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Abstract

Point cloud scene flow estimation is of practical impor-
tance for dynamic scene navigation in autonomous driving.
Since scene flow labels are hard to obtain, current meth-
ods train their models on synthetic data and transfer them
to real scenes. However, large disparities between existing
synthetic datasets and real scenes lead to poor model trans-
fer: We make two major contributions to address that. First,
we develop a point cloud collector and scene flow annotator
for GTA-V engine to automatically obtain diverse realistic
training samples without human intervention. With that, we
develop a large-scale synthetic scene flow dataset GTA-SF.
Second, we propose a mean-teacher-based domain adapta-
tion framework that leverages self-generated pseudo-labels
of the target domain. It also explicitly incorporates shape
deformation regularization and surface correspondence re-
finement to address distortions and misalignments in do-
main transfer. Through extensive experiments, we show that
our GTA-SF dataset leads to a consistent boost in model
generalization to three real datasets (i.e., Waymo, Lyft and
KITTI) as compared to the most widely used FT3D dataset.
Moreover, our framework achieves superior adaptation per-
formance on six source-target dataset pairs, remarkably
closing the average domain gap by 60%. Data and codes
are available at https://github.com/leolyj/DCA-SRSFE

1. Introduction

Scene flow estimation aims to predict the 3D motion
field from two consecutive input frames. As a generaliza-
tion of 2D optical flow, scene flow represents 3D motion of
objects and can be used to predict their movement in the
future, which is meaningful in robotic navigation and au-
tonomous driving. In the early years, scene flow was esti-
mated from stereo or RGB-D images [13,44,45,49]. With
the recent advances in 3D sensing and data driven tech-
nologies, learning scene flow directly from point clouds has
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Figure 1. Challenges for Synthetic-to-Real Scene Flow Estimation
(SRSFE). (a) Existing synthetic dataset FT3D [27] (left) stacks
and moves ShapeNet [38] objects for data generation, resulting
in unnatural scenes distinct from real data (right), e.g., Waymo
[17,40]. (b) Due to domain shift, SRSFE fails to maintain local
structure and accurate movement, leading to shape deformation
and correspondence deviation. The lack of appropriate synthetic
datasets and performance drop in SRSFE motivate our work.

gained significant research attention [2,7,8, 17,24,32].
Obtaining training data for scene flow estimation re-
quires 3D motion vector annotation of each point in the
scene, which is extremely challenging. One pragmatic so-
lution is to employ synthetic data for training, whose an-
notations can be directly generated. However, training
on synthetic data and testing on real data for scene flow
estimation, i.e., Synthetic-to-Real Scene Flow Estimation
(SRSFE), faces two major challenges. First, SRSFE re-
search on point clouds is still in its infancy, and currently
there is a lack of synthetic data that adequately captures the
real-world dynamics for this task. The only public synthetic
data for SRSFE on point clouds, i.e., FlyingThings3D [27]
(FT3D), is generated by randomly moving 3D objects sam-
pled from ShapeNet [38]. This simplistic process leads to
unnatural scene flows in the data, see Fig. 1(a). Second,
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SRSFE must overcome the inevitable domain gap caused by
the synthetic-to-real setting. In recent years, extensive stud-
ies have been conducted on Unsupervised Domain Adapta-
tion (UDA), which adapts a model to unseen unlabeled data
to mitigate the domain gap problem. However, most of the
existing UDA methods [3,4,6,9,10,41,42] are designed for
2D tasks to address the domain gap caused by the variance
of image texture, color and illumination. Much less atten-
tion has been paid to UDA for point clouds [34, 53-56].
This is especially true for SRSFE, for which no systematic
study is available to date. Compared to other static point
cloud tasks, SRSFE has a peculiar requirement of learning
correlations between dynamic points. Hence, existing UDA
methods are not readily transferable to this task.

In this paper, we address the above two problems. First,
we propose a synthetic point cloud scene flow dataset GTA-
V Scene Flow (GTA-SF), to address the lack of dataset.
Our data leverages GTA-V engine [5] to simulate LIDAR
scanning and autonomously annotate scene flow by align-
ing the identical entities rendered by the engine. Compared
to FT3D, GTA-SF has more realistic scenes and point cloud
representation. Secondly, to bridge the synthetic-to-real do-
main gap, we propose a UDA framework specifically de-
signed for the SRSFE task. Observing that ‘shape deforma-
tion’ and ‘correspondence deviation’ are the key contribu-
tors to performance degradation in SRSFE - Fig. 1(b), our
technique learns deformation and correspondence under a
mean-teacher strategy. We constrain the teacher predictions
with rigid shapes and induce a deformation-aware student
model to learn desirable scene flow. To address correspon-
dence deviation, we leverage object surface relationships to
let the model learn better correspondence on real data.

Our extensive experiments show that our dataset GTA-
SF shows remarkable generalization to real-world data, and
the proposed framework is highly effective in reducing the
domain gap for the point cloud SRSFE problem. In brief,
our contributions can be summarized as follows

* We present the first (to the best of our knowledge) sys-
tematic study on bridging the domain gap in synthetic
to real-world scene flow estimation for point clouds.

* We develop a point cloud sequence collector and scene
flow annotator for GTA-V engine, and create a large-
scale dataset GTA-SF for the SRSFE task.

* We propose a mean-teacher domain adaptation frame-
work for point cloud SRSFE that explicitly addresses
shape deformations and correspondence deviation.

* With extensive experiments, we demonstrate our GTA-
SF is closer to real as it enables better performance
on real dataset, and our technique consistently surpass
common UDA methods across multiple datasets.

2. Related Works

Scene Flow Estimation on Point Clouds: Scene flow es-
timation problem is first introduced and defined as a 3D mo-
tion field of points in [43]. Early works [11, 13,44-46,49]
estimate 3D scene flow from stereo images or RGB-D se-
quences [13,44,45,49]. More recently, with the popularity
of 3D sensors, an increasing number of techniques focus
on learning scene flow directly from 3D point clouds [7,

,20,22,24,30,32,50,52]. For instance, Liu et al. [24]
leveraged PointNet++ [33] for feature extraction and pro-
posed a flow embedding layer for cross-frame geometric
relation learning. In [8], Gu et al. took advantage of per-
mutohedral lattice projection and designed a Bilateral Con-
volutional Layer for two consecutive frames. Optimal trans-
port is utilized to guide scene flow learning in [23, 32].
Wei et al. [50] constructed point-voxel correlation fields to
capture local and long-range relations among points. Go-
jeic et al. [7] proposed a weakly supervised approach to
learn rigid scene flow by only using binary background seg-
mentation and ego-motion annotations. Instances of self-
supervised approaches to scene flow estimation can also be
found in [30,52]. Although scene flow estimation from 3D
point clouds has shown promises, the domain gap between
the real and synthetic data dramatically degrades general-
ization abilities of the current models in real-world settings.
We address this limitation in our proposed framework.

Unsupervised Domain Adaptation (UDA): aims to gen-
eralize a model trained on a source domain to an unla-
beled target domain. The UDA has demonstrated remark-
able performance on 2D vision tasks. For 3D point clouds,
UDA is also explored for shape classification [1, 34], se-
mantic segmentation [15, 31,51, 55] and object detection
[26, 48, 53, 54, 56]. Among these contributions, Qin ef
al. [34] proposed to learn domain-invariant point cloud
representation by global and local feature alignment. Yi
et al. [55] used a surface completion network to trans-
form both source and target point clouds into a canoni-
cal domain, and trained a shared segmentation network.
Yang et al. [54] adopted self-training with memory bank-
based pseudo-label generation and curriculum data aug-
mentation for UDA on 3D detection. Luo et al. [26] ad-
dressed the problem of inaccurate box-scale by adopting
multi-level consistency regularization for the target domain
with teacher-student paradigm. In general, successful ap-
plication of UDA requires addressing task-specific domain
shift challenges. For the synthetic-to-real scene flow esti-
mation task, this problem is still unaddressed in the existing
literature. Hence, it is the main contribution of this paper.

Synthetic-to-Real Transfer Learning: Training with
synthetic data is widely used to avoid laborious annotation
process [16,21,27,35-37]. Gaming engines, e.g., Grand
Theft Auto V (GTA-V), have proven useful for generat-
ing synthetic data for various 2D vision tasks, e.g., seman-
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Figure 2. Framework schematics: Our teacher model ®.ch is updated as the Exponential Moving Average (EMA) of the student model
weights ®,. The first and second frames of the source domain, Pi and P?, are input to the student for which ground truth scene flow Fg
is available for supervision. The student also expects a transformed version (15%, P?) of the target domain inputs (P, P7) provided to the
teacher. An End-Point Consistency (EPC) is eventually imposed between the scene flow predictions of the teacher F'; and the student F..
For EPC, both predictions are first added with the first frame of inputs to obtain Pwarp and f’warp. The teacher prediction is subsequently
regularized for deformation and refined for correspondence, thereby providing high-quality pseudo-labels P s.uq0 to compute EPC loss.

tic segmentation [36], optical flow [21, 35], object detec-
tion [16] and crowd counting [47]. Recently, GTA-V has
also been used for point cloud data generation for 3D object
detection [!4], semantic segmentation [51] and 3D mesh
reconstruction [12]. For scene flow estimation, the ex-
isting synthetic dataset FT3D [27] constructs scenes with
ShapeNet [38] objects moving along random 3D trajecto-
ries. Although useful, significant differences between such
scenes and real-world scenarios lead to poor model general-
isation on real data. We address it by leveraging the estab-
lished efficacy of GTA-V to generate more realistic scene
flow dataset.

3. Methodology

3.1. Problem Formulation

For our problem, we consider a set of labeled data,
S = {(Pi,Pi*! Fi) |i=} for the source domain. Here,
P¢ and P! are two successive point cloud frames and
Fét is the ground truth scene flow between them. We have
|S| = N, samples available for the source domain. Corre-
spondingly, we have a set 7 = {(P}, P! Fi,) | Yt} for
the target domain, for which P? and P:*! are consecutive
frames and N, denotes the number of samples. For 7T, the
scene flow Fi is unknown. The objective of synthetic-
to-real scene flow estimation is to compute an estimator
A(S,Pi) — Fi,V P! € T such that the source domain is
restricted to synthetic data only, and the target domain is the
real-world. Due to the large domain shift between the con-
sidered S and T, the estimator A(.) needs to be robust to the
domain gap. We adopt the unsupervised domain adaption
(UDA) paradigm to address that. The problem is referred to
as SRSFE for synthetic-to-real scene flow estimation.

3.2. Technique Overview

Teacher-Student Paradigm Schematics of our UDA
framework for point cloud SRSFE is provided in Fig. 2.
Our framework employs a student model ®,, and a teacher
model ®,.p. In the text, we alternatively use these symbols
to refer to model weights for brevity. In our technique, we
apply back-propagation to update ®,, whereas stop gradi-
ent is used for ®,c. For the latter, we use the Exponential
Moving Average (EMA) of ®, to iteratively update the
weights as

updated
éteach

— a®Peaeh + (1 - Ol)@stm (D

where « is a smoothing coefficient that dictates the update
rate of the teacher model.

Asymmetric Transformation We encourage domain in-
variance in the student model by eventually forcing its pre-
diction to match the teacher prediction for an input that is
a known transform of the teacher input from the target do-
main. As scene flow is learned from dynamic point cloud
sequences, the correlation between two consecutive frames
plays a key role in scene flow estimation. Considering that,
we define an asymmetric transformation operation W(.,.),
for the input (i.e., two consecutive frames of point clouds).
The operator U stochastically applies a transformation to
the first frame of the input, and leaves the second frame un-
changed. We consider global rotation and translation for
U(.,.), which alter the position without disrupting shapes
of objects. Consider an input with P} as the first frame and
P? as the next frame, the transformation is performed over
the input as .
¥(P;, P?) = (P, PY), @)
where P! is the transformed version of P}. Through ¥(., ),
the models robustly comprehend the notion of correlations
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between consecutive frames.

End-Point Consistency Ideally, adding scene flow to the
first frame should provide an estimate of the second frame.
The first frame added by scene flow is referred as ‘warped
frame’. We can promote the teacher-student consistency by
enforcing the target domain warped frame prediction for the
two models to be similar. For this, we introduce the notion
of End-Point Consistency (EPC) between P ,,, and f’warp,
such that Py.rp = Pt + Fy and Py = Pr + Fy, where
F; and f‘t are the predicted scene flows of the teacher and
student models respectively.

As the teacher model provides pseudo labels for the stu-
dent model, we propose to improve the quality of pseudo
labels to teach a better student on the target domain. To
that end, for the teacher prediction, the warped frame is
further processed by deformation regularization (§ 3.3) to
maintain rigid shapes. We also propose a subsequent cor-
respondence refinement (§ 3.4) for better surface alignment
of objects. By forcing the student prediction on the original
target domain input (after applying ¥) to be consistent with
the teacher model prediction, we effectively encourage do-
main invariance in the student by enhancing its robustness
to input perturbations. It also promotes target domain de-
formation and correspondence awareness in the student.

3.3. Deformation Regularization (DR)

For the SRSFE problem, a model induced over synthetic
data must generalize to real-world data. Since synthetic
data generally does not faithfully capture real-world details,
the model may fail to fully comprehend object shape in the
target domain at the desired granularity level. This causes
scene flow vectors to have distorted object shapes.

To address the problem, we design a Deformation Regu-
larization (DR) module as a deformation corrector for rigid
bodies. Specifically, for the warped point cloud Pyq,p of
the teacher model, we first segment it into several distinct
clusters {C; |, }, where N, is the number of clusters.
We then employ the Kabsch algorithm [18] to estimate a
rigid motion (Ry, t;) for each cluster C; from P} to Pyarp,
where R; € R3%3 and t; € R® denote the rotation and
translation matrices. The reconstructed cluster C; are then
obtained as

C ={(C| R+t }, 3)

where C] indicates the corresponding points in P} of C,
and n; is the number of points in C;. Let us write that af-
ter applying DR, our teacher Warped result Py, is recon-
structed as fpr(Pwarp) = {C)|,}. Then, EPC ensures
consistency between the student warped results Pvmp and
o R(Pwarp). This encourages shape distortion awareness
in the student model, thereby allowing it to learn adaptive
deformations for the target domain. The fpr(Pwarp) is
later improved with correspondence refinement.
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Figure 3. Illustration of the proposed DR and CR to generate high-
quality pseudo labels using the teacher model stream for guiding
the student. The DR improves object shape and CR improves sur-
face correspondence by refining local geometry.

3.4. Correspondence Refinement (CR)

Ideally, a model for SRSFE must be able to maintain
correct correspondence between the objects in consecutive
frames in the target domain. However, synthetic objects in
the source domain have distinct boundaries and geomet-
rically simplified surfaces, whereas the real-world object
shapes are much more complex. This is problematic for
automatically preserving the desired correspondences when
the model is applied in the targeted domain.

To address that, we explicitly encourage cross-frame sur-
face correspondence in our model. Let us briefly consider
the second frame P? in an input (P}, P?) as the target
frame. The scene flow F; identifies per-point translations
that move the first frame P} to match the second frame P?.
In our setup, if the scene flow vectors are correctly esti-
mated, the objects in Py, and P? will have the same sur-
faces. The accuracy of the estimated scene flow therefore
directly depends on how well the geometric surfaces match
across the frames. To account for cross-frame surface cor-
respondence, we employ the Laplacian coordinate [39] that
records local geometric characteristics of 3D surfaces. We
start with computing the Laplacian coordinate L! of each
point pwarp within the warped point cloud P ya,p as

K

1 .
Z(picvarp_ p%varp) ; (4

Ll (pgvar ) = j
P \N(p%varpapwarp) k=1

where NV (p),,,p; Pwarp) calculates K nearest neighbors of
pwarp IH Pwarp and p\]::varp € N(pzzvarp7PW8«TP)' We then
extend to cross-frame correspondence by querying neigh-
boring points in the second frame P7 as

K
. 1 .
L2(p\])\/ar ) = i (p]2€ - pz)var ) ) (5)
T N (P, P7)] ; ’
where (p{varp, P?) means neighboring points of p%varp in

P? and p§ € N(pl.,,, P?). The discrepancy between
Ll(pzmrp) and L?(pd,.,.,,) will provide cues for the surface
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mis-alignment, which can be utilized to make refinement
for pseudo labels of the teacher model. As individual ob-
jects are separated and reconstructed for DR, we further
compute refinement vectors for each reconstructed cluster
C; to maintain the rigid shape as

~ 1
C,=Cj+ o > @P(pa) —L'(pn), (6

! pu€Cy

where C; represents the refined cluster and N is the num-
ber of points in cluster C]. After the refinement of individ-
ual clusters, we denote the refined warped point clouds as
P scudo, which is the final pseudo labels and obtained by

Ppseudo = fDR(Pwarp) + 6CR - {é“l]\/:cl}, (7)

where o denotes refinement vectors of our CR. By im-
proving the reconstructed point clouds with CR, teacher
scene flow is adjusted for better surface alignment, such
that the teacher model stream is able to provide more re-
liable pseudo labels for the warped point clouds, which are
subsequently exploited in student training. We illustrate CR
applied after DR for pseudo label improvement in Fig. 3.

3.5. Network Training

Our network comprises a student model ®, and a
teacher model ®Pi.,q,. In each iteration, P, is trained
with a supervised loss Lgource defined over the source do-
main and a consistency loss Lgpc over the target domain.
Lsource 18 the L1 loss of the between the ground truth scene
flow Fg; and student estimated scene flow F, i.e.,

Lsource ((I)stu) = HFS - th||1' (®)

For Lzpc, we use the £y loss between the warped results
of the student P, and the teacher P,,p, after applying
DR and CR, i.e.,

EEPC (Qstu) = ||Pwarp - (fDR(Pwarp) + 6CR)||1- (9)

The total loss Ly, for the student model is given by

Estu (Qstu) = ‘Csource (Qstu) + EEPC (Qstu) . (10)

For the teacher model, we update its weights ® .1, after
each iteration using Eq. (1).

4. GTA-V Scene Flow (GTA-SF) Dataset

Another major contribution of this paper is the curation
of a large-scale synthetic scene flow dataset, generated us-
ing GTA-V [5]. Below, we first describe our method to
collect consecutive LiIDAR point clouds and annotate scene
flow labels for them automatically in GTA-V engine (§ 4.1).
We then discuss the properties of our dataset in comparison
with the existing synthetic scene flow datasets (§ 4.2).

4.1. Data Collection

We collect data using GTA-V engine [5] based on Scrip
Hook V ! and PreSIL [14]. Specifically, we first build a sce-
nario with an autonomous driving car on the road. Then, we
attach a synthetic LiDAR collector on the top of the car and
collect point clouds at a predefined frequency (e.g., 10Hz).
With the help of Scrip Hook V, we are able to interact with
GTA-V and load properties (e.g., position, belonging entity)
of each point. In order to annotate scene flow vectors, we
follow the rigidity assumption of Jund et al. [17], and calcu-
late rigid motion for each entity. During the game running,
each individual object is assigned a unique entity ID, which
is considered a rigid body. We can directly compute scene
flow f; for each point p; by loading location {x,y, z} and
pose {«, 8,~} of its entity e; as

fi= ((pi~Po) R Re +Po) —pi (1D

where P, and R, are respectively the entity position and
rotation matrix in current frame, while Pe and Re are
those matrices in the next frame.

For the points without a corresponding entity in the next
frame, we compute ego-motion for their scene flow analo-
gous to entity-motion. Specifically, the location and pose
of the LiDAR are kept consistent with the attached car, and
the ego-car motion is computed as the scene flow for the un-
matched entities. For scene flow estimation, ground points
are uninformative. Hence, they are manually removed by
existing works with height thresholding [8,24]. Since roads
are not always flat, thresholding leads to errors, including
undesired removal of foreground object points. In GTA-
SF, we systematically remove ground points by exploiting
the entity information, i.e., remove points belonging to the
ground entities, which helps in better data quality.

4.2. Dataset Properties

The proposed GTA-SF is a large-scale synthetic dataset
for real-world scene flow estimation. It contains 54,287
pairs of consecutive point clouds with densely annotated
scene flow. Compared to existing synthetic datasets, GTA-
SF collects more realistic point clouds with larger scale, and
annotates scene flow beyond point correspondence assump-
tion to fit to physical truth. In terms of diversity, GTA-SF
covers a variety of scenarios including downtown, highway,
streets and other driving areas rather than artificial scenes.
The point clouds are collected along six different routes
pertaining various outdoor areas. Moreover, the collected
point clouds are high-quality for scene flow learning since
the meaningless ground points are carefully removed. We
provide more detailed illustrations and quantitative analy-
ses of the properties discussed above in the supplementary
material.

Uhttp://www.dev-c.com/gtav/scripthookv/

7237



Table 1. Comparison between FT3D [27] and our GTA-SF.

Table 2. Testing EPE3D (m) of existing methods pretrained on

different source datasets on Waymo [17,40].
Frames Label Scenes
FT3D [27] 23,464 Unreal Objects Stacking Source—Target FlowNet3D HPLFlowNet FLOT PV-RAFT
. . .. [24] [3] [32] [50]
GTA-SF (Ours) 54,287 Realistic Vehicle Driving FT3D Waymo 0.3546 02505 03299 02621
. GTA-SF—Waymo 0.1589 0.1146 0.1081 0.0585
First Frame Second Frame
= ‘Waymo— Waymo 0.1067 0.0501 0.0680 0.0433
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Figure 4. Visual comparisons of synthetic datasets FT3D [27] and
GTA-SF; and real datasets, Waymo [17,40], Lyft [19] and KITTI
[28,29]. Compared to FT3D, our GTA-SF is more realistic.

To the best of our knowledge, the FlyingThings3D
(FT3D) [27] is the only widely used synthetic dataset for
point cloud scene flow estimation. It contains 19,640 train-
ing and 3,824 testing samples, which makes it smaller in
size as compared to our GTA-SF. It builds scenes by stack-
ing 3D objects from ShapeNet [38] and randomly moving
them between two frames. Whereas effective, this strategy
is unnatural for real-world scenes. Tab. 1 shows a brief com-
parison between GTA-SF and FT3D. Fig. 4 shows a visual
comparison between FT3D and our GTA-SF. We also pro-
vide more comprehensive illustrations in the supplementary
material. Our empirical evaluation in § 5.3 also verifies
that GTA-SF considerably narrows down the domain gap
between the synthetic and real-world data.

5. Experiments
5.1. Real-World Datasets

Waymo. The Waymo Open Dataset (WOD) [40] con-
tains 158,081 training and 39,987 validation frames of point
clouds with 3D object detection annotations, captured in
real-world. [17] expand WOD with scene flow annotations
by using the tracked bounding boxes of objects. Note
that Waymo compensates for ego-motion before comput-
ing scene flow. It only considers the absolute movements
of objects and the annotations for stationary object points
are set to zero. However, previous datasets [27-29] make
no compensation for ego-motion. The absolute movement
and the relative movement caused by ego-motion are esti-
mated simultaneously. For fair comparisons, we follow pre-
vious datasets and retrieve ego-motion vectors for the points
based on pose information provided in WOD.

Lyft. The Lyft Level 5 dataset [19] consists of 18,900 train-

ing and 3,780 validation frames of LiDAR point clouds. It
is usually used for 3D object detection and does not provide
scene flow labels. As the detection labels and sensor pa-
rameters are given, we follow [17] and generate scene flow
labels for Lyft without compensating for ego-motion.

KITTI. KITTI Scene Flow 2015 [28, 29] is a popular
benchmark for scene flow estimation. We follow the pre-
processing steps in [8] to generate point clouds with scene
flow annotation, which contains 142 pairs of frames.

5.2. Evaluation Setup

Implementation Details. For real-world datasets, we first
transform them into the same coordinate system and remove
ground points with height < 0.3m. For our framework, see
the supplementary material for implementation details.
Comparison Methods. We provide comparison with the
following methods. (1) Baseline indicates pretraining the
model on source domain and directly evaluating it on the
target domain. (2) MMD [25] adopts Maximum Mean Dis-
crepancy (MMD) for cross-domain feature alignment. (3)
Self-Ensemble [4] adopts mean-teacher with £; loss be-
tween student and teacher estimated scene flow vectors, and
(4) Oracle trains fully-supervised model on target domain.
Evaluation Metrics. Following [8, 24, 32, 50], we adopt
four evaluation metrics. The metrics are calculated between
estimated scene flow F and ground truth Fy.

EPE3D (EPE) (m): ||F — Fg||2 computes the [ distance
between the estimated and ground truth scene flow vectors.
ACC Strict (AS) (%): is the percentage of points with
EPE3D < 0.05m or relative error < 5%.

ACC Relax (AR) (%): is the percentage of points with
EPE3D < 0.1m or relative error < 10%.

Outliers (Out) (%): is the percentage of points with EPE3D
> 0.3m or relative error > 10%.

5.3. Experimental Results

Comparison of Synthetic Datasets. We first verify the ex-
istence of synthetic-to-real domain gap by evaluating recent
methods FlowNet3D [24], HPLFlowNet [8], FLOT [32] and
PV-RAFT [50]. We train them on three datasets: FT3D
[27], GTA-SF and Waymo [17,40], and then evaluate them
on Waymo. Our experimental results in Tab. 2 show that the
models trained on FT3D face a serious performance gap,
as compared to direct training on Waymo. It verifies the
existence of large domain gap between synthetic and real
datasets. Comparing FT3D and GTA-SF, we see that GTA-
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Table 3. Performance comparison on six source-target pairs. HPLFlowNet [8] is used as the baseline directly transferred from source to
target. Comparison considers Synthetic-to-Real (S—R) and Real-to-Real (R—R) transfer. EPE (m), AS (%), AR (%) and Out (%) are

s

scene flow estimation evaluation metrics.

indicates Oracle results on KITTI are not available since no training data is provided. Best

results for S—R are in bold. | and 7 respectively indicate negative and positive polarity. E, D and C mean EPC, DR and CR respectively.

Methods

GTA-SF— Waymo

GTA-SF— Lyft

GTA-SF—KITTI

EPE. AST ART Out] EPEl AST ART Out} EPEl AST ARl  Out}
Baseline [] 0.1061 3235 66.21 65.35 0.1802 2836 73.66 3493 0.0932 5229 8139 3375
MMD [25] 0.1068 37.24  68.85 66.91 0.1563 4191 78.51 31.35 0.0877 45.87 7945 41.69
SR Self-Ensemble [4] 0.0981 44.05 71.05 62.10 0.1681 3280 7559 34.05 0.0869 51.11 79.18  37.49
Ours(E) 0.0894 38.68 75.68 61.68 0.1506  38.75 80.22  29.06 0.0848 51.01 81.18 37.52
Ours(E+D) 0.0887 40.60 77.30  60.70 0.1454 41.11 81.49  29.06 0.0748 54.11 86.53  31.58
Ours(E+D+C) 0.0683 58.57 87.98 47.40 0.1277 56.35 85.50 24.62 0.0464 80.53 96.85 18.75

R—R Oracle 0.0501 74.82 9220 40.88 0.1058 68.92 87.04 22.68 - - - -

Methods FT3D— Waymo FT3D— Lyft FT3D—KITTI

EPEl AST ARt Out) EPE. AST ART Out] EPE. AST ARfT Out]
Baseline [£] 0.2477 3159 5722 77.08 0.8486 13.18 3042  79.10 0.1169 4783 7776  41.03
MMD [25] 0.2179 2412 55.09 79.52 0.7158 1048 29.21 80.05 0.1165 3742 7846 4275
SR Self-Ensemble [4] 0.2342 3320 5554 78.72 0.7366 13.20 3252 77.23 0.1166 41.88 77.15 44.11
Ours(E) 0.2339 2844 5576 77.84 0.7330 10.22 29.24  80.35 0.1193  40.50 7575 46.25
Ours(E+D) 0.2091 29.56 56.18 78.97 0.5092 13.25 35.61 74.52 0.0992 4686 8195 37.83
Ours(E+D+C) 0.1251 48.87 7840 57.29 0.4442 2590 51.61 58.59 0.0516 79.37 96.81 18.04

R—R Oracle 0.0501 74.82 9220 40.88 0.1058 68.92 87.04 22.68 - - - -

Table 4. Comparisons of PV-RAFT [50] baseline from synthetic Table 5. Comparisons of FLOT [32] baseline from synthetic

datasets to Waymo. Our UDA framework achieves remarkable
performance in closing the domain gap for PV-RAFT. | and 1 re-
spectively indicate negative and positive polarity.

datasets to Waymo. Our UDA framework is compatible with
FLOT and shows consistent performance in closing domain gap.
1 and 1 respectively indicate negative and positive polarity.

Methods EPE| AST AR?T Out], Methods EPE| AST AR?T Out]
GTA-SF—Waymo GTA-SF—Waymo

SR Baseline [50]  0.0585 71.38 90.74 42.15 SR Baseline [32]  0.1081 45.36 75.72 57.41
Ours 0.0474 79.93 94.14 35.61 Ours 0.0888 59.15 82.58 49.96

R—R Oracle 0.0433 84.70 95.07 33.09 R—R Oracle 0.0680 72.78 89.66 41.94

FT3D— Waymo FT3D— Waymo

R Baseline [50]  0.2620 43.59 68.25 63.21 S Baseline [32]  0.3299 27.07 48.20 78.63
Ours 0.1219 62.29 82.53 47.71 Ours 0.1432 52.19 75.69 56.36

R—R Oracle 0.0433 84.70 95.07 33.09 R—R Oracle 0.0680 72.78 89.66 41.94

SF—Waymo has a much smaller performance gap. Similar
trends are apparent on Lyft and KITTI in Tab. 3, establish-
ing that our GTA-SF is more compatible to real data.

Synthetic-to-Real Transfer. In Tab. 3, we compare our do-
main adaptation method for synthetic-to-real scene flow es-
timation with HPLFlowNet [8] Baseline, Oracle and two
general-purpose UDA methods (i.e., MMD [25] and Self-
Ensemble [4]). The results on six source-target pairs
demonstrate the superior performance of our method, and
its capability to largely close the performance gap between
Baseline and Oracle by 60% in EPE. Note that the Oracle
results on KITTI are not available since no training data
is provided, we also achieve 55.86% improvement in EPE.
Compared with general-purpose UDA methods, our frame-
work surpasses them on all four evaluation metrics because
our technique enables scene flow estimator to be deforma-

tion and correspondence aware in the target domain. Also,
compared to FT3D, we observe a smaller performance gap
for the GTA-SF transferred models.

Our framework also shows remarkable compatibility
with other mainstream scene flow estimators. As shown
in Tab. 4 and Tab. 5, it achieves superior performance in
closing the domain gap for PV-RAFT [50] and FLOT [32],
which is consistent with HPLFlowNet [8]. Tab. 4 shows the
domain adaptation performance of our framework with PV-
RAFT on GTA-SF—Waymo and FT3D—Waymo. We can
narrow the performance gap by 62.04% to 72.50% on EPE.
In Tab. 5, the results on FLOT also show similar trends.

5.4. Ablation Study

We conduct ablation studies with HPLFlowNet as the
baseline to evaluate the contribution of individual compo-
nents of our framework in the overall performance.
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Table 6. Contribution of Mean Teacher (MT) in our framework. |
and 1 respectively indicate negative and positive polarity.

Settings EPE| AST ART Out|
without MT 0.0768 51.17 85.72 53.81
with MT 0.0683 58.57 87.98 47.40

Table 7. Ablation on Asymmetric Transformation (A7) and aug-
mentations. Symmetric Transformation (S7°) has same transfor-
mation for both frames. 7 & R mean Translation & Rotation. |
and 1 respectively indicate negative and positive polarity.

Methods EPE| AST AR?T Outl,
ST 0.0988 31.72 73.05 59.63

T 0.0719 54.84 88.31 47.77

AT T+R | 00702 55.28 88.27 47.73
R 0.0683 58.57 87.98 47.40

Effectiveness of DR and CR. We investigate the effective-
ness of the two key modules (i.e., DR and CR) in our frame-
work by progressively adding them. In Tab. 3, Ours (E)
indicates our baseline using End-Point Consistency without
DR and CR. Addition of DR and CR are shown with +D and
+C in the table. It can be seen that DR consistently boosts
the performances on all source-target dataset pairs. By fur-
ther adding CR, our framework achieves 39.4% to 56.8%
improvement from FT3D to real datasets and 15.21% to
45.28% improvement from GTA-SF to real datasets. This
demonstrates explicit contributions of DR and CR in our
framework. Since there is a larger domain gap between
FT3D and real data, DR and CR are able to bring more im-
provements for the transferred models.

Effectiveness of Mean Teacher. Our framework adopts
mean teacher to provide pseudo labels for the unlabeled
target domain. To verify the effectiveness of our teacher
model, we conduct experiments by replacing it with a model
identical to the student by setting « in EMA to 0. Tab. 6
shows that the performance of our framework drops after
removing the teacher model. This identifies the contribu-
tion of mean teacher to provide positive supervision.

Effectiveness of Asymmetric Transformation. We pro-
pose Asymmetric Transformation (A7) as the augmenta-
tion strategy for the student model in our framework. A7
transforms the first frame of input point cloud pairs with
stochastic augmentations. Tab. 7 conducts an ablation study
to evaluate the efficacy of A7 . As compared to Symmetric
Transformation (S7) using the same augmentation for both
input frames, A7 enables better performance. We analyze
the effects of different augmentations in A7 . Compared
with translation (7") or translation+rotation (7 + R), using
rotation (R) only yields the best results. This makes rota-
tion a more suitable augmentation for SRSFE since it brings
realistic scene flow in accord with motor steering.

Analysis of Deformation and Correspondence. Based on

@ Prediction Second Frame @ Ground Truth

.V.??

Wlthout Deformation

-IIIIII!IIIIIIIIIIIIIIIIIIIII

p - t s
=E | =
= . Z

Perfect Correspondence

(a) Baseline trained on (d) Ground Truth

(b) Baseline trained on (c) Ours GTA-SF to
GTA-SF Waymo

Figure 5. Qualitative comparisons on Waymo dataset. (a) Baseline
trained on FT3D seriously deforms objects and provides incorrect
correspondence - red box. (b) Replacing FT3D with GTA-SF re-
sults in better predictions, but deformation and misalignment still
exist - black boxes. (c) Our UDA method with GTA-SF achieves
the best results by incorporating DR and CR.

the observation that shape deformation and correspondence
deviation are major problems for SRSFE, we make qualita-
tive comparisons in Fig. 5 to show the advantage of address-
ing them. It can be seen that the baseline trained on FT3D
faces severe shape deformation and correspondence devi-
ation when directly transferred to Waymo due to large do-
main gap. Replacing FT3D with GTA-SF gives a significant
improvement on Waymo, though the above two problems
are only partially addressed. After applying our framework
for unsupervised domain adaptation we achieve the best re-
sults by explicitly addressing the mentioned problems.

6. Conclusion and Limitation

We investigated synthetic-to-real scene flow estimation
(SRSFE) on point clouds and addressed two major chal-
lenges for the task. First, based on the observation that
a large domain gap exists between the existing synthetic
datasets and real-world scenarios, we build a more realistic
dataset for SRSFE using GTA-V engine. Second, to further
reduce the domain gap for the induced computational mod-
els, we devise a mean-teacher-based framework for domain
adaptation in scene flow estimation. Our framework incor-
porates end-point consistency during training with defor-
mation regularization and correspondence refinement. We
conclusively establish the reduced domain gap between our
and real data by a quantitative evaluation on three real
datasets. We also demonstrate a remarkable domain gap
reduction over the existing baselines with our data and pro-
posed framework. For pragmatic reasons, we employ rigid-
ity assumption in our dataset. This only provides an approx-
imation to non-rigid objects (e.g, pedestrians). Neverthe-
less, this does not result in observable performance degra-
dation, yet it provides computational advantages.

We do not forsee any ethical concerns with the dataset
and approach proposed in this manuscript, such as sensitive
personal information, and bias against gender or race.
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