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Abstract

As RGB-D sensors become more affordable, using RGB-
D images to obtain high-accuracy 6D pose estimation re-
sults becomes a better option. State-of-the-art approaches
typically use different backbones to extract features for RGB
and depth images. They use a 2D CNN for RGB images and
a per-pixel point cloud network for depth data, as well as a
fusion network for feature fusion. We find that the essential
reason for using two independent backbones is the “projec-
tion breakdown” problem. In the depth image plane, the
projected 3D structure of the physical world is preserved
by the 1D depth value and its built-in 2D pixel coordinate
(UV). Any spatial transformation that modifies UV, such as
resize, flip, crop, or pooling operations in the CNN pipeline,
breaks the binding between the pixel value and UV coordi-
nate. As a consequence, the 3D structure is no longer pre-
served by a modified depth image or feature. To address
this issue, we propose a simple yet effective method denoted
as Uni6D that explicitly takes the extra UV data along with
RGB-D images as input. Our method has a Unified CNN
framework for 6D pose estimation with a single CNN back-
bone. In particular, the architecture of our method is based
on Mask R-CNN with two extra heads, one named RT head
for directly predicting 6D pose and the other named abc
head for guiding the network to map the visible points to
their coordinates in the 3D model as an auxiliary module.
This end-to-end approach balances simplicity and accu-
racy, achieving comparable accuracy with state of the arts
and 7.2× faster inference speed on the YCB-Video dataset.

1. Introduction
6D pose estimation plays a fundamental role in emerg-

ing applications, e.g., autonomous driving [1–3], intelligent
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(a) Projection breakdown caused by the RoI transformation, including
crop, resize and RoI-Align [8]: The red dotted line connects a 3D object
and its projected RoI in the depth image. Any pixel (d, u, v) in the RoI
and its corresponding point (a, b, c) on the 3D object follow the projection
equation. The equation no longer holds if the built-in coordinate (UV) is
modified by RoI-Align, as though the RoI was moved to the top left corner
of the image.
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(b) Introducing UV data fixes the problem of projection breakdown and
improve the 6D pose estimation performance with various spatial transfor-
mations. x axis is the training epoch, and y axis is the testing accuracy.

Figure 1. Visualization and experiment results of projection break-
down problem.

robotic grasping [4–6] and augmented reality [7]. RGB-D
sensors provide a direct signal of the surface texture and ge-
ometry of the physical 3D world, and as their prices fall,
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spondence method can improve robustness in occlusion sit-
uations, the performance is damaged by the unlimited out-
put space. However, the performance of all these methods
which only uses RGB images are limited by the loss of ge-
ometry information. Therefore, many point clouds based
methods have been proposed.

2.2. 6DoF Pose Estimation from Point Clouds

As the cost of depth sensors decreases and accuracy in-
creases, several point clouds based methods has been pro-
posed. The mainstream methods usually use 3D Con-
vNets [41, 42] or point cloud network [43, 43] to extract
the feature and estimate the 6D pose. However, the perfor-
mance of these methods are limited by the essential noise
and shortcomings of the point clouds data. They do not per-
form well with the sparse and weakly textured point cloud,
which indicates the necessity of RGB data.

2.3. 6DoF Pose Estimation from RGB-D Data

Recently, most of 6D pose estimation state-of-the-art
approaches utilize the RGB images and depths or point
cloud data to achieve a higher accuracy. Classical meth-
ods [33, 34, 44–48] adopt the correspondence grouping and
hypothesis verification for the rule based feature and tem-
plates of RGB-D data. With the development of deep learn-
ing, most data-driven methods use deep neural networks
to extract features instead of hand-coded features. They
extract features of RGB images and point clouds with in-
dependent feature extractors and then fuse them. Most of
them [2, 9–11, 16] use 2D CNN for RGB images and point
cloud network for depth data considering the data hetero-
geneity between them. Since the appearance and geome-
try features are extracted separately, they need to add more
complex structure to iterative fuse two features into one in
order to predict poses [9–11, 16] and enable the communi-
cation between the RGB and depth information [16].

2.4. Analysis on State-of-the-art Approaches

As far as we know, the best result is obtained by two
keypoint-based approaches, PVN3D [6] and FFB6D [16]
for now. As the name implies, keypoint-based approaches
design a network to predict the 3D offset from a visible
point to some selected keypoints. Based on this offset, each
visible point gives a prediction of keypoints in the cam-
era coordinates system, i.e. (x, y, z). An iterative voting
mechanism is designed [6] to find the best prediction of
keypoints by choosing the clustering with most votes. The
coordinates of the keypoints, i.e. (a, b, c) in 3D model,
is known before inference. Given some matched pairs of
(a, b, c) and (x, y, z), an iterative least-square regression is
adopted to get the final 6D pose. We believe that the suc-
cess of keypoint-based approaches is relies on two reasons:
1) Dense prediction and intelligent de-noising: each visible

point will give prediction to visible points and voting is used
to filter out bad predictions. Given depth images contain a
lot of noise, voting is a great way of de-noising. 2) The 3D
offset loss is useful to guide the network mapping visible
points to its 3D model at pixel level.

PointNet++ [14,15] requires finding K-nearest neighbors
in 3D space. We believe KNN for each pixel, iterative vot-
ing and regression are quite heavy when porting to real ap-
plications. We find that the essential reason is the aforemen-
tioned projection breakdown caused by the change opera-
tion on UV. In our work, we reveal and solve the projection
breakdown problem and adopt a unified feature extractor
of the RGB-D data. Benefited from a unified CNN back-
bone to extract feature from RGB-D images, we propose a
straightforward 6D pose estimation pipeline which directly
outputs the detection and pose estimation in an end-to-end
manner instead of using time-consuming post-processes.

3. Methodology of the Uni6D
Our goal is to propose an accurate, real-time and prac-

tical 6D pose estimation method. To this end, we develop
an end-to-end framework named Uni6D, which extracts the
feature of RGB-D images through a unified backbone net-
work and directly outputs the 6D pose with a straightfor-
ward pipeline. Our framework inherits the concise design
of Mask R-CNN [8] and introduces a novel RT head and an
abc head into it to obtain the 6D pose. With these two heads,
we perform multitask joint optimization for the object clas-
sification, detection, segmentation and pose estimation. The
overall proposed architecture is illustrated in Fig. 2. In this
section, we discuss how to inherit the legacy of the Mask R-
CNN (Section 3.1), how to encode UV to fix the projection
breakdown (Section 3.2), the structure of the RT head and
abc head (Section 3.3), the loss function (Section 3.4) and
the inference process (Section 3.5).

3.1. Legacy of Mask R-CNN

Object detection and instance segmentation are usually
the first steps in 6D pose estimation. As a widely used prac-
tical algorithm, Mask R-CNN is capable of achieving them
with satisfactory results. Therefore, we use the Mask R-
CNN as the basic network. As shown in Fig. 2. Uni6D
inherits the basic network structure from Mask R-CNN, in-
cluding the ResNet [49] backbone, the FPN [50] for feature
pyramid, the RPN to propose RoIs of potential objects, a
mask head for segmentation, and a bbox head for object de-
tection and classification. Using one backbone for two het-
erogeneous data becomes possible after we solve the pro-
jection breakdown problem. As a result, rather than using
separate backbone networks for RGB images and depth data
as in other methods, we simply use a unified backbone net-
work that can be implemented by making minor changes to
Mask R-CNN. Furthermore, feature fusion is no longer re-
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Figure 2. Overview architecture of our Uni6D, which inherits the basic network structure and the simplicity from Mask R-CNN. We add
the RGB-D, UV encoding and NRM with PE in a channel-wise manner and feed this new input into the single backbone network. No
fusion operation for RGB and depth feature is further required. The red part in the backbone network denotes the channel modification
to adapt the RGB-D+UV+NRM (with PE) input, which is to increase the input channel of the first convolutional layer. RT head is used
to predict rotation and translation directly and abc head aims to map visible points to their 3D coordinate in its 3D model. With above
components, our Uni6D predicts object categories, localization and its RT matrix directly without any post-processing.

quired. Meanwhile, it is very natural to add the regression
task of the RT matrix and abc points in parallel on the origi-
nal basis of Mask R-CNN. An RT head is proposed to guide
the network to map visible points to its 3D model, and an
extra abc head is proposed to predict 6D pose directly.

3.2. Encoding UV Data as Input

To overcome the issue of projection breakdown, we add
the UV data into the input RGB-D data and feed them to-
gether into the unified backbone. For the RGB-D data, we
directly combine the RGB image and corresponding depth
data along the channel dimension. There are three ways
to encode positional information. 1) Plain UV coordinates
UV: we directly concatenate this coordinates data with the
RGB-D data along the channel dimension. Plain UV is the
same height and width with RGB-D images. It has two
channels, one channel stores the coordinate of U and the
other V, i.e., the value at pixel (u, v) in U-channel is u, and
in V-channel is v. 2) Inverse projected XY: given camera
intrinsic matrix K and depth image, we encode correspond-
ing plain UV coordinates (u, v) of each pixel into inverse
projected XY (x, y) based on Equation 1. XY has two chan-
nels, too. We also concatenate XY with RGB-D data along
the channel dimension. 3) Positional encoding PE [51, 52]:
positional encoding is widely used in many other fields such

as vision transformers [52]. We encode the position with
the trigonometric function and add it into the input data.
Overall, the aforementioned three forms of UV encoding
information have their own advantages. Plain UV is more
direct, XY implies the internal reference information, and
PE can be added to other input channels to be more inte-
grated. They work together to complete each other and get
the best performance. Since depth normal vector is a widely
used for depth image, we also concatenate it to the input and
denote it as “NRM”.

3.3. RT head and abc head for Multitask Learning

We propose RT head and abc head to predict RT matrix
and the points of 3D model, where R is the rotation matrix
in the form of quaternion and T ∈ R3 is the translation ma-
trix. These heads are added to Mask R-CNN as two novel
parallel branches and take the features of all proposals ex-
tracted through RoI-Align as input. As shown in Fig. 3,
the RT head in our method has a similar structure with the
bbox head in Mask R-CNN, which contains two shared and
two independent fully connected layers to obtain the RT ma-
trix. The abc head is similar with the mask head as an FCN
structure, which is developed with four 3× 3 and one 1× 1
convolutional layers to output the 3D points.
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Table 1. Evaluation results (ADDS-S AUC, ADDS(S) AUC) on the YCB-Video dataset. Symmetric objects are denoted in bold.

PoseCNN [53] DenseFusion [11] PVN3D [6] FFB6D [16] Our Uni6D

Object ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

002 master chef can 83.9 50.2 95.3 70.7 96 80.5 96.3 80.6 95.4 70.2
003 cracker box 76.9 53.1 92.5 86.9 96.1 94.8 96.3 94.6 91.8 85.2
004 sugar box 84.2 68.4 95.1 90.8 97.4 96.3 97.6 96.6 96.4 94.5
005 tomato soup can 81.0 66.2 93.8 8.47 96.2 88.5 95.6 89.6 95.8 85.4
006 mustard bottle 90.4 81.0 95.8 90.9 97.5 96.2 97.8 97.0 95.4 91.7
007 tuna fish can 88.0 70.7 95.7 79.6 96.0 89.3 96.8 88.9 95.2 79.0
008 pudding box 79.1 62.7 94.3 89.3 97.1 95.7 97.1 94.6 94.1 89.8
009 gelatin box 87.2 75.2 97.2 95.8 97.7 96.1 98.1 96.9 97.4 96.2
010 potted meat can 78.5 59.5 89.3 79.6 93.3 88.6 94.7 88.1 93.0 89.6
011 banana 86.0 72.3 90.0 76.7 96.6 93.7 97.2 94.9 96.4 93.0
019 pitcher base 77.0 53.3 93.6 87.1 97.4 96.5 97.6 96.9 96.2 94.2
021 bleach cleanser 71.6 50.3 94.4 87.5 96.0 93.2 96.8 94.8 95.2 91.1
024 bowl 69.6 69.6 86.0 86.0 90.2 90.2 96.3 96.3 95.5 95.5
025 mug 78.2 58.5 95.3 83.8 97.6 95.4 97.3 94.2 96.6 93.0
035 power drill 72.7 55.3 92.1 83.7 96.7 95.1 97.2 95.9 94.7 91.1
036 wood block 64.3 64.3 89.5 89.5 90.4 90.4 92.6 92.6 94.3 94.3
037 scissors 56.9 35.8 90.1 77.4 96.7 92.7 97.7 95.7 87.64 79.58
040 large marker 71.7 58.3 95.1 89.1 96.7 91.8 96.6 89.1 96.66 92.76
051 large clamp 50.2 50.2 71.5 71.5 93.6 93.6 96.8 96.8 95.93 95.93
052 extra large clamp 44.1 44.1 70.2 70.2 88.4 88.4 96.0 96.0 95.82 95.82
061 foam brick 88.0 88.0 92.2 92.2 96.8 96.8 97.3 97.3 96.1 96.1
Avg 75.8 59.9 91.2 82.9 95.5 91.8 96.6 92.7 95.2 88.8
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Figure 4. Performance of difference approaches under increasing
level of occlusion on YCB-Video Dataset. Our per-RoI method is
effective at identifying and handling occlusion.

method improves the ADD-S by 4%. In contrast to Dense-
Fusion, which requires two different backbones, CNN and
PointNet [14], our method only needs a unified CNN to
extract RGB-D features. It is worth emphasizing that al-
though the performance of our method is a little bit lower
than the current state-of-the-art methods [6, 16], it does not
use any additional iterative refinement and post-process op-
erations which are required in state-of-the-art methods. We
discuss the time efficiency of our method below. Follow-
ing [11, 16], we also evaluate the robustness towards occlu-
sion in YCB-Video dataset through calculating how the ac-
curacy (ADD-S < 2cm) changes with extent of occlusion.
As indicated in Fig. 4, the performances of our methods

Table 2. Time cost and frames per second (FPS) on YCB-Video
Dataset. Our Uni6D is 7.2× faster than FFB6D, and 13.6× than
PVN3D. It is capable of estimating 6D pose in real-time. Note that
the results of PoseCNN and DenseFusion comes from [11], which
does not state their device type.

Method Network Post-process ALL FPS

PoseCNN+ICP [53] 200 10400 10600 0.094
PoseCNN [53] 200 0 200 5

DenseFusion [11] 50 10 60 16.67
PVN3D [6] 110 420 530 1.89
FFB6D [16] 20 260 280 3.57

Ours 39 0 39 25.64

has the minimal drop compared with DenseFusion [11] and
FFB6D [16]. In particular, the performance under increas-
ing level of occlusion decrease by 0.3%, which is compa-
rable to FFB6D. Occlusion should be better identified and
handled because our RT prediction is based on a RoI.

Time efficiency. To highlight the inference efficiency
of our straightforward pipeline, we compare the infer-
ence speed of our method with PoseCNN+ICP [53],
PoseCNN [53], DenseFusion [11], PVN3D [6] and
FFB6D [16] in Table 2. Post-processing accounts for 92.9%
of the total time in FFB6D and 79.2% in PVN3D. Dense-
Fusion has a faster inference speed compares to them, while
our method further speeds up the inference, benefited from
our straightforward pipeline which does not need any post-
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