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Abstract

Social presence, the feeling of being there with a “real”

person, will fuel the next generation of communication sys-

tems driven by digital humans in virtual reality (VR). The

best 3D video-realistic VR avatars that minimize the un-

canny effect rely on person-specific (PS) models. However,

these PS models are time-consuming to build and are typi-

cally trained with limited data variability, which results in

poor generalization and robustness. Major sources of vari-

ability that affects the accuracy of facial expression transfer

algorithms include using different VR headsets (e.g., cam-

era configuration, slop of the headset), facial appearance

changes over time (e.g., beard, make-up), and environmen-

tal factors (e.g., lighting, backgrounds). This is a major

drawback for the scalability of these models in VR.

This paper makes progress in overcoming these limita-

tions by proposing an end-to-end multi-identity architec-

ture (MIA) trained with specialized augmentation strate-

gies. MIA drives the shape component of the avatar from

three cameras in the VR headset (two eyes, one mouth), in

untrained subjects, using minimal personalized information

(i.e., neutral 3D mesh shape). Similarly, if the PS texture

decoder is available, MIA is able to drive the full avatar

(shape+texture) robustly outperforming PS models in chal-

lenging scenarios. Our key contribution to improve ro-

bustness and generalization, is that our method implic-

itly decouples, in an unsupervised manner, the facial ex-

pression from nuisance factors (e.g., headset, environ-

ment, facial appearance). We demonstrate the superior

performance and robustness of the proposed method versus

state-of-the-art PS approaches in a variety of experiments.

1. Introduction

Our experience with communication systems is two-

dimensional, mostly via video teleconferencing (e.g., Mes-

senger), that includes both audio and video transmissions.

Recent studies on videoconferencing have shown that the
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Figure 1. 3D Photo-realistic avatar driven by three headset-

mounted camera (HMC) images in a VR headset. This paper

presents a system to drive photo-realistic avatars robustly with

variability in headsets, lighting, environmental background, head

pose, and facial appearance.

more closely technology can simulate a face-to-face inter-

action, the more participants are able to focus, engage, and

retain information [43]. A more advanced level of commu-

nication with virtual reality (VR) via telepresence [5, 8, 12,

19, 30, 34, 44, 45] will allow virtual presence at a distant lo-

cation and a more authentic interaction. If successful, this

new form of face-to-face interaction can reduce the time

and financial commitments of travel, make sales meetings

or family meetings more immersive, with a huge impact for

the environment and use of personal time.

Today most real-time systems for avatars in AR/VR are

cartoon-like (e.g., Hyprsense, Loom AI); on the other hand,

Hollywood has animated nearly uncanny digital humans as

virtual avatars using advanced computer graphics technol-

ogy and person-specific models (e.g., Siren). While some

of these avatars can be driven in real-time from cameras,

building the PS model is an extremely time-consuming and

hand-tuned process that prevents democratization of this

technology. This paper makes progress in this direction by

generating video-realistic avatars by transferring subtle fa-

cial expressions from the headset mounted cameras (HMC)

images in a VR headset to a 3D talking head (see Fig. 1).

We build on recent work on codec avatars (CA) [26]

that learn a PS model from a Plenoptic study. Recall that

driving an avatar from HMC cameras is typically more
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Figure 2. Comparing the HMC images of a subject in multiple HMC captures with variations in headset, environment and facial appearance.

(a) The training HMC capture, (b-e) the testing HMC captures. The blue bold font shows the variations respect to the training capture (a).

The red circles in (f) show the locations of the cameras inside the headset.

challenging than driving it from regular cameras (e.g.,

iPhone) [25, 37, 52], due to the domain difference between

IR cameras and the texture/shape of the avatar, variabil-

ity in HMC images due to headset variability (e.g., cam-

era location, IR LED illumination), high-distortion intro-

duced by the near-camera views, and partial visibility of

the face (Fig. 2). Wei et al. [49] proposed an end-to-end

deep learning network for learning the mapping between

the HMC images and the parameterized avatar. First, this

model solves the unknown correspondence between HMC

images and the avatar parameters in an unsupervised man-

ner using an eleven-view HMC headset. Second, to animate

the CA in real time from three HMC images(i.e., inference),

Wei et al. [49] learns an encoder network to regress from 3-

view HMC images to CA’s parameters (Fig. 3).

While previous work has reported compelling photo-

realistic facial expression transfer results, the existing

method has limitations due to the PS nature of the approach.

It is time-consuming, expensive and error-prone to capture

sufficient statistical variability when collecting PS samples

to learn a robust model. It will typically require record-

ing several sessions with variability across lighting, head-

sets and iconic changes (e.g., makeup, beard), which limits

its scalability. To build generic models (conditioned to the

neutral shape), the most import contribution of this pa-

per is to propose multi-identity architecture (MIA), an

architecture that factorizes nuisance parameters such as

camera parameters, facial aesthetic changes (e.g., beard,

makeup) and environmental factors (e.g., lighting) from

the facial motion (i.e., facial expression). This is critical

because the encoder is able to extract from the HMC im-

ages only the information that is relevant to the final task,

which is transferring subtle facial expressions, and it is able

to marginalize information that is not relevant (headset, fa-

cial appearance, environment). Implicitly, this results in an

algorithm that aligns facial expressions (3D shape + texture)

across users in an unsupervised manner. Recall that is a

very difficult problem to align subtle facial behavior (using

both 3D shape + texture) across users in a supervised or un-

supervised manner. That is, how can we find the correspon-

dence of expression across subjects? Even if done manu-

ally, it is an extremely challenging problem and MIA (to

the best of our knowledge) is the first algorithm that solves

this problem in an unsupervised and discriminative manner

(see subsection 4.3). MIA results in an algorithm for facial

expression transfer for VR, that improves upon PS models

in realistic scenarios.

2. Prior Work
2.1. Animating Stylized and Codec Avatars

Animating stylized avatars from video has a long history,

for instance [7] fits a generic 3DMM to the face and use it

to retarget the facial motion to a 3D characters. To improve

the accuracy, Chaudhuri et al. [6] proposed to learn person-

specific expression blendshapes and dynamic albedo maps

from the input video of subjects. In [42], facial action unit

intensity is estimated in a self-supervise manner by utilizing

a differentiable rendering layer for fitting the expression and

Figure 3. Training and testing pipeline for animating the face codec avatar. In the data collection stage, we perform a face capture to

generate the codec avatar of the subject [26] and a HMC capture. We utilize [49] to find the correspondence between the avatar and the

HMC capture. Finally, we can train a model to animate the codec avatar (CA) from the HMC images in real-time.
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Figure 4. The proposed multi-identity architecture (MIA). It consists of three main parts: the backbone network B, the 3D shape network

G, and the texture networks Fi. The identity selector module pass the features to the corresponding texture network.

to retarget the expression to the character. In contrast, ex-

pression transfer from a VR headset [12, 18, 27, 33] is more

challenging due to partial visibility of face in HMC images,

the specific hardware, and limited existing data.

CAs animate avatars by estimating the parameters of a

PS shape and texture model from HMC [9, 26, 39, 49], see

Fig. 3. In [26], combination of real and synthetic HMC

images are utilized for reducing the domain gap between

real HMC images in IR spectrum and rendered images for

training encoder and reducing the HMC-avatar domain gap.

Wei et al. [49] utilize a cycle-GAN to achieve accurate cycle

consistency between 11-view HMC images and CA. Then,

they train a person specific regressor from 3-view HMC im-

ages to the CA’s parameter. Chu et al. [9] propose to use

modular CA to have more freedom for animating the eyes

and mouth. In a different approach, Richard et al. [36] an-

imate the CA based on the gaze direction and audio inputs.

The aforementioned methods rely on PS models, are typi-

cally not robust to variations in headsets and environments.

2.2. 3D Shape Estimation

Early approaches for model-based shape and texture

estimation are based on active shape model [11] (ASM)

and Active Appearance Model [10, 28] (AAM). The AAM

methods learn a joint holistic model of shape and appear-

ance. 3D Morphable Model (3DMM) provides a dense

3D representation for faces e.g. the Basel Face Model [35]

and the FaceWarehouse [3]. In [16, 21], 3DMM is incor-

porated in an end-to-end CNN training to dicriminatively

estimate the 3D shape of faces given single input image.

Tran et al. [47] propose to learn a nonlinear 3DMM via

deep neural network from in-the-wild images, and in this

way 3DMMs are capable of representing non-linear fa-

cial expressions. The proposed method in [13] can ex-

tract expression-dependent details of the 3D shape from

a single image. [14] proposed to use the GAN generator

for 3DMM fitting and estimating high-fidelity UV texture.

Similarly, [20] proposed to utilize the volumetric represen-

tation of face instead of using 3DMM. An unsupervised

method proposed in [15] for, identity 3DMM fitting, re-

gressing the 3D shape and texture. Also, in [38] the identity

constraints utilized among the images of the same subject.

Similar to [47] we learn a non-linear discriminative 3DMM,

but we extend it to learn the model from HMC images given

a neutral 3D shape, and align the expressions across sub-

jects in an unsupervised manner. To the best of our knowl-

edge, this is the first work that solves the correspondence of

expression across subjects in unsupervised manner.

3. Multi-Identity Model

This section describes the proposed multi-identity archi-

tecture (MIA) and augmentation techniques to robustify and

generalize existing encoder models for driving CAs.

3.1. Multi­Identity Architecture (MIA)

Given 3-view HMC images of the eyes and mouth (see

Fig. 1), our goal is to estimate the facial expression of a CA

(shape+texture), and render it in an arbitrary view in VR.

The MIA has three main parts (see Fig. 4): the backbone

network, the 3D shape network, and the texture branch.

Backbone network: The backbone network, Bψ in Fig. 4,

is shared among subjects. Its goal is to factorize the ex-

pression from other nuisance factors such as lighting, back-

ground, or camera views, and build an internal representa-

tion that is invariant to those factors. As we will show in the

experiments section, MIA naturally finds that the best way

to encode HMC images across subjects, is by marginalizing

out person-specific factors in addition to the nuisance fac-

tors mentioned. This results in learning an embedding that

only preserves expression without the need of solving for

correspondence across expression among subjects.

3D shape network: MIA assumes that the neutral shape
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Figure 5. Examples of applying 3D augmentation layer to HMC

images. First row: Real HMC images, second row: Augmented

images by changing 3D pose, focal length and background.

of the test subject, SN ∈ R
7306×3, in given1. This is the

only information MIA needs to generalize the shape com-

ponent of the network to untrained subjects. A network Gγ

is trained to estimate 3D shape, Ŝ ∈ R
7306×3 from HMC

images. The network Gγ takes both of the output of the

backbone network Bψ and SN to estimate the person spe-

cific 3D shape expression residual. The neutral 3D shape is

used to re-inject person-specific information that was fac-

tored out in Bψ . For instance, eye openness, which varies

across identities, can be extracted from the neutral 3D shape

SN of each subject. With this, we reconstruct the 3D shape

of subject i as:

Ŝi = SNi + Gγ(Bψ(H
0

i ,H1

i ,H2

i ), SNi ). (1)

The network Gγ is trained by minimizing the Euclidean dis-

tance between the target Si and estimated Ŝi 3D shapes,

LiS = ∥WS ⊙ (Si − Ŝi)∥
2

2
, (2)

where WS is the weight mask for the visible areas.

Texture network: When the pre-trained PS texture de-

coder is available for each identity, our goal is to be able to

animate the CA from HMC images robustly and with mini-

mal adaptation effort. In this paper, we presume pre-trained

decoders Dφ from [26] are available, but our work can be

similarly applied to other PS models as well (e.g. [24, 46]).

The network Dφ takes, as input, an expression parameter

z ∈ R
256 and a view vector v ∈ R

3, and generates person-

specific and view-specific texture Tv ∈ R
1024×1024×3 that,

together with shape, can be used to render the avatar,

Tv = Dφ(z, v). (3)

However, since each PS model is trained independently

of all others, the structure of the latent space, z, is not con-

sistent across identities. We would like to utilize the shared

1Extracting neutral face from a single or few-shot phone-captured im-

ages is a well studied problem [25,37,52], and there are a number of com-

mercial solutions available [1, 2].

backbone encoder Bψ across identities to encourage robust-

ness via joint training. Inspired by multi-task learning tech-

niques [4, 32], we additionally learn person-specific adap-

tation layers, Fθ, that transform the identity-consistent ex-

pression embedding produced by Bψ to each identity’s per-

sonalized latent space. Finally, to eliminate unnecessary di-

mensions in z, non-informative dimensions, we apply PCA

dimensionality reduction, denoted P ∈ R
256×80 to each

identity’s latent space and fix it during training. Together,

these components are used to generate PS expression pa-

rameters as follows:

ẑi = Pi(Fθi(Bψ(H
0

i ,H1

i ,H2

i ))) + zi, (4)

where i is subject index, and zi is the average expression

parameter for subject i. Then, we use Eqn. 3 to generate the

estimated texture Tv
i from view v. To guide the network, we

minimize the Euclidean loss between the estimated and the

target expression parameters and textures:

LiT = ∥zi − ẑi∥
2

2
+ λT∥WT ⊙ (Tv

i − T̂v
i )∥

2

2
, (5)

where WT is the weight mask for the visible areas from the

HMC images and λT is the weight for the texture loss.

Total Loss: The entire MIA network is trained end-to-end

to optimize the networks’ parameters by minimizing:

minimize
ψ,γ,{θi}K

i=0

K
∑

i=0

LiT + λSLiS , (6)

where K is the number of subjects and λS is the weight for

the shape loss.

3.2. Augmentation

Data augmentation is a wildly practiced heuristic in

many deep learning tasks. The main goal is to make the

distribution of variations in training data more similar to

those in the test set. Most common data augmentations

techniques include scaling [41], color augmentation [23],

simple geometric transformations [40], and utilizing syn-

thetic data [22, 29]. However, a major source of variabil-

ity in our task stems from headset factors, such as varia-

tions in camera placement and focus, as well as the slop of

the headset relative to the face which varies during usage.

These variations are not easily modeled using standard aug-

mentation techniques that do not take the 3D shape of the

face into account. In this paper, we simulate headset-based

variations by perturbing the 3D rotation and translation of

the face shape in the training set, and use it to re-render aug-

mented views of each HMC image on random backgrounds.

Some examples are shown in Fig. 5. As demonstrated in the

experiments section below, this simple augmentation tech-

nique substantially improves the robustness of our method

to real world variations.
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Figure 6. The testing results for estimating the 3D shapes for six untrained subjects and their ground truth based on 11-view results in [49].

4. Experimental Results

This section reports experimental results and analysis on

MIA. The first experiment shows how MIA can estimate

accurate 3D shapes directly from HMC images of untrained

subjects. In the second experiment, we evaluate the quality

of MIA’s texture prediction for identities with pre-trained

avatars under challenging testing scenarios. In the third ex-

periment, we show how MIA can incorporate new subjects

with minimal training. In addition, we also present further

analysis about what MIA learns prior and during adaptation.

Data: We used 120 HMC captures of different subjects for

training and 21 HMC captures for testing. Training and test-

ing HMC captures do not overlap. Each HMC capture is a

45 minutes long video (30fps) of 11-views HMC images,

and contains 73 peak expressions, two sets of continuous

range-of-motion, recitation of 50 sentences and 5-10 min-

utes of conversion. The HMC images are in the IR spectrum

with a resolution of 480×640. During testing only 3-views

are available. For each subject, we have a pre-trained de-

coder to generate PS texture for various expressions from

arbitrary views. For more information, of how to build the

PS decoder see [26] and Eqn. 3.

Ground Truth: We utilize the result of the method in [49],

that solves for the correspondence between 11-views HMC

images and the CA parameters as the ground truth. Recall

that the training data is captured with 11-views to achieve

more precise results in the correspondence between HMC

and CA, while the testing data has only 3-views.

Baseline method: We compare MIA with the person spe-

cific (PS) encoder in [49]. The PS encoder is trained with

one HMC capture (3-view images) and uses a CNN archi-

tecture with the same number of parameters as ours.

Evaluation metrics: We report the average Euclidean error

for the eyes, mouth and face areas separately for both 3D

shape and the texture. The 3D shape errors are measured

in millimeters and the texture errors in raw intensity values

(i.e. 0-255). We report the localized error metrics to ana-

lyze failure modes better. For example, the 3D shape error

Table 1. Test results for 3D shape estimation in untrained subjects.

Subject
3D Shape Error (mm)

Face Eyes Mouth

person 1 1.68 1.08 2.90

person 2 1.51 1.21 2.32

person 3 1.07 0.74 1.82

person 4 1.84 1.20 2.92

person 5 1.45 0.89 2.23

person 6 1.47 0.97 2.56

person 7 1.73 1.20 2.98

person 8 1.57 0.89 2.52

person 9 1.21 0.91 1.84

person 10 1.58 1.00 2.68

overall 1.51± 0.23 1.00± 0.16 2.47± 0.42

in the eyes capture openness and blinking errors, while in

the mouth, they capture deviations in lip shapes important

for visual-speech. Similarly, texture error in the eyes is typ-

ically due to the errors in gaze direction, and in mouth, it

corresponds to incorrect teeth and tongue estimation.

Implementation details: In training, we use the Adam op-

timizer, setting the batch size to 32 and the initial learning

rate to 1e−3. We decrease learning rate by 8e−1 after each

25K iterations. In total, we train the encoder for 250K iter-

ations, and set both of λT and λS to 100. We crop and resize

the HMC images to 192× 192 to focus on the face areas.

The backbone network, Bψ , consists of two residual net-

works [17], one for eye images
[

H0,H1
]

∈ R
192×192×2

and another for the mouth H2 ∈ R
192×192. Each network

consists of a Res-Net head module, five BottleNeck blocks

and a 64-way fully connected layer. Each BottleNeck block

consists of ten convolutional layers with 3 × 3 and 1 × 1
filters. We add shortcut connections among the convolu-

tional layers, and each layer is followed by ReLU [31] and

Instance normalization [48] layers. To extract the final iden-

tity invariant features, we apply a global average pooling

and a 64-way fully connected layer to the activations of the

last BottleNeck block. The architecture of the 3D shape

network, Gγ , consists of four fully connected layers where

each one is followed by a leaky ReLU [51] layer with neg-

ative slope of 0.2. We normalize the extracted features
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Figure 7. Test results to estimate the 3D shape from HMC images of an untrained subject for a wide range of expressions.

from the HMC images and the neutral 3D shape, to account

for their different domains, by employing group normaliza-

tion [50] after concatenating the features. Finally, for the

texture network Fθ, we utilize the combination of a ReLU

layer and a fully connected layer without bias.

4.1. Quantitative Evaluations

This section quantifies the performance of MIA using

three experiments: (1) driving the 3D shape of untrained

subjects. (2) robustness of shape and texture estimation

for subjects with trained PS models. (3) generalization of

learned features on new subjects.

Driving 3D Shape: Inputs to the shape generation net-

work, Gγ , are the HMC images and the corresponding iden-

titiy’s neutral 3D shape. We train the network with 120 sub-

jects using the loss function in Eqn. 2 as guidance. Fig. 6

shows the estimated 3D shape for extreme expression ex-

amples from six untrained subjects along with their ground

truth. Our 3D shape estimator captures subtle details in

expressions necessary for inferring social signal. Table 1

shows the 3D shape errors for face, eyes and mouth areas of

the whole sequence for ten untrained subjects. The error is

less than 2mm in the face/eyes and 3mm in the mouth. Re-

call that MIA does not use any sample from the test subject

other than the neutral shape and has never seen any HMC

images for these subjects during training. Fig. 7 shows test-

ing results of one untrained subject for a wide range of ex-

pressions. Note that PS [49] is not able to estimate the 3D

shape for untrained subjects.

Comparing Table 1 with PS’s results for the 3D shape

error in Table 2 (different capture), we find that MIA out-

performs PS, despite PS having access to subject-specific

HMC images, and their target shapes, during training. We

suspect the reason for this is that MIA learns to marginalize

the extrinsic variability of the problem (i.e. environment,

headset) from the 120 subjects that is trained on, while the

PS tends to overfit to the specific HMC capture session used

for training. More comparative results can be found in the

video in the supplementary material.

Driving Full Avatars: In this experiment, we evaluate the

ability of MIA to generate both shape and texture and its

robustness against extrinsic factors such as headset, envi-

ronment and facial appearance variations. Here, data for

test subject is available during training, but from a different

HMC capture. The selected subject was captured on five

different dates; examples of the HMC images are shown in

Fig. 2. These samples show large appearance variations due

to facial hair, pose changes in the headset slop, and camera

assembly differences across headsets; it also contains back-

ground variation due to changing environment and overall

lighting differences. We use one HMC capture (Fig. 2(a))

of the subject with 119 HMC captures of other subjects for

training, and test on the remaining four HMC captures of

that subject. Table 2 compares the testing errors of MIA

against PS [49]. On test capture 1, which is very similar to

the training capture, PS [49] performs better than MIA. But,

Table 2. Testing results for a subject with multiple testing HMC captures with different variations. One HMC capture of the subject is

inside the training set. The 3D shape errors are in mm and the texture errors are in intensity.

Test Sample
Variations Method

3D Shape Error Texture Error

Capture Image Face Eyes Mouth Face Eyes Mouth

1 Fig. 2.(b) Headset
PS [49] 0.85 0.65 1.33 1.13 1.93 1.50

MIA 1.20 0.85 1.90 1.33 2.34 1.79

2 Fig. 2.(c)
Headset PS [49] 2.04 0.77 4.71 1.84 2.47 3.51

Facial appearance MIA 1.28 0.79 2.22 1.49 2.52 2.00

3 Fig. 2.(d)
Headset PS [49] 1.90 0.98 3.68 1.65 2.73 2.84

Facial appearance MIA 1.26 0.86 2.23 1.32 2.52 2.03

4 Fig. 2.(e)
Environment PS [49] 2.21 0.86 4.92 1.92 2.33 3.39

Facial appearance MIA 1.14 0.73 1.94 1.45 2.11 2.05

overall
PS [49] 1.75± 0.61 0.81± 0.13 3.66± 1.64 1.63± 0.35 2.36±0.33 2.81± 0.92

MIA 1.22±0.06 0.80±0.06 2.07±0.17 1.39±0.08 2.37± 0.19 1.96±0.12
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Table 3. Testing results for training and testing on new subjects

with pre-trained fixed backbone network.

Method
3D Shape Error Texture Error

Face Eyes Mouth Face Eyes Mouth

PS [49] 1.12± 0.26 0.74± 0.11 1.98± 0.65 2.22±0.61 2.90± 0.95 2.77± 0.83

MIA 1.05±0.19 0.74±0.09 1.71±0.37 2.22± 0.62 2.88±0.81 2.65±0.78

its performance declines significantly when testing on the

other captures, where variations in environment and facial

appearance are more extreme. Note that the overall errors

for MIA, for all areas of 3D shape and texture, are more sta-

ble and are similarly low across all test captures. The first

two rows of Fig. 10 shows visual comparison of methods on

the test HMC captures, where a significant reduction in ex-

pressive detail is noticeable in results for PS [49]. We refer

the reader to the supplementary material for more results.

Adaptation to New Identities: We evaluated the general-

ization of MIA’s feature extraction to new subjects on HMC

captures of 6 subjects that are not trained in MIA. Each of

the 6 subjects has more than one HMC capture exhibiting

variations in extrinsic factors. We used the pre-trained MIA

network with 120 subjects (excluding the test 6 subjects),

and fix the shape generation network, G, and backbone net-

work, Bψ . For each new subject, we trained a new small

texture network Fθ. During the testing on HMC captures

with variations, we used the newly trained texture estima-

tion branch for estimating the texture parameters, and de-

code both the texture and the 3D shape by utilizing Eqn. 3.

Table 3 shows the overall errors for 3D shape and texture

for different areas of 7 testing HMC captures of the 6 sub-

jects. MIA achieves lower errors for all areas with smaller

variability, demonstrating the effectiveness of the features

extracted from the fixed backbone network. The last three

rows of Fig. 10 show visualizations of this case for.

4.2. Ablation Study

3D augmentation layer: To analyze the advantage of us-

ing the 3D augmentation layer, we compare the errors of

the PS [49] model, MIA with 3D augmentation trained with

1 subject, MIA without 3D augmentation (3D Aug) trained

with 30 subjects, and MIA with 3D Aug trained with 30
subjects. Fig. 8 shows the average errors for the four test

captures in Table 2. It shows that even using the 3D Aug

layer with 1 subject reduces errors slightly in comparison

to PS [49]. However, there is huge drop in errors by using

the 3D Aug layer with 30 subjects. This reduction of er-

Figure 8. The advantage of the 3D augmentation layer, the errors

drop significantly by using both of 3D augmentation and MIA.

Figure 9. The influence of number of training subjects. The shape

errors are decreasing by increasing number of training subjects.

ror is more significant in the mouth area. It shows that the

combination of MIA and 3D Aug is effective.

Influence of number of subjects: We evaluate the influ-

ence of number of training subjects in the performance of

MIA during testing. We train MIA with 30, 60, 100 and 120
subjects, and test them on ten untrained subjects for estimat-

ing the 3D shapes. Fig. 9 shows that by increasing number

of training subjects the 3D shape errors are decreasing, es-

pecially for the mouth area.

4.3. Unsupervised Expression Correspondence

The MIA implicitly learns to solve for correspondence

across expressions in order to marginalize nuisance param-

eters (e.g., lighting). It naturally discovers that the best way

to encode HMC multi-identity data is finding a latent space

that only contains expression information. Fig. 11 illus-

trates how MIA learns to solve for correspondence across

expressions. The first column shows the input HMC images

and the second column is the CA of the subject in the first

column. The remaining columns are the CAs of other sub-

jects driven from the HMC images in first column, that is,

the same extracted features from HMC images are utilized

to estimate (by using the corresponding Fθ) a new expres-

sion parameter (with the same facial expression meaning),

z, in the latent space of each of the remaining subjects. As

we can observe, MIA is able to align the expression across

all of the subjects in an unsupervised manner, and creating

a common expression-only space. Please pay attention to

the mouth area in the second row of Fig. 11 that shows the

same expression with different mouth interior.

5. Conclusion and Future Directions

This paper proposes MIA to robustify and generalize ex-

isting PS methods for driving CAs. MIA learns to extract

identity invariant features related to facial expression while

marginalizing nuisance factors (headset, environment, fa-

cial expression) in an unsupervised manner. We show that

MIA is able to drive the shape component in untrained sub-

jects, and if the PS texture decoder is available, with a mini-

mum training, MIA can drive CAs for new subjects. For fu-

ture directions, first, we will design new loss function based

on the closeness of 3D surfaces to model the lips and eyes

closure. Second, we will work on texture-conditional de-

coders to make the texture part of the method generalizable

for new subjects without pre-trained decoders.
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HMC PS [49] MIA GT HMC PS [49] MIA GT

Figure 10. The comparison of PS [49] and MIA methods for animating the codec avatar from HMC images. The MIA can estimate more

expressive and accurate expressions.

Figure 11. The examples of synchronized expressions of training subjects by using the same input HMC images.
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