
Condensing CNNs with Partial Differential Equations

Anil Kag, Venkatesh Saligrama
Department of Electrical and Computer Engineering, Boston University

{anilkag, srv}@bu.edu

Abstract

Convolutional neural networks (CNNs) rely on the depth
of the architecture to obtain complex features. It results in
computationally expensive models for low-resource IoT de-
vices. Convolutional operators are local and restricted in
the receptive field, which increases with depth. We explore
partial differential equations (PDEs) that offer a global re-
ceptive field without the added overhead of maintaining
large kernel convolutional filters. We propose a new feature
layer, called the Global layer, that enforces PDE constraints
on the feature maps, resulting in rich features. These con-
straints are solved by embedding iterative schemes in the
network. The proposed layer can be embedded in any deep
CNN to transform it into a shallower network. Thus, result-
ing in compact and computationally efficient architectures
achieving similar performance as the original network. Our
experimental evaluation demonstrates that architectures with
global layers require 2− 5× less computational and storage
budget without any significant loss in performance.

1. Introduction
Convolutional neural networks (CNNs) have been the

backbone for recent advances in image recognition [19],
object detection [33], and other applications [31] interfac-
ing the image modalities. Convolutional filters with lim-
ited receptive fields act on localized input regions to gener-
ate low-level features. Features used for decision-making
are complex functions of these low-level features, achieved
through the composition of many such convolutional oper-
ators applied in sequence, resulting in deep networks with
high inference/train time and large model size.

Recent works [3, 5] have explored neural networks in-
spired by ordinary differential equations (ODEs), offer-
ing richer representation than their discrete counterparts.
Resnets [8] can be viewed as a discretized form of ODEs.
The final architecture based on these continuous layers leads
to higher computational cost in comparison to their discrete
counterpart [2], namely due to the costly fixed point solvers.
In contrast, we explore novel constraints on the feature maps,

based on partial differential equations (PDEs) that offer simi-
lar rich representation but with shallower neural networks. In
addition, we provide efficient and scalable solvers to provide
computational and storage savings.
Proposed Method. We explore a hybrid approach wherein
we modify discrete models by embedding a new layer with
a global receptive field that operates on the input feature
map and computes complex compositions of these low-level
features. We call this layer the Global feature layer. It ap-
proximately solves a PDE constraint that couples the input
and output feature maps. In a typical discrete model, at every
input resolution, the same convolutional block is applied
repeatedly m times. We modify this structure by keeping
only one convolutional block and replacing the m−1 blocks
with a single global feature layer (see Figure 1). Thus, reduc-
ing the deep neural network to a much shallower network
without any significant performance loss. It leads to smaller
models with low computational and storage costs. In addi-
tion, it improves both the train and inference times.

By keeping at least one block from the original architec-
ture, we are incorporating the signature of this architecture.
It allows the application of this generic global feature layer
to any architecture. Also, since a good start for any itera-
tive solver implies smaller steps to reach the solution, this
original block helps to initialize the PDE solution.

Estimated Savings. Suppose a Resnet architecture con-
structed with three resolutions has m residual blocks, and
for the three resolutions, the compute cost is = {c1, c2, c3}
respectively. The total compute cost for operating this net-
work is m × (c1 + c2 + c3). Global residual block re-
places m − 1 residual blocks with just one global block
and assuming that the cost of this global block is similar, i.e.
= {c1, c2, c3}, then the cost to operate the modified network
is 2× (c1 + c2 + c3). Given that m > 2, the modified net-
work can lead to computational savings over Resnet. Similar
conclusions can be drawn for storage savings.
Motivational Example. To motivate our approach, we ap-
ply the Global feature layer to the Resnet32 [8] architecture,
where at each feature map resolution, the same block repeats
5 times. With the experimental setup described in the sec-
tion 4, we train three models on the CIFAR-10 dataset: (a)

610



Figure 1. Replacing repeated blocks in a given CNN architecture with the Global layer for compute and model savings.

Resnet32 : same architecture as used in [8], (b) ODE based
Resnet32, i.e., MDEQ [2] modified to match feature map
configuration as in Resnet32, and (c) ResNet32-Global : re-
placed repeated blocks with global layers. Table 1 shows that
both Resnet32 and MDEQ have similar performance. Note
that MDEQ is significantly costly in terms of the floating-
point multiply-add operations (MACs). In contrast, the pro-
posed Resnet32-Global results in a much smaller model and
a significantly lower computational footprint without any hit
in the performance. This experiment clearly shows that the
Global layer results in the following benefits:

1. Shallow network. Resnet32-Global has ≈ 3× less depth.
2. Less storage. Resnet32-Global has ≈ 3× less parameters.
3. Less compute. Resnet32-Global uses ≈ 5× less MACs.
4. Readily embedable in any network.

Table 1. CIFAR-10 : Comparison between discrete Resnet32, ODE
based Resnet32 (MDEQ [2]), and our PDE embedded Resnet32-
Global. We compute the depth as the number of blocks in the
network. Train and Inference time denote the cost of processing one
pass of the train and test dataset on a V100 GPU. Supplementary
Table 16 lists results for Resnet (m = 2) and CIFAR-100 dataset.

Accuracy #Params #MACs Train
Time(s)

Inference
Time(s) Depth

Resnet32 92.49% 460K 70M 78 4.45 15
MDEQ 92.28% 1.1M 1.5B 409 23.32 -

Resnet32-Global 91.93% 162K 15M 24 1.91 6

Contributions.
• Proposed a Global feature layer that imposes PDE con-

straints on the input and output feature maps. Embedding
this layer in deep networks results in their shallower vari-
ants with a smaller footprint with similar performance.

• Embedded the proposed global layer in many existing
CNN architectures and conducted an extensive empirical
study on benchmark image recognition datasets to show
computational and storage savings.

• Proposed an efficient and approximate PDE solver to em-
bed in the neural network wherein model accuracy can be
traded-off for the computational budget.

• We provide pseudo-code for the Global layer that is
readily deployable in any popular deep learning li-
brary. Our PyTorch implementation is available at
https://github.com/anilkagak2/PDE_GlobalLayer.

2. Related Work

There is a vast literature related to models for object
recognition, including low complexity models. Here we only
include papers closely related to our approach.

Early Skip CNNs. Resnet [8], Highway networks [27],
Wide-Resnets [32], Dense-Nets [12], etc. proposed net-
works with skip/residual connections. These changes helped
alleviate the vanishing gradient issues in the deep neural
networks. These trained much deeper models and hence
achieved significantly better performance than the previous
generation models like AlexNet [19], VGG-Nets [26], etc.
Note that deeper models implicitly mean larger storage costs
and higher compute requirements.

Mobile/IoT ready CNNs. Many initial attempts
(SqueezeNet [14], SqueezeNext [6], MobileNets [11]) at
designing low complexity models included handcrafted fea-
ture blocks (with low rank filters, separable convolutions,
etc.) whose composition yielded small models with low
floating-point operations. Recently, EfficientNets [29] were
proposed to systematically study the effect of width, depth,
channels, etc., along with memory and MACs constraints.
There have also been efforts [21, 34] to search for neural ar-
chitectures that outperform hand-crafted architectures. Note
that these are complementary to our proposal.

Model Compression/Distillation. An alternate strategy
to obtain small models require model compression. Deep-
compression [7] is an early work where a pre-trained network
is pruned, quantized, and compressed to yield small networks
which can be deployed on the edge devices. Other works
include distilling [9] knowledge from a larger pre-trained
network into a small compact model. We do not pursue these
techniques to simplify our exposition.

ODE Inspired CNNs. Related work in this class has the
most similarity with our approach. Neural ODEs (NODEs)
[3] introduce continuous time layers following an ODE. It
uses black-box ODE solvers along with the adjoint method
for back-propagation. Augmented Neural ODEs [4] extend
NODEs to a richer class of functions while ANODE [5]
addresses the gradient computation in the adjoint method to
allow for more accurate gradients matching the discretization.
Neural ODEs and their variants do not demonstrate their
scalability to tasks like Imagenet.

611



There have been previous works that utilize ODE-inspired
models for sequential processing. Some of these models re-
quire the architecture to achieve equilibrium [15, 17], [1],
where the later has been extended to image modalities by
Multi-scale deep equilibrium models (MDEQs) [2]. MD-
EQs use implicit layers at multiple feature scales to scale to
large datasets such as Imagenet. Although they show good
performance on large-scale tasks, the model capacity still
needs to be nearly the same as the discrete counterparts. Al-
though implicit models offer low memory cost training, they
still do not offer much flexibility for inference. In addition,
their inference cost is much higher in comparison to discrete
variants such as Resnet.

PDE Inspired CNNs. [24] proposed new architectures
based on parabolic and hyperbolic partial differential equa-
tions. These connections with PDEs enable theoretical rea-
soning, such as the stability of the resulting network. Al-
though the resulting models are small, these models take a
significant hit in performance. NeuPDE [28] uses the convo-
lutional filters to approximate the differential operators for
generic second order PDE. NeuPDEs downsample the input
image to a manageable feature map through many convolu-
tional layers and then finally applies the PDE blocks. This
construction helps in reducing the model size but the gains
are not sufficient enough.

3. Method

In this section, we will formalize the PDE constraint on
the feature representation. We will describe the proposed
Global layer, including our PDE choice, and embed an ap-
proximate numerical solver in the neural network. Finally,
we will provide building blocks and pseudo-code to improve
the understanding of our architecture.

Notation. For simplicity, we will assume that the output
shape is the same as the input, and we are dealing with only
a 2D feature map represented by the X − Y plane. Let
I(x, y) ∈ Rh×w denote the input feature map with h × w
entries. Let H(x, y) ∈ Rh×w be the output feature map. We
will denote ∆xy as the differential operator (contains partial
differential operators for various interactions between the
two dimensions in the input).

3.1. PDE Constrained Features.

We enforce the following PDE constraint on the output
feature map H

∆xyH(x, y) = f(I(x, y)) (1)
where f is a function applied on the input feature map. The
above operator applies globally on the feature map and does
not restrict itself to the local receptive field of operators such
as one-layer convolutions.

Illustration. Before delving into further details about the
global feature layer (namely the exact PDE and the numeri-

cal solver), we provide an intuitive example on the MNIST
dataset to demonstrate the effectiveness of such a strategy.
We construct a network with one feature layer followed by
average pooling operation and classifier layer (see Figure 2).
Note that the feature map layer constructs only one feature
map. It gives rise to three networks by using different feature
layers : (a) CNN-Net: convolutional layer as the feature map,
(b) Residual-Net: a residual connection between the convo-
lutional layers, and (c) PDE-Net: PDE constrained layer
as the feature map. Note that all three networks have 524
parameters to ensure a fair comparison. Thus the only differ-
ence between these networks remains in the way features are
processed. We train these networks on the MNIST dataset
with the same settings (optimizer, learning rate, epochs, no
data-augmentations, see Sec. 4) to provide a fair evaluation.

On the held-out test set, CNN-Net achieves 92.01% accu-
racy, Residual-Net achieves 92.53% accuracy, while PDE-
Net achieves 95.03% accuracy. Since the network architec-
ture apart from the feature layer is the same, we can analyze
the feature map easily to see the contrast between the two
feature representations. Figure 2 shows the intermediate
representation from these neural networks. It shows that the
feature maps generated by PDE-Net effectively highlight
the input object by smoothing the noisy background and
increasing brightness around the object edges.

3.2. Global Feature Layer

To embed a PDE in the neural network layer, we need to
describe four components of the PDE: (a) its exact form, i.e.
∆xy , (b) a numerical solver, (c) initial guess of the solution,
and finally (d) choice of free parameters such as the function

Figure 2. Toy Example comparing different backbones: Convo-
lutional, Residual, and Global. We show network representation
for the input image for the letter three. Intermediate features from
Convolutional and Residual backbones do not show bright intensity
around the edges and have an uneven background. In contrast, the
Global layer smoothens it out and shows bright spots around the
digit. Thus, the Global layer provides a better and markedly differ-
ent representation than the other two backbones. All three networks
have 524 parameters. Network with Global layer achieves 95%
accuracy while the other two achieves ≈ 92.5% accuracy. It also
has a significantly lesser confusion between the letters 3 and 5. See
other visualizations in supplementary Sec. A.9.

612



f . We refer to this new layer as the Global feature layer and
describe these components below.

(a) PDE: At the heart of the Global feature layer is the
following generic advection-diffusion PDE 1

∂

∂t
H = ∇ · (D∇H) +∇ · (vH) + f(I) (2)

It lets us treat the input feature map pixels as particles in
motion with velocity v that interact with their neighborhood
through diffusion coefficient D. Starting at time t = 0 with
initial guess of the concentration H(t = 0), the solution
of this advection-diffusion equation provides the final par-
ticle concentration H(t = T ) at time T . It is the output
representation of the global feature layer. The motion of the
particles affects the concentration and is modelled by the
advection term ∇ · (vH). Similarly, the term ∇ · (D∇H)
describes the diffusion phenomenon, where particles shift
between low and high concentrations to reach a steady state.
Note that both D and v can be a function of the particle
locations. Finally, the term f(I) is the source of the particle
concentration.

In our 2D world, the velocity and diffusion coefficients
have two components, i.e. v = (u, v) and D = (Dx, Dy),
and the Eq. 2 boils down to the following form [13]

∂

∂t
H(x, y, t)+

∂

∂x

(
u(x, y, t)H(x, y, t)

)
+

∂

∂y

(
v(x, y, t)H(x, y, t)

)
=

∂

∂x

(
Dx

∂

∂x
H(x, y, t)

)
+

∂

∂y

(
Dy

∂

∂y
H(x, y, t)

)
+f(I(x, y))

(3)
(b) Iterative Solver: For an efficient implementation of

the global layer, we need a simple and efficient PDE solver
that can be embedded in the neural network and can achieve
approximate solutions easily. To obtain a finite element
scheme, it is standard in the literature to expand the partial
differential operators with their finite-difference elements.
Assume the discrete steps for x, y and t by δx, δy and δt
respectively. Following [13], we discretize the Eq. 3 as (see
Supplementary Sec. A.2 for detailed derivation),

LHk+1
x,y = MHk−1

x,y − 2(ux + vy)δtH
k
x,y + 2δtf(I(x, y))

+ (−Ax + 2Bx)H
k
x+1,y + (Ax + 2Bx)H

k
x−1,y

+ (−Ay + 2By)H
k
x,y+1 + (Ay + 2By)H

k
x,y−1

(4)

where L = (1 + 2Bx + 2By), and M = (1− 2Bx − 2By)

ux =
ux+1,y − ux−1,y

2δx
; vy =

vx,y+1 − vx,y−1

2δy
;

Ax =
uδt
δx

;Ay =
vδt
δy

;Bx =
Dxδt
δ2x

;By =
Dyδt
δ2y

;

1https://en.wikipedia.org/wiki/Convection-diffusion_equation

Given a suitable initialization of the output feature map
H at t = 0, Eq. 4 provides an update rule to find the PDE
solution at any time t = T . We need to initialize the algo-
rithm and we can take K steps of this iteration on the entire
2D map to get the solution at time T = Kδt.

(c) Initialization: An initial guess of the solution is
crucial for the convergence of the previous recursion. A
better initial guess leads to faster convergence. Multiple
strategies exist to initialize the output feature map, namely
(a) input feature map I , (b) fixed function of the input, and (c)
a learnable function of the input. We follow the last option.
Given an architecture, we use one of its building blocks as
the initialization point and learn its parameters during the
training stage with back-propagation. Thus, for architecture
such as Resnet, at any resolution level, we use the first block
as the output of the global feature layer at t = 0. We run the
PDE for K steps to get the final feature map at time K

δt
.

(d) Choice of the free parameters: There are some
free parameters in the Eq. 3. To complete the description
of the Global feature layer, we list our parameterization for
these free parameters, namely (a) function f (b) particle
velocity (u, v), and (c) diffusion coefficient (Dx, Dy). For
simplicity, we keep f as identity operator on the input and
learn other parameters as the depth-wise convolution over
the initialization. We point out that, for compute savings,
one can further fix these parameters by keeping identity
operations or treating these as hyper-parameters. We study
the impact of different choices for free parameters in our
ablations (see Sec. 4.6 & Supplementary Sec. A.6). We leave
the design choice improvements (ex. employing architectural
search for better combinations) for future work.

Finally, as a passing remark, we point out that we have
not handled the boundary conditions explicitly in our formu-
lation. Ideally, one should carefully design the behavior of
the PDE at the boundary. Instead, we roll the image such
that the first particle is a neighbor of the last. Since our goal
is only to find an approximation, this modification suffices.

Note that our choices for the PDE and the numerical
solver are motivated by the ease of implementation and
simplicity in exposition. We leave the exploration of vari-
ous other PDEs (Laplace equations, Heat equations, Navier-
Stokes etc.) and better solvers to future work.

Implementation. Algorithm 1 shows the pseudo-code
for the Global layer. This feature layer integrates easily in
any architecture with appropriate initializations. By default,
we take the discrete step sizes to be δt = 0.2, and run the
recursions till K = 5 steps, resulting in the output state at
T = Kδt = 1. We take δx = δy = 1 as the pixel values are
not available at any finer details. For all our experiments,
free parameters in Eq. 3 are depthwise convolutional oper-
ators with the same kernel size as the original block. For
CIFAR-10 low-budget experiments, we use constant diffu-
sion coefficients and set 1 as their default values.

613



Algorithm 1 Pseudo Code for the Global Feature Block

Input : Input feature map I ∈ Rh×w

Input : Initial solution guess F (I), Function f
Output : Output feature map O
Init : H−1 = H0 = F (I)
Compute velocity (u, v), diffusion coefficient (Dx, Dy)
for k = 1 to K do

Compute f(Hk−1, I)
for x = 1, y = 1 to h,w do

Set Hk+1[x, y] as per Eq. 4
end for
Set output feature map O = HK

end for

Differences from existing PDE/ODE CNNs. Existing
ODE-based CNNs [3] have focused on showing an equiva-
lence between Resnet like architectures and the continuous-
time ODEs. Although such connections provide new in-
sights, few efforts utilize such ideas for compact CNNs due
to expensive fixed point solvers and costly residual func-
tions. Thus, these architectures are unable to scale-up to
large datasets such as Imagenet (see Supplementary Sec. A.8
for further details).

Existing PDE-based CNNs [24, 28] apply generic stencil
operators and do not solve any specific PDE. Furthermore,
most of the works use such operators on the heavily down-
sampled initial feature map. In contrast, we apply the pro-
posed Global layer at every resolution level and remove the
dependence on the repetition of the architectural blocks.

We also point out that our update Eq. 4 is not a simple
residual connection. It is a discretization corresponding to
the PDE Eq. 3, wherein different elements interact in time
and spatial dimensions. In contrast, a recursive update of any
generic convolution would not necessarily correspond to an
iterative scheme and will not converge. In addition, we do
not have expensive non-linearities in the update equation that
slow down the recursion. Typically in ODE/PDE CNNs, the
function f is a residual block with multiple full convolutions
and non-linearities like batch-norm and activation functions.

Architectures with Global layer. Fig. 3 shows an
schematic of the proposed Global layer. As discussed earlier,
the free parameters in this layer are constructed as depthwise
convolutions. This layer can be embedded in any existing
architectures as seen in Sec. 4.

4. Experiments

In this section, we will apply the proposed Global layer
in popular architectures. We will show that the resulting
architectures have a much smaller computational and storage
footprint than the original models. We will evaluate these
models on various benchmark image recognition datasets.

4.1. Datasets

We use popular image classification datasets to show
that our architectures provide benefits across many tasks.
These datasets are publicly available. Our models are trained
from scratch using the available training data. We report
evaluation metrics on the publicly available test set.

1. MNIST-10 [20] : This dataset consists of 10 classes with
grayscale images of 28 × 28 pixels. There are 60, 000
images in the training set and 10, 000 images in the test
set. We normalize the data to be mean 0 and variance 1.

2. CIFAR-10/100 [18] : This dataset consists of RGB im-
ages of 32 × 32 pixels. It contains 50, 000 training and
10, 000 test images. It has two variants: (a) CIFAR-10
images are drawn from 10 classes, and (b) CIFAR-100 im-
ages are drawn from 100 classes. Unless explicitly stated,
we follow standard data augmentation techniques (mir-
roring/shifting) used in earlier works [8, 12], followed by
normalization to a standard gaussian across channels.

3. Imagenet-1000 [23] : It is the popular ILSVRC 2012
classification dataset. This 1000 way classification dataset
consists of 1.28 million training and 50, 000 validation
images. We follow the standard data augmentation (mir-
roring, resize and crop to shape 224 × 224) for training
and single crop for testing. Similar to previous works, we
report results on the validation set.

4.2. Experimental Setup

We implement the Global feature layer in PyTorch us-
ing the Algorithm 1. Our experiments include strong base-
lines such as Resnet [8], Densenet [12], Wide Resnet [32],
DARTS [22]. We embed global feature layers in these ar-
chitectures and remove feature block repetitions resulting in
Resnet-Global, Densenet-Global, Wide Resnet-Global, and
DARTS-Global. For the Imagenet experiments, we perform
similar adjustments to the state-of-the-art architectures such
as MobileNetV3 [10] and EfficientNet [29]. We follow guid-
ance from these works for a fair comparison. Unless the
original papers recommend extra augmentation or training
techniques, we minimize cross-entropy loss with the stochas-
tic gradient descent with momentum optimizer in all our
experiments. In addition, we cite known results from the
literature for baseline reference.

Figure 3. Schematic for the Global layer using the diffusion PDE.

614



We primarily report accuracy, the number of parameters,
and the number of floating-point multiply-add operations2.
These metrics measure the performance, model size, and
computational footprint of a model. Due to lack of space,
we tabulate depth, inference, and training times for only a
few experiments. We do not pursue compression-related
ideas (quantization, deep-compression, distillation, etc.) or
hardware optimizations in this work to simplify the crux of
our exposition. These can be further incorporated in our
scheme to provide similar gains as reported in earlier works.

4.3. Results on MNIST-10

Since the ODE baselines do not scale to large-scale
datasets, we compare our architectures with these baselines
on MNIST-10 dataset. We use the Resnet architecture in
this experiment. Similar to [3, 28], we use one Resnet ar-
chitecture where we apply one Global or one ODE layer
or 6 residual layers after downsampling the input twice. In
addition, we use a budget (< 5M MACs) Resnet architecture
where we apply one Global layer or residual layers without
downsampling (see Supplementary Sec. A.3 for details). We
minimize the cross-entropy loss using the SGD optimizer
with momentum. We follow a similar experimental setup
(epochs, learning rate, scheduler, etc.) as the baselines.
Results. Resnet-Global at same accuracy has 3− 5× stor-
age gains (number of parameters) and 2.5 − 3× compute
gains. Table 2 compares the Resnet-Global model with
Neural ODEs [3], NeuPDE [28], Resnet [8]. It shows that
Resnet-Global achieves similar performance as the baselines
while reducing the number of parameters and the compute
requirements. In particular, compared to Resnet, our archi-
tectures reduce the storage by 3−4× and reduce the compute
by 2−3×. On the other hand, Neural-ODEs have 3× higher
compute footprint when compared to Resnet.

Table 2. Results on MNIST-10. Networks with a Global layer have
significantly less storage and compute requirements than ODE,
PDE, and discrete CNNs.

Architecture Accuracy #Params #MACs
Neural ODEs [3] 99.49 220K 100M

NeuPDE [28] 99.49 180K
Resnet [3, 8] 99.59 600K 30M

Resnet-Global (ours) 99.51 136K 14M
Resnet 99.61 33.3K 5.7M

Resnet-Global (ours) 99.43 9.94K 1.7M

4.4. Results on CIFAR-10 & CIFAR-100

Architectures. We evaluated popular residual archi-
tectures in this task, namely Resnet, Wide-Resnets, and
DenseNets. We ran two variants of Resnet [8]: Resnet32

2Following convention [10, 29] we leverage the benchmarked PyTorch
utility https://github.com/Lyken17/pytorch-OpCounter for MACs.

repeats same residual block m = 5 times at every resolu-
tion while Resnet56 increases the repetitions to m = 9. We
strictly adhere to the configuration described in the original
paper [8]. We replace the repeated blocks in these architec-
tures with the Global layer, resulting in two Resnet-Global
architectures where we keep m = 1 and m = 2 repetitions.

We used Wide-Resnet [32] with 40 layers and 4× the
width of the residual architecture, commonly referred to as
WRN-40-4. It is constructed similar to the above-described
Resnet with m = 6 repetitions except with 4× the width.
We replace these repetitions with a Global layer, resulting
in Wide-Resnet-Global with m = 1. For DenseNet, we
borrowed the cost-efficient variant DenseNet-BC [12] which
has a growth rate of 12 and three dense blocks each with 16
dense layers, also known as Densenet-BC (k=12, L=100).

In addition, we apply the Global layer to an efficient
architecture found by neural architecture search DARTS [22]
which uses a cell found by the search. We modify this
network by replacing the cell repetitions with a global layer.

Training Details. All the global architectures and their re-
spective original baselines are trained with SGD+momentum
optimizer for 300 epochs. We set the initial learning rate to
0.1 and decay by 10 at epoch 150 and 225. Note that for
each architecture we use the recommended hyper-parameter
settings (batch size, weight decay, data-augmentation etc.).
When hyper-parameter recommendations are missing, we
use grid search over weight decay {3e−4, 2e−4, 1e−4, 5e−
5, 1e− 5} and batch size {32, 64, 128, 256} on a validation
set (see Supplementary Sec. A.4 for final hyper-parameters).

Results. We tabulate primary evaluation metrics in
the the Table 3. Additional evaluation metrics such as
train/inference times and architecture configurations are tab-
ulated in Table 4. Below we summarize the main findings.
(a) Computational and storage savings. Table 3 shows that
Global layer enabled architectures are compact and computa-
tionally efficient. In comparison to the baseline architectures,
models with Global layer achieve 2.5−4.5× flops reduction
and 2.5− 4.2× parameters reduction.
(b) Lower training and inference times. It is evident from
Table 4 that Global architectures have better training and
inference times, with at least 2× reductions. Note that we
can discard the training time in many IoT applications as a
one-time cost. In contrast, the inference time directly affects
the battery drain and the responsiveness of the device.
(c) Shallower neural networks. From Table 4, one can
deduce that Global architectures are shallower as they reduce
the number of cells in the architecture by nearly 3× in many
instances. For example, the popular Resnet56 model has 27
cells while Resnet-Global only has 9 cells.
(d) Integrable in many popular architectures. Table 3 and
4 show that Global layer can be successfully applied across
a range of architectures with the aforementioned benefits.
(e) Comparison at a fixed computational budget. It is

615



Table 3. Results on CIFAR-10 and CIFAR-100. Architectures with Global layer require 2− 5× less computational and storage budget.

Architecture CIFAR-10 CIFAR-100

Accuracy Params
(Savings)

MACs
(Savings) Accuracy Params

(Savings)
MACs

(Savings)
DenseNet-BC [12] 95.49 800K 300M 77.73 800K 300M

Resnet56 [8] 93.03 850K 127M - -
NeuPDE [28] 95.39 9M 76.39 9M

ANODE [5, 28] 94.96 11M 71.28 11M
Hamiltonian PDE [24] 89.3 262K 64.9 362K

MDEQ [2] 93.8 10M 8.3B - -
Resnet32 (m=5) 92.49 460K (1.0×) 70M (1.0×) 68.57 473K (1.0×) 70M (1.0×)

Resnet-Global (m=1) 91.93 162K (2.8×) 15M (4.7×) 68.01 168K (2.8×) 15M (4.7×)
Resnet56 (m=9) 93.03 850K (1.0×) 127M (1.0×) 70.48 861K (1.0×) 127M (1.0×)

Resnet-Global (m=2) 93.01 330K (2.6×) 30M (4.2×) 70.06 336K (2.6×) 30M (4.2×)
Densenet 95.32 769K (1.0×) 297M (1.0×) 77.21 800K (1.0×) 297M (1.0×)

Densenet-Global 95.01 465K (1.7×) 136M (2.2×) 75.69 481K (1.7×) 136M (2.2×)
Wide-Resnet 95.91 9.0M (1.0×) 1.30B (1.0×) 79.11 9.0M (1.0×) 1.30B (1.0×)

Wide-Resnet-Global 95.54 2.8M (3.2×) 425M (3.1×) 78.13 2.8M (3.2×) 427M (3.1×)
DARTS 97.11 3.3M (1.0×) 539M (1.0×) 82.51 3.4M (1.0×) 539M (1.0×)

DARTS-Global 96.83 783K (4.2×) 213M (2.5×) 81.89 835K (4.1×) 213M (2.5×)
Resnet 80.76 13K 3.42M 35.21 14K 3.42M

Resnet-Global 82.55 14K 3.6M 43.62 16K 3.6M
Wide-Resnet 83.83 22K 9.8M 39.01 23K 9.8M

Wide-Resnet-Global 85.51 23K 8.7M 50.23 24K 8.7M
DARTS 86.05 39K 7.7M 54.57 43K 7.7M

DARTS-Global 88.44 34K 8.2M 60.68 41K 8.2M

worth noting that for an IoT device, although storage space
could be a prohibitive factor for large models, the main issue
with such small devices is computational in nature. The num-
ber of floating-point operations used for inference directly
impacts the battery drain as well as the real-time latency
required for any successful ML application. Keeping this in
mind, we compare Global architectures with the baselines
under a low computational budget, i.e., < 10M MACs. At
this regime, Global models achieve much higher accuracy
than the baseline architectures. Thus, demonstrating that our
models are better suited for IoT applications.

4.5. Results on Imagenet-1000

Experiments on MNIST and CIFAR datasets demonstrate
that architectures with a Global layer are compact, shallower,
and computationally efficient. In this section, we show that
the Global layer improves the state-of-the-art models for the
Imagenet dataset. It has been already shown in the literature
that MobileNet [10, 25] and EfficientNet [29] models are
more cost-efficient than the Resnet/Densenet models.

Architectures. We apply the global layer to Mo-
bileNetV2, MobileNetV3, and EfficientNet and replace the
repetitions with the Global layer. For MobileNetV2, we
use the baseline with a width multiplier of 1. We obtain
MobileNetV2-Global by replacing all the invertible resid-
ual block repetitions with one Global layer at each feature
resolution. We use the large variant of MobileNetV3 with

a width multiplier of 1. We create MobileNetV3-Global by
replacing the building block (invertible residual + squeeze-
and-excite) with a Global layer. Finally, for the EfficientNet
family, we only pick the B0 variant due to its low compute
requirements. We provide the architecture details along with
building blocks in the Supplementary Sec. A.5.

Training Details. Due to computing limitations, we
do not re-train the baselines and only report their publicly
known performance metrics in Table 5. We train the ar-
chitectures with the Global layer from scratch using the
hyper-parameter recommendations from the baselines. We
use the RMSProp optimizer with 0.9 momentum to mini-
mize the cross-entropy loss along with a weight decay term
with a value of 1e− 5. The remaining hyper-parameters are
available in the Supplementary Sec. A.5.

Table 4. CIFAR-10: Train & Inference times (cost of one pass
through train and test dataset on a V100 GPU) along with the
number of cells. Total cells are a proxy for depth of the network.

Architecture Accuracy Train
Time(s)

Inference
Time(s)

original
cells

global
cells

total
cells

Resnet56 93.03 119 6.71 27 0 27
Resnet-Global 93.01 56 2.33 6 3 9

Densenet 95.32 138 10.22 48 0 48
Densenet-Global 95.01 24 3.4 24 2 26

Wide-Resnet 95.91 34 4.88 18 0 18
Wide-Resnet-Global 95.54 20 2.71 3 3 6

DARTS 97.11 126 6.86 20 0 20
DARTS-Global 96.83 61 3.43 6 3 9

616



Results. Table 5 reports the top1 accuracy along with the
number of parameters and number of multiply-add opera-
tions. Below we summarize the main findings.

(a) Computational and storage savings. Table 5 shows
that Global layer enabled architectures are compact and com-
putationally efficient. Our architectures achieve similar per-
formance as the baselines with 1.5× fewer MACs and 2.5×
parameters savings. In addition, with a slight reduction in
accuracy, we save 2× MACs and 3× parameters.

(b) Lower training and inference times. Global archi-
tectures have better training and inference times, with nearly
2× reductions (see Supplementary Sec. A.5).

(c) Integrable in many popular architectures. Table 5
show that the Global feature layer can be successfully ap-
plied across a range of architectures.

Table 5. Results for Imagenet.

Architecture Imagenet
Top-1 #Params #MACs

MobileNet [11] 70.6 4.2M 575M
SqueezeNext [6] 67.44 3.23M 708M

DenseNet-169 [12] 76.2 14M 3.5B
Resnet-152 [8] 77.8 60M 11B

MDEQ-Small [2] 75.5 18M
MobileNetV2 [25] 72.0 3.4M (1.0×) 300M (1.0×)

MobileNetV2-Global 71.63 1.6M (2.1×) 193M (1.6×)
MobileNetV2-Global-s 69.03 1.2M (2.8×) 150M (2.0×)

MobileNetV3 [10] 75.2 5.4M (1.0×) 219M (1.0×)
MobileNetV3-Global 74.11 3.0M (1.8×) 156M (1.4×)

MobileNetV3-Global-s 71.89 1.8M (3.0×) 110M (2.0×)
EfficientNet-B0 [29] 77.1 5.3M (1.0×) 390M (1.0×)

EfficientNet-B0-Global 76.12 2.4M (2.2×) 244M (1.6×)
EfficientNet-B0-Global-s 74.53 1.8M (2.9×) 201M (1.9×)

4.6. Ablative Experiments

In this section, we probe various aspects of the proposed
method. Due to lack of space, we refer the reader to the
Supplementary Sec. A.6 for additional ablations.
(A) Impact of K in iterative solver. We study the effect of
the K hyper-parameter in the iterative solver. On CIFAR-10
and CIFAR-100 datasets, Table 6 shows the performance
of the Resnet-Global model (see Sec. 4.4) as we vary K.
Note that the increasing K does not increase the number of
parameters in our formulation. In this case, for CIFAR-10,
Resnet-Global has 162K parameters, while for CIFAR-100,
Resnet-Global has 168K parameters. Our default choice
of K = 5 is justifiable from the marginal improvement in
accuracy with increased computational cost.
(B) Baseline and Global model with same MACs. Our
earlier experiments showed that the Global layer improves
the computational footprint of any architecture. In this abla-
tion, we compare the Global architectures with the baselines
by keeping the same computational budget. Table 7 shows
the performance of these models on the CIFAR-100 dataset.
Global models improve baselines by up to 4%.

Table 6. Effect of the hyper-parameter K in update Eq. 4.

Architecture K CIFAR-10 CIFAR-100
Accuracy #MACs Accuracy #MACs

Resnet-Global 1 90.69 14.3M 66.89 14.3M
Resnet-Global 3 91.34 14.7M 67.37 14.7M
Resnet-Global 5 91.93 15M 68.01 15M
Resnet-Global 10 92.01 15.5M 68.23 15.5M
Resnet-Global 20 92.21 17M 68.24 17M

Table 7. Global models with similar budget as original models.

Architecture CIFAR-100
Accuracy #Params #MACs

Resnet56 70.48 861K 127M
Resnet-Global 74.33 1.32M 119M

Densenet 77.21 800K 297M
Densenet-Global 78.91 922K 247M

Wide-Resnet 79.11 9M 1.3B
Wide-Resnet-Global 80.53 9M 1.3B

DARTS 82.51 3.4M 539M
DARTS-Global 84.19 2.4M 519M

(C) Non-linear Residual block as f . We compare the cost
of using a standard Residual block as the function f in the
update Eq. 4 instead of the identity function. Table 8 shows
the performance characteristics of Resnet and WideResnet
on CIFAR-10 and CIFAR-100. It shows that using Residual
block only brings marginal improvements in accuracy (<
0.5%) with a significant increase in compute cost.

Table 8. Ablative experiments to study the effect of the using a
Residual block instead of our current choice in update Eq. 4. Here,
all architectures use the Global layer.

Global Function CIFAR-10 CIFAR-100
Architecture f Acc. #Params #MACs Acc. #Params #MACs

Resnet Identity 91.93 162K 15M 68.01 168K 15M
Resnet Residual 92.28 175K 27M 68.37 181K 27M

WideResnet Identity 95.54 2.8M 425M 78.13 2.8M 427M
WideResnet Residual 95.67 3M 566M 78.34 3.1M 567M

5. Conclusion
We proposed a novel feature layer that couples the input

and output feature map with PDE constraints. The proposed
Global layer is readily deployable across many existing archi-
tectures. We show that the architectures with Global layers
are more compact, shallower, and require less compute for
inference and training. Empirical evaluations demonstrate
that the proposed layer provides 2 − 5× storage and com-
putational savings. Since our work reduces model footprint,
we do not foresee a negative societal impact.

Acknowledgement
This research was supported by Army Research Office

Grant W911NF2110246, the National Science Foundation
grants CCF-2007350 and CCF-1955981, ARM Research
Inc., and the Hariri Data Science Faculty and Student Fel-
lowship Grants.

617



References
[1] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilib-

rium models. In Advances in Neural Information Processing
Systems (NeurIPS), 2019. 3

[2] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale
deep equilibrium models. 2020. 1, 2, 3, 7, 8

[3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations. In
Advances in Neural Information Processing Systems, pages
6571–6583, 2018. 1, 2, 5, 6, 12, 13, 15

[4] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Aug-
mented neural odes. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32,
pages 3140–3150. Curran Associates, Inc., 2019. 2

[5] Amir Gholami, Kurt Keutzer, and George Biros. ANODE: un-
conditionally accurate memory-efficient gradients for neural
odes. CoRR, abs/1902.10298, 2019. 1, 2, 7

[6] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xi-
angyu Yue, Peter H. Jin, Sicheng Zhao, and Kurt Keutzer.
Squeezenext: Hardware-aware neural network design. CoRR,
abs/1803.10615, 2018. 2, 8

[7] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. International Con-
ference on Learning Representations (ICLR), 2016. 2

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
1, 2, 5, 6, 7, 8, 13, 16

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,
2019. 5, 6, 7, 8, 14, 15

[11] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 2, 8

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. 2, 5, 6, 7,
8, 13

[13] G D Hutomo, J Kusuma, A Ribal, A G Mahie, and N Aris. Nu-
merical solution of 2-d advection-diffusion equation with vari-
able coefficient using du-fort frankel method. 1180:012009,
feb 2019. 4, 12

[14] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,
Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. CoRR, abs/1602.07360, 2016. 2

[15] Anil Kag and Venkatesh Saligrama. Time adaptive recurrent
neural network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
15149–15158, June 2021. 3

[16] Anil Kag and Venkatesh Saligrama. Training recurrent neural
networks via forward propagation through time. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 5189–
5200. PMLR, 18–24 Jul 2021. 17

[17] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. Rnns in-
crementally evolving on an equilibrium manifold: A panacea
for vanishing and exploding gradients? In International
Conference on Learning Representations, 2020. 3

[18] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 5

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems,
volume 25, pages 1097–1105. Curran Associates, Inc., 2012.
1, 2

[20] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. 5

[21] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan L. Yuille, Jonathan Huang, and Kevin
Murphy. Progressive neural architecture search. CoRR,
abs/1712.00559, 2017. 2

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 5, 6, 13, 14, 17

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015. 5

[24] Lars Ruthotto and Eldad Haber. Deep neural networks moti-
vated by partial differential equations, 2018. 3, 5, 7

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018. 7, 8, 14

[26] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
International Conference on Learning Representations, 2015.
2

[27] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmid-
huber. Highway networks. CoRR, abs/1505.00387, 2015.
2

[28] Yifan Sun, Linan Zhang, and Hayden Schaeffer. NeuPDE:
Neural network based ordinary and partial differential equa-
tions for modeling time-dependent data. In Jianfeng Lu and
Rachel Ward, editors, Proceedings of The First Mathematical
and Scientific Machine Learning Conference, volume 107 of

618



Proceedings of Machine Learning Research, pages 352–372,
Princeton University, Princeton, NJ, USA, 20–24 Jul 2020.
PMLR. 3, 5, 6, 7, 12, 13

[29] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114, Long Beach, California, USA, 09–15 Jun
2019. PMLR. 2, 5, 6, 7, 8, 15

[30] Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le. Learn-
ing longer-term dependencies in RNNs with auxiliary losses.
In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages
4965–4974. PMLR, 10–15 Jul 2018. 17

[31] Yaqing Wang, Quanming Yao, James Kwok, and Lionel M.
Ni. Generalizing from a few examples: A survey on few-shot
learning, 2020. 1

[32] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In BMVC, 2016. 2, 5, 6, 13

[33] Zhong-Qiu Zhao, Peng Zheng, Shou tao Xu, and Xindong
Wu. Object detection with deep learning: A review, 2019. 1

[34] Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning. CoRR, abs/1611.01578, 2016. 2

619


