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Abstract

The existing multi-person absolute 3D pose estimation
methods are mainly based on two-stage paradigm, i.e., top-
down or bottom-up, leading to redundant pipelines with
high computation cost. We argue that it is more desirable
to simplify such two-stage paradigm to a single-stage one
to promote both efficiency and performance. To this end,
we present an efficient single-stage solution, Decoupled Re-
gression Model (DRM), with three distinct novelties. First,
DRM introduces a new decoupled representation for 3D pose,
which expresses the 2D pose in image plane and depth infor-
mation of each 3D human instance via 2D center point (cen-
ter of visible keypoints) and root point (denoted as pelvis),
respectively. Second, to learn better feature representation
for the human depth regression, DRM introduces a 2D Pose-
guided Depth Query Module (PDQM) to extract the features
in 2D pose regression branch, enabling the depth regression
branch to perceive the scale information of instances. Third,
DRM leverages a Decoupled Absolute Pose Loss (DAPL)
to facilitate the absolute root depth and root-relative depth
estimation, thus improving the accuracy of absolute 3D pose.
Comprehensive experiments on challenging benchmarks in-
cluding MuPoTS-3D and Panoptic clearly verify the superior-
ity of our framework, which outperforms the state-of-the-art
bottom-up absolute 3D pose estimation methods.

1. Introduction
Estimating 3D human pose from a monocular RGB cam-

era is a significant task in computer vision and artificial

intelligence, due to its foundation in many higher-level appli-

cations, e.g., robotics [41], action recognition [8, 15], anima-

tion [36, 37], human-object interaction detection [6, 12, 38],

virtual fitting [11], etc. With the recent notable progress in

*Corresponding authors: Xiaojuan Wang and Jian Zhao.
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Figure 1. Comparison between our single-stage solution and exist-

ing top-down and bottom-up methods for the multi-person 3D pose

estimation.

single-person based 3D pose estimation [3, 7, 23, 25, 33], a

more realistic and challenging problem setting has attracted

increasing attention, i.e., to estimate 3D human pose for

multiple persons from a single image.

In general, existing multi-person 3D pose estimation

paradigms can be classified as top-down and bottom-up meth-

ods, as illustrated in Fig. 1 (a), (b), respectively. Top-down

approaches [1, 13, 20, 30] use a human detector to obtain the

bounding box of each person, and then perform the single-

person pose estimation, while bottom-up approaches [19,39]

estimate the poses of all persons simultaneously, and then

combine the keypoints belonging to the same person. The

former category estimates pose for each person separately,

hence the total computation cost grows linearly with the

number of people in the image; the latter category requires

grouping the keypoints into corresponding persons, leading

to redundant computational complexity.

Despite the recent popularity and promising perfor-
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mance of the single-stage methods for 2D pose estima-

tion [22,31,32,40], the single-stage pipeline for multi-person

3D pose estimation is barely explored, as it remains unclear

how to effectively combine the end-to-end 2D pose regres-

sion with person depth estimation. In this paper, we propose

a single-stage pipeline, termed as Decoupled Regression

Model (DRM). DRM introduces a new decoupled formula-

tion, which represents the 2D pose and depth information

of each 3D human instance via 2D center point (center of

visible keypoints) and root point (denoted as pelvis). Specif-

ically, we perform 2D keypoint regression from 2D center

point and keypoint depth estimation from root point via two

parallel branches, thus effectively unifying the 2D pose re-

gression with person depth estimation to jointly perform 3D

pose regression.

Since measuring depth from a single image is ambiguous,

estimating absolute 3D pose naturally suffers from the inac-

curate human depth estimation. Considering that the features

used for the absolute depth prediction need to adequately

perceive the high-level features, e.g., human scale, relative

location, etc. From the perspective camera model, the hu-

man scale and location can partly describe depth information.

To learn better feature representation for distinguishing in-

stances at different depth, DRM introduces a plug-in 2D

Pose-guided Depth Query Module (PDQM) to extract the

features in the 2D pose regression branch, which is experi-

mentally proved to be beneficial to absolute depth prediction.

Specifically, we design a warp operation to query features

from the positions of predicted 2D poses, and then concate-

nate these features to that of the depth to enhance the depth

prediction branch. Also, in order to further improve the ac-

curacy of estimation for both the root absolute depth and

the root-relative depth, we propose a Decoupled Absolute

Pose Loss (DAPL) to supervise the human absolute 3D pose

in the camera coordinate system. It is proved that DAPL

can further advance the improvements brought by PDQM.

Comprehensive experiments on the challenging 3D pose

benchmarks MuPoTS-3D [18] and Panoptic [9] evidently

demonstrate the superior efficacy of the proposed DRM.

Our main contributions are summarized as follows.

• We propose the first single-stage solution Decoupled

Regression Model (DRM) for multi-person absolute

3D pose estimation, which decomposes the problem-to-

solve into 2D pose regression and depth regression via

decoupled representation.

• DRM introduces a plug-in 2D Pose-guided Depth

Query Module (PDQM) to inject the features of the 2D

pose regression branch to the depth regression branch

through a position query operation, which helps our

model adaptively perceive the scale information of in-

stances.

• DRM also introduces a Decoupled Absolute Pose Loss

(DAPL) to focus on the absolute depth prediction,

which serves as a supplement to the PDQM.

• DRM achieves comparable performance with the most

top-down methods and significantly outperforms the

state-of-the-art bottom-up method [39] by 4.6 PCKrel

and 2.3 PCKabs on the MuPoTS-3D [18] and 4.9

MPJPE on Panoptic [9] benchmarks, respectively.

2. Related Work
Single-Person 3D Pose Estimation There are two lines

to solve the problem of single-person 3D pose estimation

with monocular RGB images: single-stage [10, 24, 27, 28]

and two-stage [16, 21, 33] approaches. The single-stage ap-

proaches directly locate 3D human keypoints from the input

image. For example, Pavlakos et al. [24] propose a coarse-to-

fine approach to estimate a 3D heatmap for pose estimation.

Kanazawa et al. [10] propose end-to-end adversarial learning

of 3D pose and body mesh by minimizing the reprojection

loss. Sun et al. [28] formulate an integral operation as soft-

argmax to obtain 3D pose coordinates in a differentiable

manner. Differently, the two-stage approaches first predict

2D poses by utilizing an off-the-shelf accurate 2D pose es-

timator, and then lift them to the 3D space. For instance,

Martinez et al. [16] propose a simple baseline to regress 3D

pose from 2D coordinates directly. Moreno-Noguer [21]

obtains more precise pose estimation by the distance ma-

trix representation. Yang et al. [33] utilize a multi-source

discriminator to generate anthropometrically valid poses.

Multi-person 3D Pose Estimation For multi-person 3D

pose estimation with monocular RGB images, similar cat-

egories as multi-person 2D pose estimation are noted: top-

down [1, 2, 13, 20, 30] and bottom-up [19, 39] approaches.

The top-down approaches first perform human detection to

detect each individual person, then for each detected per-

son instance, absolute root (pelvis of the human) depth and

3D root-relative pose are estimated by 3D pose estimation

models. For instance, Moon et al. [20] introduce a cam-

era distance-aware approach that a cropped human image is

fed into their designed RootNet to estimate the body’s root

depth, then the root-relative 3D pose is estimated by their

proposed PoseNet. Benzine et al. [1] propose a single-shot

approach and introduce a low-resolution anchor-based repre-

sentation learning scheme to avoid the occlusion problem. Li

et al. [30] adopt a hierarchical multi-person ordinal relations

method to leverage body level semantic and global consis-

tency for encoding the interaction information hierarchically.

Lin et al. [13] formulate human depth regression as a bin

index estimation problem for multi-person localization in

the camera coordinate system. In contrast, bottom-up ap-

proaches first predict all body keypoint locations and depth

maps, then associate body parts to each person according to

the root depth and root-relative depth. For example, Mehta et
al. [19] infer intermediate 3D pose of visible body keypoints
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regardless of the accuracy, then the completed 3D pose is

reconstructed by inferring occluded keypoints using learned

pose priors and global context. The final 3D pose is refined

by applying temporal coherence and fitting the kinematic

skeletal model. Zhen et al. [39] leverage a depth-aware

part association algorithm to assign keypoints to individuals

by reasoning about inter-person occlusion and bone-length

constraints.

Monocular Depth Estimation For depth estimation in

multi-person absolute 3D pose estimation, most meth-

ods [20, 39] use a sparse depth map to supervise the depth

value in 2D position of the root (set in pelvis) point. Differ-

ently, Zhang et al. [35] discretize depth into several levels to

represent the depths of instances and use ordinal depth rela-

tions among instances to supervise the depth ordering. We

argue that human depth estimation should perceive global

features related to the scale of instance. Hence, we propose

to inject the features of the 2D pose regression branch to the

depth regression branch.

The above elaboration states that the two-stage methods

for multi-person 3D pose estimation have their disadvan-

tages, respectively. The top-down methods highly depend

on the performance of the human detector and barely have

good strategy to solve the problem of occlusion, while the

bottom-up methods rely on the grouping algorithms after

obtaining the complex intermediate representations to re-

cover poses of all people. Whereas our single-stage DRM

manifests comparable accuracy to top-down methods and a

more compact pipeline to bottom-up methods.

3. Decoupled Regression Model
In this paper, we aim at proposing a single-stage method

which is capable of achieving comparable performance with

that of the two-stage’s for multi-person 3D pose estimation

in a more efficient and compact pipeline. The proposed

Decoupled Regression Model (DRM) has a better tradeoff

between performance and computational complexity without

any bells and whistles.

3.1. Decoupled Representation for 3D Pose

Given an image I , the multi-person absolute 3D pose

estimation is to locate human keypoints of all the person

instances P =
{
P abs
m

}
N
m=1 in I , where N denotes the num-

ber of persons in I . Assume that there are J keypoints in a

single 3D pose skeleton. The m-th absolute 3D pose can be

formulated as: P abs
m =

{(
Xabs

m,j , Y
abs
m,j , Z

abs
m,j

)
T
}

J
j=1, where(

Xabs
m,j , Y

abs
m,j , Z

abs
m,j

)
T is the j-th keypoint position of the m-

th absolute pose in the camera-centered coordinate system,

as shown in Fig. 2 (c).

2D poses {pm}N
m=1, root-relative depth {ΔZm}N

m=1,

and absolute depth of the root point {Zm,r}N
m=1 are needed

to estimate the absolute 3D poses in the DRM. The m-th 2D

Center point 2D offsetRoot point Root-relative depthOther keypoint

(a) (b) (d)(c)

Figure 2. Visualization and explanation of the pose representation.

(a) Pose representation overlaid on an image containing a person

instance. (b) 2D pose representation based on the center point.

(c)3D pose for the instance in the right view. (d) Relative depth

representation based on the root point. In our framework, the root

point and the center point are different.

pose pm and root-relative depth ΔZm are formulated as:

pm =
{
(xm,j , ym,j)

T
}

J
j=1, (1)

ΔZm = {Zm,r − Zm,j}Jj=1, (2)

where (xm,j , ym,j)
T is the j-th keypoint position of the

m-th 2D pose in the pixel coordinates, and Zm,j is the j-th
keypoint absolute depth of the m-th instance.

Hence, we decompose multi-person 3D pose estimation

into two simultaneous regression-based tasks, i.e., 2D pose

regression and depth regression. Furthermore, we adopt the

center point and root point as the regression clue for 2D pose

regression and depth regression, respectively.

2D Pose Regression We use a center map C and n off-

set maps O to locate instances in the given image I , as

shown in Fig. 2 (b). The center map is modeled as a

Gaussian-based heatmap, whose values represent the con-

fidence of the center position. We denote the groundtruth

center map with C∗. We set the instance center point at

the average coordinate of all visible keypoints of the in-

stance, and the center is the regression clue for the 2D

pose regression branch in DRM. For the position (x, y)
in I , C∗(x, y) = exp

(−‖(x, y)− (xc, yc)‖2/σ2
)
, where

(xc, yc) is the position of an instance center, and σ is the

Gassian variance. Each of the offset maps O predicts

a 2n-dimension offset vector from the center pixel q for

n keypoints at each center pixel q of all instances. The

groundtruth offset maps O∗ for each image are constructed

from all the 2D poses {p1, p2, · · · , pn} in the image. We

compute the center position pi = 1
n

∑n
k=1 pik. The can-

didate area is around the center position and its radius is
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Figure 3. Overview of the proposed DRM for multi-person absolute 3D pose estimation. Given an input monocular image, our single-stage

network is divided into four flows, which output a center map, offset maps, a root depth map and root-relative depth maps, respectively.

Notablely, with the proposed PDQM, the features for 2D offset regression are shared in the root depth regression via the concatenate

operations. Absolute 3D poses of all people can be reconstructed through all these regression maps.

set to 3 according to previous method [40]. The pixels

in the candidate area represent the offset to the keypoints

{pi − pi1, pi − pi2, · · · , pi − pin}.

Depth Regression Instead of predicting the absolute depth

values for all keypoints, we only regress the absolute depth

of root point and the root-relative depth of other keypoints,

as shown in Fig. 2 (d). Such representation makes our depth

regression retain relative information for body keypoints

and improves the overall training stability. The groundtruth

absolute depth is represented by a dense depth map Z∗ at

the root pixel r, whose value indicates the groundtruth depth

of root point. Similarly, the groundtruth root-relative depth

is represented by (n− 1)-dimension dense depth maps ΔZ∗

to encode the differences of depth between other keypoints

and root point at each root pixel r of all instances. We set

the root point at the pelvis.

In this way, the 2D pose and the depth are decoupled,

which prevents them from influencing each other. To achieve

the final result, we combine the 2D pose and the depth pre-

diction through the root point.

Relation to Previous Representations In existing re-

searches [20, 39], decoupling 3D pose estimation as 2D

pose estimation and depth prediction has also been explored.

Unlike their decoupled form only in task level, we further

decouple the clue keypoints, using the center point and root

point for 2D pose regression and corresponding depth re-

gression, respectively, the efficacy of the decoupled repre-

sentation is experimentally analyzed in Sec. 4.2. Benefiting

from the decoupled representation in the clue keypoints, the

two regression branches both achieve better performance

compared to previous methods.

3.2. Framework Architecture

The framework overview of the proposed single-stage

DRM is illustrated in Fig. 3. First, an input image I is sent

into the backbone to produce a feature map X . Then X is

transformed into four intermediate supervision flows. One

flow is to regress the center map, which contains 1 channel.

The other flow is for the offset maps with 2n channels, con-

sisting of x-axis and y-axis offsets for n keypoints. The rest

two flows are set to regress the depth maps, i.e., 1 channel

for the absolute root depth and n− 1 channels for the root-

relative depth, consisting of n− 1 keypoints except the root

point. The disentangled form [40] is adopted to regress the

offset maps and the root-relative depth maps.

2D Pose-guided Depth Query Module Depth estimation

from a single view suffers from inherent ambiguity. Directly

estimating the absolute depth via the feature representations

learnt from the whole image is non-trivial, since it is focused

on the root area without perceiving global features related to

the scale of instances. In fact, the absolute depth of people

can be partially expressed by the scale of people. Hence we

consider the 2D pose can help advance the absolute depth

estimation. To predict the depth of root, we can utilize the
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features located at other keypoints. Motivated by this, we

propose a 2D Pose-guided Depth Query Module (PDQM).

In the flow of offset map regression, we divide the fea-

ture maps X output from the backbone into n feature maps,

{X1,X2, · · · ,Xn}, and estimate the offset map {Oi}, i =
1, 2, · · · , n for each keypoint from the corresponding feature

map:
Oi = Fi (Xi) , i = 1, 2, · · · , n, (3)

where Fi(·) is the i-th regressor of the i-th keypoint, and

Oi is the offset map for the i-th keypoint. The n regressors

have the same structure, and they predict their corresponding

keypoint offset map independently.

In the flow of root depth regression, we aim to enrich

the feature of root by extracting the features around each

keypoint. Through the regressed 2D offset maps, we leverage

the position query (PQ) operation to extract the (n− 1) 64-

channel features in the area of each keypoint and concatenate

them to the feature map of the root depth regression:

Z = FZ

(
cat

{X ,W
(
O′

1

)
,W

(
O′

2

) · · ·W (
O′

n−1

)})
, (4)

where FZ(·) is the regressor of root absolute depth, follow-

ing the same structure as the regressor of offset maps, cat {·}
is the concatenate operation on channel dimension, W (O′

i)
is the position query operation on the i-th keypoint, which

is a warp operation to fetch the feature in corresponding

position, O′
i is the i-th offset map from root point to other

keypoints, i.e., O′
i = Oi +Oe, where Oe is an extra offset

map to predict the displacement between root point and

center point. We use Z for the root point depth prediction.

3.3. Training and Inference

We use different losses in each flow. For the 2D pose

prediction, the center map loss and the offset map loss are

adopted, while for the depth prediction, a novel Decoupled

Absolute Pose Loss (DAPL) is designed as the supplement

to dense depth map loss.

Center Map Loss The center confidence map is con-

structed by modeling the center position as Gaussian peaks

and the loss function of center map is formulated as the

weighted distances between the predicted heat values and

the groundtruth heat values:

Lc = ‖C − C∗‖22, (5)

where ‖·‖2 is the entry-wise 2-norm, C and C∗ are predicted

and target center maps, respectively.

Offset Map Loss The offset maps estimate the candidate

poses at each center pixel, by predicting a 2n-dimension

offset vector from the center. We use the smooth �1 loss for

the dense offset maps:

Lo =
∑
i∈S

1

Bi
smooth�1 (oi − o∗i ), (6)

where S is the set of the positions with groundtruth poses,

Bi =
√

H2
i +W 2

i is the size of the corresponding instance,

Hi and Wi are the height and the width of the instance box,

oi and o∗i are the predicted and groundtruth offset for the

position i, respectively.

Depth Loss There are two output flows of DRM for depth

regression, including absolute depth for the root point and

root-relative depth for other keypoints. We use the smooth

�1 loss to formulate the pixel-wise depth loss:

Lrz =
∑
i∈S

smooth�1 (zi − z∗i ) , (7)

LΔz =
∑
i∈S

smooth�1 (Δzi −Δz∗i ), (8)

where S is the set of the positions with groundtruth poses,

zi, a column of Z , is the 1-dimension estimated root depth

vector for the position i, and z∗i , a column of Z∗, is the

1-dimension groundtruth root depth vector for the position

i, Δzi, a column of ΔZ , is the (n− 1)-dimension predicted

root-relative depth vector for the position i, and Δz∗i , a

column of ΔZ∗, is the (n− 1)-dimension groundtruth root-

relative depth vector for the position i.

Decoupled Absolute Pose Loss Thanks to the disentan-

gled regression method [40], the 2D poses predicted by our

network are accurate enough in most cases while the perfor-

mance of the estimated absolute depth is poor. To further

optimize the absolute pose, we design a Decoupled Absolute

Pose Loss (DAPL), which focuses on the absolute depth and

the relative depth. Considering that the root-relative depth

is local and independently estimated, hence, the estimated

root-relative depth fails to integrate information related to

the scale of instances. DAPL is incorporated to perceive the

scale of instances, which can serve as an auxiliary supervi-

sion for the regression of root-relative depth. Moreover, the

relative depth of other keypoints suffers cumulative errors

from the root point. DAPL facilitates to relieve this issue

by indirectly supervising the absolute depth of other key-

points. Specifically, we use the perspective camera model to

reconstruct estimated 3D poses using the estimated absolute

depth, root-relative depth and 2D groundtruth information

in camera coordinates:

Xi =
(x∗

i − cx∗) · (zi −Δzi)

fx∗ , (9)

Yi =
(y∗

i − cy∗) · (zi −Δzi)

fy∗ , (10)

where x∗
i , y

∗
i , are the groundtruth x-axis and y-axis coordi-

nates for the position i in the 2D image plane, cx∗, cy∗ are

the values of x-axis, y-axis principal point of the camera

intrinsic matrix, and fx∗, fy∗ are the focal lengths of x-axis,

y-axis of the camera.
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Then we use the normalized �1 loss to formulate the pixel-

wise projection loss:

Lp =
∑

i∈S

1

Bi

∥∥∥∥
(x∗

i − cx∗) · [(zi −Δzi)− (z∗i −Δzi
∗)]

fx∗

∥∥∥∥
1

+
∑

i∈S

1

Bi

∥∥∥∥
(y∗i − cy∗) · [(zi −Δzi)− (z∗i −Δzi

∗)]
fy∗

∥∥∥∥
1

.

(11)

In DAPL, the 3D projection model is used to map the

predicted absolute depth to the camera coordinate system

in combination with the groundtruth 2D positions of the

person instances, in the form of indirect supervision of the

absolute root depth and the root-relative depth. It is worth

noted that we use the groundtruth of 2D position to avoid

the suboptimal performance of DAPL caused by naturally

existed inaccurate estimation in 2D pose. The mechanism of

DAPL will adjust inaccurate predictions of absolute depth

and relative depth to the correct optimization direction, thus

directly optimizing the absolute and relative 3D pose.

Overall Loss For training the proposed single-stage DRM,

we formulate the overall loss function L as follows:

L = Lc + λoLo + λrzLrz + λΔzLΔz + λpLp, (12)

where λo, λrz , λΔz and λp are hyper-parameters for bal-

ancing different loss items. We set λo, λrz , λΔz=0.03,

λp=0.003, which are experimentally validated.

Inference During testing, an image is fed into DRM, to

predict the center map, the offset maps, the root depth map

and the root-relative depth maps. First, the candidate 2D

poses are obtained by performing the NMS process over the

center map combined with the offset maps. After that, the

root absolute depth and root-relative depth of each candidate

instance are obtained from the root depth map and the root-

relative depth maps at the 2D position of root point. Then,

the absolute depth for all keypoints are obtained by adding

up all the root-relative depth to the root absolute depth. Fi-

nally, the NMS process is performed over the candidate 2D

poses and absolute depth, and preserve at most 20 candidates

for one image. Using these candidate results and camera

intrinsic matrix, we can reconstruct the 3D pose through the

perspective camera model:

[X,Y, Z]T = ZK−1 [x, y, 1]T , (13)

where [X,Y, Z] and [x, y] are 3D and 2D coordinates of a

keypoint, respectively, and K is the camera intrinsic matrix.

4. Experiments
4.1. Experiment Setup

Datasets We evaluate the proposed DRM for multi-person

3D pose estimation on two popular challenging benchmarks,

i.e., MuPoTS-3D [18] and CMU Panoptic [9].

MuCo-3DHP [18] is a multi-person 3D training set com-

prised by the MPI-INF-3DHP [17] single-person dataset with

groundtruth 3D poses from multi-view marker-less motion

capture system. We follow SMAP [39] and use 400k im-

ages from it for training our DRM. MuPoTS-3D is a testing

set consisting of 8,700 challenging images with occlusions,

drastic illumination changes, and lens flares in some of the

outdoor footage, making it a convincing testbed to inspect

the models’ generalization capacity. We use it for evaluation

as in SMAP [39].

CMU Panoptic [9] is a large-scale dataset captured in the

Panoptic studio, offering 3D pose annotations for multiple

people engaged in diverse social activities. we follow Zanfir

et al. [34] and choose two cameras (i.e., 16 and 30), 165k

images from different sequences as our training set, and

9,600 images from four activities (i.e., Haggling, Mafia,

Ultimatum, Pizza) as our test set.

Implementation Details Our framework is implemented

with PyTorch platform. The proposed model is trained on

8 NVIDIA V100 GPUs with the batch size of 8 per GPU.

We use the warmup training strategy and the base learning

rate is set as 1× 10−3. The learning rate will increase to the

basic training rate in the first epoch and then linearly decay

to 0 in the end. Adam [4] is used for optimization.

We adopt HRNet [26] as the backbone due to its leading

performance in dense prediction tasks, e.g., human pose esti-

mation. The backbone is initialized with the ImageNet [5]

pre-trained weights. We train two models for 15 epochs on

MuCo-3DHP and CMU Panoptic, separately, mixed with

COCO [14] dataset. 50% data in each mini-batch is from

COCO. Since COCO lacks 3D pose annotations, weights of

3D losses are set to zero when images from COCO are fed.

All images are resized to a fixed size 832×512 as the input

to our model.

4.2. Experiment on MuPoTS-3D [18] Benchmark

Evaluation Metrics 3DPCK [20] is a 3D extended version

of the Percentage of Correct Keypoints (PCK) metric used

in 2D HPE evaluation. An estimated keypoint is considered

as correct if the distance between the estimation and the

ground-truth is within a certain threshold (i.e., 15cm in our

experiments). PCKrel measures the relative pose accuracy

with root alignment; PCKabs measures the absolute pose ac-

curacy without root alignment; and PCKroot only measures

the accuracy of root point.

Comparison with State-of-the-Art Models Tab. 1 shows

the result comparisons between our proposed DRM and

other state-of-the-art methods. Our single-stage approach,

achieves 85.1 PCKrel and 41.0 PCKabs, which is superior to

all bottom-up methods and most top-down methods except

Cheng et al. [2] for matched people. Note that we achieve

4.6 PCKrel improvement for the relative 3D pose and 2.3

PCKabs improvement for the absolute 3D pose at the root
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Table 1. Comparisons on the MuPoTS-3D [18] dataset. All numbers are average values over 20 activities.

Methods
Matched people All people

PCKrel↑ PCKabs↑ PCKroot↑ AUCrel↑ PCKrel ↑ PCKabs↑

Top

down

CDMP (ResNet-50) [20] 82.5 31.8 31.0 40.9 81.8 31.5

HDnet (FPN) [13] 83.7 35.2 - - - -

HMOR (FPN) [30] - - - - 82.0 43.8
Pandanet (FPN) [1] - - - - 72.0 -

3Dpose (HRNet-w32) [2] 89.6 48.0 - - - -

Bottom

up

Xnect [19] 75.8 - - - 70.4 -

SMAP (Hourglass) [39] 80.5 38.7 45.5 42.7 73.5 35.4
Single-stage DRM (Ours, HRNet-w32) 85.1 41.0 45.6 45.4 80.9 39.3

Table 2. Comparisons of using the root point (denoted as “RC”)

and 2D center point (denoted as “CC”) as clue to regress the 2D

pose, respectively.

Methods AP↑ APM↑ APL↑ AR↑ ARM↑ ARL↑
RC 63.9 59.8 71.6 70.2 64.4 78.6

CC 67.2 61.8 77.1 73.0 66.3 82.6
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Figure 4. Comparisons of using the root point (denoted as “RC”)

and 2D center point (denoted as “CC”) as clue to regress depth

information, respectively. The scatter diagrams show the deviation

between the predicted absolute depth and corresponding ground

truth.

point compared to SMAP [39], which is current the state-of-

the-art bottom-up method.

Analysis of the Decoupled Representation Instead of using

a single point to encode the all properties of person instance.

In this paper, we propose the new decoupled representation

that encodes the 2D pose and depth information of each

3D human instance via the center point (center of visible

keypoints) and the root point (denoted as pelvis), respectively.

We conduct the ablative analysis to explore the superiority

of such decoupled representation.

We first employ the the root point (pelvis) and 2D center

point to regress x-y keypoint offsets, respectively. The results

on COCO dataset [14] are reported in Tab. 2. It can be

observed that regressing the 2D pose using the center point

performs better than using root point (i.e., 67.2 AP vs. 63.9

AP). Thus, the center point is considered to be able to encode

more informative feature, e.g., scale and pose deformation,

than the root point.

We further apply the root point (pelvis) and 2D center

point to regress the corresponding depth information. The

Table 3. Analysis of the Proposed Components. PDQM denotes

the 2D Pose-guided Depth Query Module. DAPL indicates the

Decoupled Absolute Pose Loss.

PDQM DAPL PCKabs↑ PCKroot↑ PCKrel↑
32.1 32.3 81.3√
35.5 40.8 81.4√
39.8 44.1 83.7√ √
41.0 45.6 85.1

center point’s absolute depth is calculated by averaging the

absolute depth of all visible keypoints. As shown in Fig. 4, it

can be observed that regressing the depth using root point in-

formation achieves less deviation with corresponding ground

truth depth, especially for large depth. Thus, the root point

is considered to be a position with explicit semantic infor-

mation than the center point, which is beneficial for depth

estimation.
Therefore, we propose the decoupled representation lever-

aging different points to encode and predict different prop-

erties, e.g., 2D pose and depth, which remarkably improves

the estimation of absolute 3D poses.

Analysis of the Proposed Components Based on the de-

coupled representation, we study the contributions of the

two key components in DRM, i.e., 2D Pose-guided Depth

Query Module (PDQM) and Decoupled Absolute Pose Loss

(DAPL).

As shown in Tab. 3, DAPL obtains the improvement of

11.8 PCKroot and 7.7 PCKabs, showing that DAPL signif-

icantly promotes the absolute pose estimation by enhanc-

ing the absolute depth prediction. Moreover, incorporating

PDQM can independently boost the performance by 8.5

PCKroot and 3.4 PCKabs, indicating that the scale infor-

mation in the 2D pose regression branch refines the depth

estimation, alleviating poor perception ability on depth. Fi-

nally, our full model containing both the DAPL and PDQM,

achieves the whole gains of 13.3 PCKroot, 8.9 PCKabs, and

3.8 PCKrel, respectively.

Qualitative Result Fig. 5 gives the visualized results

of the estimated 3D poses upon in-the-wild images from

COCO [14] validation set. It is shown that even in outdoor

challenging scenario (containing scale variance, crowds, oc-
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Figure 5. Visualized results of the proposed DRM upon in-the-wild images from COCO [14] validation set. Top row: input images. Bottom

row: corresponding multi-person 3D pose estimation results of the proposed DRM.

Table 4. Quantitative comparisons of RtError on CMU Panoptic.

Methods Haggling Mafia Ultim. Piazza Mean↓
MPSM [35] 257.8 257.8 301.1 294.0 315.5

CDMP [20] 160.2 151.9 177.5 127.7 154.3

SMAP [39] 84.7 87.7 91.2 78.5 85.5

DRM (Ours) 63.7 58.5 52.3 69.1 60.9

Table 5. Running time (ms) comparisons.

Methods 3-person↓ 20-person↓

CDMP [20]

(Top-down)

DetectNet 120.0 120.0

PoseNet 14.7 71.8

RootNet 13.0 58.9

Total 147.7 250.7

SMAP [39]

(Bottom-up)

SSNet 57.0 57.0

Grouping 4.5 8.8

RefineNet 0.80 0.83

Total 62.3 66.6

DRM (Ours) Single-stage 55.6 56.0

clusion, and huge depth variance), our method still performs

surprisingly well.

4.3. Experiment on CMU Panoptic [9] Benchmark

We use RtError [39] and Mean Per Joint Position Error

(MPJPE) [34] as the evaluation metrics on CMU Panoptic [9].

RtError measures the absolute estimation of root point and

MPJPE measures the accuracy of the 3D root-relative pose.

Quantitative comparisons of RtError are provided in Tab. 4.

It can be observed that our model significantly outperforms

the state-of-the-art bottom-up method SMAP [39] in terms

of RtError by a large margin, i.e., 24.6mm improvement

(mean of the four activities), showing the promising poten-

tial of the proposed DRM for generalization ability. For

completeness, we provide the quantitative comparisons of

MPJPE between state-of-the-art methods and ours in the

supplementary material.

4.4. Running Time Analysis

Tab. 5 reports the detailed comparisons on running time

during inference of the representative top-down, bottom-up

methods [20,39], and proposed DRM. The experiment is con-

ducted on one NVIDIA V100 GPU. The existing top-down

and bottom-up methods both take multi-stage paradigms,

leading to computational redundancy. Specifically, the top-

down method CDMP [20] adopts a detector to select ev-

ery single instance, and the total computation cost linearly

grows with the number of people. The bottom-up method

SMAP [40] needs an additional grouping process to group

keypoints to its corresponding instance. In contrast, our

single-stage model DRM costs less running time, which

hardly increases with the instance number. It is noted that

DRM spends 6.7ms less in the 3-person setting and 9.4ms

less in the 20-person setting than that of SMAP [39].

5. Conclusion

In this paper, we propose an efficient single-stage Decou-

pled Regression Model (DRM) to address multi-person abso-

lute 3D pose estimation. DRM utilizes parallel branches to

regress 2D pose and human depth simultaneously, which en-

ables a more compact pipeline. Moreover, DRM introduces

the 2D Pose-guided Depth Query Module (PDQM) and De-

coupled Absolute Pose Loss (DAPL) to jointly advance the

accuracy of depth prediction. The PDQM concatenates the

features from the 2D pose regression branch to enrich the

features for absolute depth regression, which significantly

helps to achieve better performance on 3D pose. DAPL

maps the predicted depth to the camera coordinate system

using the groundtruth 2D position of instances, achieving

direct pose supervision in 3D space, which advances the

performance of depth prediction. In a further step, we will

dedicate to explore more applications of our PDQM to other

single-stage methods, e.g., BMP [35] and ROMP [29] for

body mesh estimation.
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