyperparameter λ0 in the loss function
of RT head is set to 1 in epoch [1, 20), 5 in [20, 30), 20 in
[30, 38) and 50 in [38, 40].

4.5. Ablation Study

4.5.1 Projection Breakdown Saved by UV

To investigate the effects of the UV encoding information
in the projection breakdown problem, we perform exper-
iments with several spatial transformations on the YCB-
Video dataset in Table 3. Using any of the common spatial
transformations as training augmentation methods, such as
random resize, crop, horizontal flip, and vertical flip, signif-
icantly reduces performance by up to 15% ADD-S and 20%
ADD(S). These results directly reflect the destructiveness of
projection breakdown. We add explicit UV encoding infor-
mation with UV, XY, and PE to solve this issue and make
the one backbone is all you need possible.

4.5.2 UV Encoding Methods

We investigate the contributions of all components in UV
encoding of our method on the YCB-Video dataset. The
results are shown in Table 4. “RGB-D” denotes that we
only use RGB-D data as input, which is used as the base-
line. “Plain UV” means the plain UV coordinates data.
“XY” represents adding the inverse projected XY coordi-
nates data. “NRM” means the depth normal vector. “PE” is
the position encoding. “abc head” denotes adding the abc

Table 3. Effects of the UV encoding under varying spatial transfor-
mations. Spatial transformations greatly harm the accuracy when
no UV encoding information is provided, but improve the accu-
racy with UV encoding information.

UV Enc Resize Crop Hflip Vflip ADD-S ADD(S)

w/o ✓ ✓ ✓ ✓ 78.87 65.88
w ✓ ✓ ✓ ✓ 92.82 81.95

w/o ✓ ✓ ✓ 79.01 65.79
w ✓ ✓ ✓ 93.61 84.36

w/o ✓ ✓ ✓ 90.40 79.26
w ✓ ✓ ✓ 93.18 84.31

w/o ✓ 92.92 83.39
w ✓ 93.89 85.76

w/o ✓ 92.45 83.18
w ✓ 92.96 85.05

head during training. We can see that the flip transformation
degrades performance in the baseline, and that adding posi-
tion information to the RGB-D data in the form of plain UV,
XY, NRM, or PE can alleviate this degradation. Compared
with the baseline, our method brings 4.19% improvement in
ADD-S and 9.11% in ADD(S).

4.6. Qualitative Results

For intuitively comparing the qualitative results between
our Uni6D and other methods [6, 16] on the YCB-Video
dataset, we give some estimation results in Fig. 6. Our
Uni6D significantly outperforms the state of the art and per-
forms the most robust in different occlusion situations.2

5. Limitation Analysis
In this section, we discuss the limitations of our method.
For the performance of 6D pose estimation, our

method still has a little gap compared with the state of the
art in YCB dataset. The main reason is that we do not use
any time-consuming post-processing or iteration refinement
in the pipeline of our method. We only add a lightweight
abc head with the abc regression task to introduce an auxil-
iary loss for auxiliary model training. In inference, the abc
head is removed and we directly obtain the 6D pose esti-
mation results from the RT head. This straightforward in-
ference pipeline significantly improves the efficiency of in-
ference and reduces the difficulty of engineering implemen-
tation. It is worth exploring more efficient post-processing
algorithms for our unified 2D CNN to further improve the
performance while maintaining real-time inference.

For the RoI-Align operation, it limits the performance
of RT head and reduces the accuracy of our method. The
training and testing of our end-to-end method is applied in a
RoI-wise manner with a rough object-level feature for each

2Results of PVN3D and FFB6D are from the paper of FFB6D [16].
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Figure 6. Qualitative results of 6D pose on the YCB-Video dataset.

Table 4. Effects of each component in our work. Results of
ADD(S) AUC and ADD-S AUC on YCB-Video are reported re-
spectively. Compared with the baseline, our method brings 4.19%
improvement in ADD-S and 9.11% in ADD(S).

RGB-D Plain UV XY PE NRM abc head ADD-S ADD(S)

✓ 90.99 79.72
✓ ✓ 94.06 85.39
✓ ✓ 94.17 85.66
✓ ✓ 93.54 85.05
✓ ✓ 93.79 84.79
✓ ✓ ✓ 93.90 85.06
✓ ✓ ✓ 93.27 84.49
✓ ✓ ✓ 93.65 84.51
✓ ✓ ✓ 94.70 86.76
✓ ✓ ✓ 94.26 85.52
✓ ✓ ✓ 93.31 83.42
✓ ✓ ✓ ✓ 93.55 84.83
✓ ✓ ✓ ✓ ✓ 94.91 86.93
✓ ✓ ✓ ✓ ✓ ✓ 95.18 88.83

object, which is different from the per-pixel dense predic-
tion widely used in previous works [11, 16, 53]. More re-
search into de-noising RoI features for better results without
sacrificing simplicity is needed.

6. Conclusions
In this paper, we reveal the “projection breakdown” hid-

den underneath CNN-based depth image processing, which
explains the two-backbone design for RGB-D processing
and the per-pixel feature extraction for depth processing

adopted by most of the existing literature. Rather than us-
ing two separate backbones, we fix the projection break-
down by explicitly feeding extra UV data along with depth
to the backbone. As a result, all you need to extract the
feature from RGB-D images is a general 2D CNN back-
bone. Thus, we propose Uni6D, an end-to-end 6D pose es-
timation framework based on Mask R-CNN. Uni6D uses
ResNet and FPN as its backbone to extract features from
RGB-D images, extra feature fusion is not required any-
more. The 6D pose estimation results are obtained directly
from the RT head using a straightforward inference pipeline
that does not require any time-consuming post-processing.
We also develop the abc head as an auxiliary task for train-
ing the network in our framework. Extensive experimental
results show our method outperforms other state-of-the-art
methods in terms of time efficiency, performance, and ro-
bustness in the challenging YCB-Video. Worthwhile and
related future work can be spawned from the proposed new
6D pose estimation paradigm, which performs 6D pose esti-
mation with a unified CNN framework with the above con-
tributions.
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