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Abstract

Recent studies show that the state-of-the-art deep neu-
ral networks are vulnerable to model inversion attacks, in
which access to a model is abused to reconstruct private
training data of any given target class. Existing attacks
rely on having access to either the complete target model
(whitebox) or the model’s soft-labels (blackbox). However,
no prior work has been done in the harder but more prac-
tical scenario, in which the attacker only has access to the
model’s predicted label, without a confidence measure. In
this paper, we introduce an algorithm, Boundary-Repelling
Model Inversion (BREP-MI), to invert private training data
using only the target model’s predicted labels. The key idea
of our algorithm is to evaluate the model’s predicted labels
over a sphere and then estimate the direction to reach the
target class’s centroid. Using the example of face recogni-
tion, we show that the images reconstructed by BREP-MI
successfully reproduce the semantics of the private train-
ing data for various datasets and target model architec-
tures. We compare BREP-MI with the state-of-the-art white-
box and blackbox model inversion attacks, and the results
show that despite assuming less knowledge about the tar-
get model, BREP-MI outperforms the blackbox attack and
achieves comparable results to the whitebox attack. Our
code is available online. 1

1. Introduction

Machine learning (ML) algorithms are often trained on
private or sensitive data, such as face images, medical
records, and financial information. Unfortunately, since ML
models tend to memorize information about training data,
even when stored and processed securely, privacy informa-
tion can still be exposed through the access to the mod-
els [20]. Indeed, the prior study of privacy attacks has
demonstrated the possibility of exposing training data at
different granularities, ranging from “coarse-grained” infor-
mation, such as determining whether a certain point partici-

1https://github.com/m-kahla/Label-Only-Model-
Inversion-Attacks-via-Boundary-Repulsion

pates in training [10,14,16,21] or whether a training dataset
satisfies certain properties [9,15], to more “fine-grained” in-
formation, such as reconstructing the raw data [2, 3, 7, 24].

We focus on model inversion (MI) attacks, which recre-
ates training data or sensitive attributes given the access to
the trained model. MI attacks cause tremendous harm due
to the “fine-grained” information revealed by the attacks.
For instance, MI attacks applied to personalized medicine
prediction models result in the leakage of individuals’ ge-
nomic attributes [8]. Recent works show that MI attacks
could even successfully reconstruct high-dimensional data,
such as images. For instance, [3,7,23,24] demonstrated the
possibility of recovering an image of a person from a face
recognition model given just their name.

Existing MI attacks have either assumed that the attacker
has the complete knowledge of the target model or assumed
that the attack can query the model and receive model’s
output as confident scores. The former and the latter are
often referred to as the whitebox and the blackbox threat
model, respectively. The idea underlying existing white-
box MI attacks [3, 24] is to synthesize the sensitive fea-
ture that achieves the maximum likelihood under the target
model. The synthesis is implemented as a gradient ascent
algorithm. By contrast, existing blackbox attacks [2,19] are
based on training an attack network that predicts the sen-
sitive feature from the input confidence scores. Despite
the exclusive focus on these two threat models, in prac-
tice, ML models are often packed into a blackbox that only
produces hard-labels when being queried. This label-only
threat model is more realistic as ML models deployed in
user-facing services need not expose raw confidence scores.
However, the design of label-only MI attacks is much more
challenging than the whitebox or blackbox attacks given the
limited information accessible to the attacker.

In this paper, we introduce, BREP-MI, a general algo-
rithm for MI attack in the label-only setting, where the at-
tacker can make queries to the target model and obtain hard
labels, instead of confidence scores. Similar to the main
idea of whitebox attacks, we still try to synthesize the most
likelihood input for the target class under the target model.
However, in the label-only setting, we cannot directly cal-
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Figure 1. Intuitive explanation of BREP-MI. (A) Query the labels
over a sphere and estimate the direction on the sphere that can po-
tentially lead to the target label class. (B) Update the synthesized
image according to the estimated direction. Alternate between the
estimation and update until the sphere fits into the target class. (C)
Increase the radius of the sphere. (D) Repeat the steps above until
the attack hits some query budget.

culate the gradient information and leverage it to guide the
data synthesis. Our key insight to resolve this challenge
is that a high-likelihood region for a given class often lies
at the center of the class and is far away from any deci-
sion boundaries. Hence, we design an algorithm that allows
the synthesized image to iteratively move away from the
decision boundary, as illustrated in Figure 1. Specifically,
we first query the labels over a sphere and estimate the di-
rection on the sphere that can potentially lead to the target
label class (A). We progressively move according to esti-
mated directions until the sphere fits into the target class
(B). We then increase the radius of the sphere (C) and re-
peat the steps above until the attack hits some query budget
(D). We theoretically prove that for linear target models, the
direction estimated from hard labels queried on the spheres
aligns with the gradient direction. We empirically show that
BREP-MI can also lead to successful attacks against deep
neural network-based target models. In particular, the effi-
cacy of the attack is even higher than the existing blackbox
attacks and comparable to the existing whitebox attacks.

Our contributions can be summarized as follows: (1)
We propose the first algorithm for label-only model inver-
sion attacks. (2) We provide theoretical justification for
the algorithm in the linear target model case by proving
the updates used in our algorithm align with the gradient
and also analyze the error of alignment for nonlinear mod-
els. (3) We evaluate the attack on a range of model ar-
chitectures and datasets, then show that despite exploiting
less information about the target model, our attack outper-
forms the confidence-based blackbox attack by a large mar-
gin and achieves comparable performance to the state-of-
the-art whitebox attack. Besides, we will release data, code,
and models to facilitate future research.

2. Related Work
Model Inversion Attacks. Model inversion attempts to
reconstruct from partial up to full training sample. Typi-
cally, MI attacks can be formalized as an optimization prob-

lem, which goal is to find the sensitive feature value that
achieves the highest likelihood under the model being at-
tacked. However, when the target model is a deep neural
network (DNN) or the private data lie in high-dimensional
space, such optimization problem becomes non-convex and
directly solving it via gradient descent may result in poor
attack performance [7]; for example, when attacking a face
recognition model, the recovered images are blurry and do
not contain much private information. Recent work [24]
proposes a GAN-based MI attack method which is effec-
tive on DNNs. In particular, they learn a generic prior from
public data via GAN and solve the optimization problem
over the latent space rather than the unconstrained ambi-
ent space. However, their attack method does not fully ex-
ploit private information contained in the target model at
the stage of training GAN. [3] significantly improves the at-
tack performance through a special design of GAN which
can distill knowledge from the target model; as a result, the
generated images align better with the private distribution.
They further improve the performance by ensuring that both
the recovered image and its neighboring images have high
likelihood. While [3, 24] achieve success on attacking vari-
ous models and datasets, their attacks rely on whitebox ac-
cess to the model. In many cases, the attacker can only
make prediction queries against a model, but not actually
download the model, which motivates the study of blackbox
MI attacks. [23] analyzes the blackbox setting and proposes
an attack model which swaps the input and prediction vector
of the target model to perform model inversion. [2] proposes
to train a GAN and a surrogate model simultaneously, with
the GAN generating inputs that resemble private training
data and the surrogate model mimicking the target model’s
behavior. All of the blackbox attacks make an assumption
that prediction confidences of the target model are revealed
to the attacker. However, it is more practical in real-world
setting that an adversary, who only makes queries to the
model, can only obtain the hard labels, without confidence
scores. From this aspect, we aim to provide an effective MI
attack method that only requires access to the hard label,
which we refer to as label-only MI attacks.

Other Privacy Attacks. Asides from MI, there are two
other categories of privacy attacks that allow adversaries to
gain unauthorized information from the target model and
its data. In a membership inference attack, the attacker at-
tempts to evaluate whether a certain point is used in the tar-
get model’s training. This attack technique was introduced
by [21] who created multiple shadow models to estimate
the target model. [10, 14, 16] pointed out that the member-
ship inference attack exploits the overfitting of specific data
points. Interestingly, [5] performs a membership inference
attack under same setting as our BREP-MI attack and notes
that the viable defense against such an attack is via differ-
ential privacy (DP). DP [1,6] ensures that the trained model
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is stable to the change of any single record in the training
set. However, with differential privacy, the target model’s
test accuracy will significantly degrade. Additionally, prop-
erty inference attacks aim to infer from the properties about
the training dataset [9]. Compared to these attacks, MI is
arguably more challenging as the information it attempts to
recover is higher in resolution.

3. Threat Model
Attack goal. In MI attacks, given the access to a target
model f : [0, 1]d → R|C| and any target class c∗ ∈ C, the
attacker attempts to recover a representative point x∗ of the
training data from the class c∗; d represents the dimension
of the model input; C denotes the set of all class labels and
|C| is the size of the label set. For example, an attack on the
face recognition classifier would try to recover the face im-
age for a given identity based on the access to the classifier.

Model knowledge. The attacker’s knowledge about a tar-
get model can take different forms: (i) Whitebox: complete
access to all target model parameters; ii) Blackbox: access
to the confidence scores output by the target model; and
iii) Label-only: access to only the hard labels output by
the model without the confidence scores. Our paper will
focus on the label-only setting. Specifically, given the tar-
get network f , the attacker can query the target network at
any input x and obtain the corresponding predicted label
ŷ(x) = argmaxc∈C fc(x).

Task Knowledge. For the rest of the paper, we assume
that the attacker has knowledge about the task that the target
model performs. This is a reasonable assumption, since this
information is available for existing online models, or can
be inferred from output labels.

Data Knowledge. Since we assume that attackers know
the task of the attacked model, it is reasonable to assume
that they can gain access to a public dataset from a related
distribution. For example, if attackers know that the target
model is trained to perform facial recognition, they can eas-
ily gather a public dataset by leveraging the existing open-
sourced datasets or crawling data from the web. Through-
out the paper, we assume that the public data and the private
data do not share any classes (e.g., identities) in common.

Target models. Our approach neither makes assumption
on the target model architecture, nor requires the attacker to
have any information about it. In other words, our approach
is model-agnostic. We will empirically show in Section 5
that our BREP-MI attack generalizes to a variety of models
with different architectures and sizes.

Target labels. The attack can be targeted, when the goal
is to find n input images that maximize a set of n prede-
fined labels, or untargeted, when the goal is to find n input
images that maximize a set of any n labels. The proposed

algorithm can apply to both scenarios. In our evaluation,
we will focus on the more challenging scenario, where the
attack is targeted for n specific labels.

4. Algorithm Design
In this section, we will present the design of our pro-

posed algorithm BREP-MI. We will start by formulating the
MI attack as an optimization problem. Then, we describe
an algorithm to estimate the gradient of the MI optimiza-
tion objective based only on predicted labels. We will rigor-
ously characterize the alignment between the estimate and
the true gradient for the special case of linear models and
provide insights into the attack efficacy for deep, nonlinear
models.

4.1. Problem Formulation

Without loss of generality, we state the attack problem
formulation for a single target label and define Mc∗ : Rd →
R such that

Mc∗(x) = fc∗(x)−max
c ̸=c∗

fc(x), (1)

where c∗ is the target label. Mc∗(x) represents the logit
(or confidence score) difference between the target class c∗

and the most likely label in the rest of the classes. Note
that when x is predicted into the target class (i.e., c∗ =
argmaxc∈C fc(x)), Mc∗(x) > 0. Clearly, the most rep-
resentative input for the target class c∗ should be most dis-
tinguishable from all the other classes. Hence, we cast the
MI problem into an optimization problem that seeks for the
input that achieves maximum difference between the confi-
dence for the target class and the highest confidence for the
other classes:

arg max
x∈[0,1]d

Mc∗(x). (2)

However, for images, x usually lies in a high-
dimensional continuous data space and optimizing over this
space can easily get stuck in local minima that do not cor-
respond to any meaningful images. To resolve this issue,
we leverage the idea in [3,23,24] and optimize over a more
semantically meaningful latent space. This is done by using
a public dataset to train GAN models and then optimizing
over the input to the GAN generator. Denote the publicly
trained generator by G(z), where z ∈ Rd′

and d′ < d.
Now, the MI optimization problem can be updated to reflect
the change of optimizing z rather than x as follows:

argmax
z∈Rd

Mc∗(G(z)). (3)

Unlike the whitebox setting, we cannot directly optimize
Mc∗(G(z)) using gradients as we do not have access to the
model parameters f . Moreover, it is also not possible to
apply zero-order optimization algorithms, as they require
access to the confidence scores output by the model.
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4.2. BREP-MI Algorithm

The intuition behind our algorithm is that the farther a
point is from the decision boundary of a class, the more
representative this point becomes to the class. Thus, the
centroid of any class should be its good representative. In-
spired by this, we design an algorithm which tries to grad-
ually move away from the decision boundary. In a high
level, our algorithm proceeds by first sampling points over a
sphere and then querying their labels. Intuitively, the points
that are not predicted into the target class represent the di-
rections that we want to move away from. Hence, we take
an average over those points and move in the direction op-
posite to the average. If all the points are predicted into the
target class, then we will increase the radius.

Let sign(·) be a function that returns 1 if the input is pos-
itive and −1, otherwise. We define Φc∗ : Rd → {−1, 0}:

Φc∗(z) =
sign(Mc∗(z))− 1

2
(4)

=

{
0, if c∗ = argmax

c∈C
fc(G(z))

−1, otherwise.
(5)

Essentially, Φc∗(z) marks points that are not predicted into
the target class. Then, we define our gradient estimator as

M̂c∗(z,R) =
1

N

N∑
n=1

Φc∗(z +Run)un, (6)

where un is a uniformly random point sampled over a d′-
dimensional sphere with radius R and N is the number of
points sampled on the sphere. Note that M̂c∗(z,R) can be
calculated in the label-only setting as it only requires the
knowledge of predicted label of the sampled points. We
will then use M̂c′(z,R) to update z:

z ← z + αM̂c∗(z,R), (7)

where α is the update step size. It can be either a fixed
value or a function of the current radius R. When all points
sampled from the sphere of the current radius are predicted
into the target class, i.e., Φc∗(z + Run) = 0 for all n =
1, . . . , N , then we increase the radius and alternate between
estimating M̂c′(z,R) using Eq. (6) and performing update
with Eq. (7) at the new radius.

The pseudo-code of BREP-MI is provided in Algo-
rithm 1. BREP-MI starts with the initial point correctly clas-
sified as the target class. To ensure this, images are sampled
from the GAN until a point belonging to the target class is
generated. Note that the initial point, although classified
into the target class, is almost never a representative point
for the target class (see more examples in Fig. 3). The ra-
dius of the sphere is initialized to a reasonably small value.
Then, the algorithm will try to move away from the decision
boundary, iteratively. At each iteration, we sample N points

on the sphere with radius R centered at the current point and
query their labels from the target model. If all the points are
classified into the target class, the radius will be enlarged;
otherwise, we estimate M̂c′(z,R) using Eq. (6) and update
z according to Eq. (7). Note that the update is reverted if
the new point z lies outside the target class. In that case, we
will resample the points on the sphere and compute a new
update. The algorithm will be halted when it is not possi-
ble to find a larger sphere such that all the samples on that
sphere fall into the target class. The output of the algorithm
is a point (z∗) with the largest sphere that can fit into the
target class. This indicates that the point is the farthest from
the boundary. We will use this point to evaluate the attack.

Algorithm 1: BREP-MI Decision-Based Zero Or-
der Optimization Algorithm.

input : Target model’s hard-label prediction ŷ ;
target class c∗, number of samples N ;
number of maximum iterations maxIters;
initial sphere sampling radius R0; radius
multiplier γ; data point learning rate α

output: Representative sample z∗ for c∗.
ensure: A sample z in the target class c∗ by

repeatedly sampling from the GAN’s latent
space.

1 Set R← R0.
2 Set iters← 0.
3 Set points← vector(N)
4 while iters < maxIters do
5 points← random N points on a sphere r=R

// Check if all sampled points are
in target class.

6 if points in c∗ then
// Update radius and current best

point
7 R← R× γ .
8 z∗ ← z .
9 iters← 0.

10 else
11 Compute M̂c∗(z,R) via Eq. (6)
12 znew ← the RHS of Eq. (7)
13 if if ŷ(znew) = c∗ then
14 z ← znew

15 end
16 end
17 end

4.3. Attack Justification

As our gradient estimator M̂c∗(z,R) repels non-target-
class points, intuitively, it points towards the direction that
increases the target class’ likelihood. We provide a theorem
that characterizes the alignment between the proposed esti-
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mator and the true gradient ∇Mc∗ (z) for special cases of
linear classification models (e.g., logistic regression).

Theorem 1. Assume f has a linear classification model.
Let z be an arbitrary point within the target class, i.e.
Mc∗(z) > 0. Then, the cosine of the angle between
E[M̂c∗(z,R)] and ∇Mc∗ (z) is bounded by

cos∠
(
E
[
∇̂Mc∗ (z,R)

]
,∇Mc∗ (z)

)
(8)

≥ 1−O
(

Mc∗ (z)
2
(d− 1)2

δ2R2 ∥∇Mc∗ (z)∥22

)
. (9)

Therefore, with increasing radius R,

lim
R→∞

cos∠
(
E
[
M̂c∗ (z,R)

]
,∇Mc⋆ (z)

)
= 1,

which tells that the estimator is asymptotically unbiased for
gradient estimation.

The proof is provided in the Appendix 1.1. Theorem 1
shows that as long as R is large enough, the gradient esti-
mator aligns well with the actual gradient.

For the deep learning model with bounded nonlin-
earity, we can also derive the bound for the cosine
of the angle between the estimate and the true gra-
dient: cos∠

(
E
[
∇̂Mc∗ (z,R)

]
,∇Mc∗ (z)

)
≥ 1 −

O
(
[Mc∗ (z)

2+L2δ4R4+4Mc(z)δ
2LR2](d−1)2

δ2R2∥∇Mc∗ (z)∥2
2

)
, where L char-

acterizes the level of nonlinearity. A more formal statement
of the result is provided in Appendix 1.2. The result shows
that with increasing R the estimated gradient will align with
the true gradient. However, after a certain point of inflec-
tion, increasing radius will only decrease the accuracy of
the estimate. In all experiments, the maximum R we reach
is small (usually less than 20) and the loss was always de-
creasing when R increases. This means that our gradient
estimation was correct and we are not reaching this point of
inflection in practice.

5. Evaluation
Our evaluation aims to answer the following questions:

(1) Can BREP-MI successfully attack deep nets with differ-
ent architectures and trained on different datasets? (2) How
many queries does BREP-MI require to perform a success-
ful attack? (3) How does the distributional shift between
private data and public data affect the attack performance?
(4) How sensitive is BREP-MI to the initialization and the
sphere radius? In the main text, we will focus on a canonical
application–face recognition–as our attack target. We will
leave experiments on other applications to the Appendix 2.

5.1. Experimental Setup

Datasets. We experiment on three different face recogni-
tion datasets: CelebA [13], Facescrub [17], and Pubfig83

[18]. Similar to [3,23,24], we crop the images of all datasets
to the center and resize them to 64× 64. We split the iden-
tities into the public domain (which we train our GAN on),
and the private domain (which we will train target models
on). There are no overlapping identities between the public
and the private domain. This means that the attacker has
zero knowledge about the identities in the private domain.
We then perform the attack on the classifier that is trained
on the private domain. The details about each dataset are
shown in Table 1. To study the impact of a large distri-
butional shift between private and public domain on the at-
tack performance, we use the FFHQ dataset [12] as our pub-
lic domain to train the GAN and the aforementioned three
datasets as the private domains.

Dataset #Images #Total id #Public id #Private id # Target id

CelebA 202,599 10,177 9,177 1,000 300
Pubfig83 13,600 83 33 50 50
Facescrub 106,863 530 330 200 200

Table 1. Details on how we split datasets in evaluations into the
public and the private domains.

Target Models. We also evaluate our attack on different
models with a variety of architectures. To provide consis-
tent results with the previous work, we use the same model
architectures used in the state-of-the-art MI attack [3]: (1)
face.evoLve adpated from [4]; (2) ResNet-152 adapted from
[11]; and (3) VGG16 adapted from [22].

Evaluation Protocol. We perform a targeted attack as it
is a more challenging setting compared to untargeted attack.
Following [3, 24], we use the attack accuracy to measure
the attack performance. The attack accuracy is based on
an evaluation classifier, which predicts the identities for re-
constructed face images and is a proxy for human judge.
Specifically, the attack accuracy is calculated by the ratio of
the number of reconstructed images that are correctly classi-
fied into the corresponding target classes over the total num-
ber of reconstructed images. As the evaluation classifier
reflects a human judge, it should have high performance.
At the same time, it should be different from the attacked
target models to avoid some semantically meaningless re-
constructed images that overfits to the target models to be
considered as good reconstructions.

Hyperparameters. We manually fine-tuned the hyperpa-
rameters of BREP-MI in our evaluations. We found empiri-
cally that the best initial radius R0 is 2, the radius expansion
coefficient γ is 1.3, and the step size αt = min(R/3, 3). We
choose N, the number of sampled points on a sphere, to be
32 unless otherwise specified and maxIters is chosen to be
1000, i.e., BREP-MI terminates when more than 1000 iter-
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ations have passed for a certain R without having all points
on sphere to be classified as the target class.

Baselines. Since this is the first work that provides a solu-
tion to label-only MI attacks, we have no baselines to evalu-
ate against. We opt to evaluate against whitebox and black-
box attacks in which the attacker has a greater advantage in
terms of additional knowledge about target models. To en-
sure fair comparison, we apply all baselines over the same
set of target identities for each dataset and the same target
models. Then we evaluate attack accuracy against the same
evaluation classifiers. Two of our baselines are white box
attacks, including Generative Model Inversion (GMI) [24],
which is the first MI attack algorithm against deep nets, and
Knowledge-Enriched Distributional Model Inversion attack
(KED-MI) [3], which provides the currently state-of-the-
art performance for whitebox MI. The GAN models in GMI
is set to be the same as the GAN in our attack. KED-MI re-
lies on the access to target model parameters in training the
GAN models. However, we cannot access such information
and train the same GAN in our setting. We also employ
a blackbox attack [23], referred to as the learning-based
model inversion (LB-MI) as one of our baselines. LB-MI
builds an inversion model that learns to reconstruct images
from soft-labels produced by the target model. To recon-
struct the most representative image for a given identity, we
feed a one-hot encoding for that identity at the input of the
inversion model and receive the output.

5.2. Results

Performance on Different Datasets. We compare BREP-
MI to whitebox and blackbox methods on three different
face datasets. We use FaceNet64 as the target model across
all datasets. For each dataset, the GAN models are trained
on its public identities, and target models are trained on the
private identities. Table 2 shows that our approach consid-
erably outperforms both the whitebox GMI attack and the
blackbox attack on all datasets. Further, our method sur-
passes the state-of-the-art whitebox KED-MI attack on Pub-
fig83 and achieves a close attack accuracy on the CelebA
dataset. On the other hand, we fall behind by 15% on the
Facescrub dataset. It is worth noting that the outcome of this
experiment implies that there is still a considerable potential
for development in the other threat models in MI attacks,
particularly blackbox attacks (which perform poorly with
respect to the other threat models). The reason why GMI
performs poorly even with the whitebox knowledge is that
it optimizes the likelihood of only the synthesized data point
without considering the neighborhood of the point. Hence,
it is possible that optimization gets stuck in a sharp local
maximum that does not represent the class. On the other
hand, both BREP-MI and KED-MI explicitly finds a neigh-
borhood with high likelihood, which turns out to be cru-

Dataset
[Whitebox] [Blackbox] [Label-only]

GMI KED-MI LB-MI BREP-MI

CelebA 32.00% 82.00% 1.67% 75.67%
Pubfig83 24.00% 62.00% 2.00% 66.00%
Facescrub 19.00% 48.00% 0.50% 35.68%

Table 2. Attack performance comparison various datasets.

cial to produce representative points and enhance attack per-
formance. The blackbox attack, although leveraging more
knowledge about target model than our attack, consistently
achieves the worst performance. Compared to the other at-
tacks, the blackbox attack utilizes a different idea for distill-
ing knowledge from public datasets. It uses the public data
to train the inversion model whereas all the other attacks
train GANs on the public data. Results suggest that GANs
are more effective in distilling public knowledge than an
inversion model. So a potential way to improve blackbox
attack is to regularize the synthesized images via GAN.

Performance on Different Models. We also evaluate
our attack on multiple different models trained on the
same dataset (CelebA). This experiment is intended to test
whether our approach can generalize to different model ar-
chitectures. Table 3 shows that BREP-MI indeed continues
to perform well on a variety of target model architectures.
In particular, BREP-MI outperforms GMI and the blackbox
attack by a substantial margin for all model architectures.
As we can see, the attack accuracy is 2× to 4× that of GMI
attack, while the blackbox attack continues to have < 2%
accuracy. Additionally, our performance on all model archi-
tectures is comparable to that of the state-of-the-art white-
box. Similar to other attacks, our attack becomes more suc-
cessful when the target model has higher predictive power.

Model Archt.
[Whitebox] [Blackbox] [Label-only]

GMI KED-MI LB-MI BREP-MI

FaceNet64 32.00% 82.00% 1.67% 75.67%
IR152 26.00% 83.00% 0.33% 72.00%

VGG16 15.00% 69.00% 1.33% 63.33%

Table 3. Attack performance comparison on different model ar-
chitectures trained on the CelebA dataset.

Public→Private
[Whitebox] [Blackbox] [Label-only]

GMI KED-MI LB-MI BREP-MI

FFHQ→CelebA 9.00% 48.33% 0.67% 46.00%
FFHQ→Pubfig83 28.00% 88.00% 4.00% 80.00%
FFHQ→Facescrub 12.00% 60.00% .015% 39.20%

Table 4. Performance comparison when there is a large distribu-
tion shift between public and private data.
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Cross-Dataset Evaluation. In prior experiments, we as-
sumed that the attacker had access to public data with low
distributional shift with the private data. This is because
both public and private domains are derived from the same
dataset. It is important to consider a more pragmatic sce-
nario, in which the attacker has access to only public data
that have a larger distributional shift. To investigate this sce-
nario, we perform an experiment in which we use the FFHQ
dataset as public data.

As shown in Table 4, the accuracy indeed decreases sig-
nificantly for the CelebA dataset when we utilize FFHQ as
our public dataset. Interestingly, the attack accuracy for
Pubfig83 and Facescrub datasets increased. The rationale
for this performance boost is that Pubfig83 and Facescrub
datasets have just 33 and 330 identities in their public distri-
butions, respectively, as shown in Table 1. This means that
the GAN models trained on these datasets would lack the
ability to generalize and thus, produce bad results. There-
fore, the ability of GAN models to generalize to the large
number of identities in FFHQ compensate for the distribu-
tional shift and, consequently, the results improve. On the
other hand, the CelebA dataset has a rather significant num-
ber of public identities (9177 identities). Thus, the GAN is
already capable of generalizing across different identities,
and the performance increase associated with generalizing
on a more varied dataset is insufficient to compensate for the
performance reduction associated with distributional shift.
The takeaway from this experiment is that having a large,
diverse public data for distilling a distributional prior is cru-
cial to MI attack performance.

Limited Query Budget. We investigate the performance
of our attack at various query budgets. In practice, some
online models, such as Google’s cloud vision API, limit
the number of queries per minute, others may ban users if
they identify an unusually high volume of queries. Due to
the fact that some attack scenarios restrict the amount of
queries that may be sent to the target model, it is impor-
tant to investigate the impact of this restriction on the attack
performance.

This restriction has not been addressed in prior works
that conduct whitebox MI attacks in the literature. This is
because the attacker, by definition, has complete access to
the model parameters and can thus create an offline copy
of the model, and then proceed with the attack offline with
unlimited queries. However, for blackbox attacks in general
(including label-only attack), the user cannot copy model
parameters to an offline model. As a result, the query budget
may become a constraint.

Fig.2 (a) demonstrates how BREP-MI performs under
different query budgets. We see that the attack accuracy in-
creases exponentially by increasing the query budget. This
is true until we hit some query budget, then attack accuracy

starts decreasing again. We will provide some insights in
Section 5.2. For all datasets examined in this paper, recov-
ering a representative image to a private class requires from
10k to 16k queries to the model, which is reasonable.

The attacker should also be concerned when choosing
the hyperparameter N under limited query budgets. Choos-
ing large N would increase the number of sampled points
on sphere, and produce a better estimator for our update
direction. On the other hand, for a fixed query budget, in-
creasing N means decreasing the number of possible itera-
tions in the attack. We conducted experiments to show this
trade-off between spending queries to get better gradient es-
timator per iteration vs using queries to apply more itera-
tions. Fig. 3 (b), (c), and (d) indicate that, for small query
budgets, BREP-MI performs slightly better when spending
query budget on increasing the number of iterations, instead
of increasing N . However, for sufficiently large query bud-
get, increasing N produces better results.

Figure 2. Attack accuracy of BREP-MI under different query bud-
gets. (a) compares different datasets. (b), (c), and (d) compare
different sampling strategies for CelebA, pubfig, and Facescrub
respectively. Query Budget is shown in a base-2 log.

Analyzing BREP-MI. A qualitative analysis for our
BREP-MI can be seen in Fig. 3. It is noticeable that the
first generated image at the beginning of the attack is not
a good representative for the target class. The progression
of the image towards the groundtruth images is clearly seen
with the increase of R .

Below, we provide some quantitative analysis. Table 5
analyzes the intermediate steps when attacking FaceNet64
model on CelebA dataset. We say the attack reached a ra-
dius R when it finds a center point, for which all points
sampled on a sphere with radius R lie in the correct target
class. We report for each reached radius during the attack
the following measurements: (i) the percentage of the tar-
get identities that successfully reach it (column: labels % );
(ii) the minimum, maximum, average number of iterations

15051



Figure 3. BREP-MI’s progression along each radius from the first
random initial point until the algorithm’s termination.

required to reach it; and (iii) the attack success accuracy of
the points that reached it (column: success %).

As we can see in the ”labels %” column, BREP-MI is
able to increase R multiple times for all target identities.
In fact, all target identities had their R increased by BREP-
MI at least 5 times. This shows the effectiveness of our
algorithm to repel away from the boundary and get closer
to the center of the class (which is our goal).

Another interesting observation is that the bigger the ra-
dius is, the higher the attack accuracy we get. This is true
until reaching a certain radius size then the accuracy starts
dropping (Similar behavior is observed in Fig.2). It seems at
higher radii, we are overfitting to the target model and learn-
ing meaningless noisy features that are not actually related
to the target identity. Consequently, the accuracy over the
evaluator model decreases at those radii. This observation
is consistent for all our conducted experiments regardless
the model or dataset. Unfortunately, since the attacker does
not have any ground truth images of the target class (or an
evaluator classifier), it is not possible to decide what is the
best radius that the algorithm should stop at. Nevertheless,
as seen in the table 5, the number of identities that reached
those radii is very low and their contribution to the final at-
tack accuracy is small. Additionally, our stopping criterion
for the algorithm empirically provides close results to the
best radius. For this experiment particularly, we were able
to get 75.67% which is close to stopping at the best radius.

Effect of Random Sampling As BREP-MI starts from an
initial random point, it is important to show whether differ-
ent initial points would affect the algorithm outcome (both
qualitatively and quantitatively). We started three attacks
with different random seeds on a FaceNet64 model trained

Radius labels % min iters max iters avg iters success %

2.00 100.00% 0 191 37.29 23.00%
2.60 100.00% 0 246 63.20 30.33%
3.38 100.00% 0 374 103.43 45.00%
4.39 100.00% 2 627 156.65 56.00%
5.71 100.00% 28 947 230.64 63.67%
7.43 100.00% 53 1721 336.38 71.67%
9.65 97.00% 89 1899 502.60 77.66%
12.55 71.00% 141 1909 746.60 80.28%
16.31 20.33% 298 1823 939.90 70.49%
21.21 1.67% 492 1875 1122.00 60.00%
27.57 0.67% 660 728 694.00 50.00%
35.84 0.33% 877 877 877.00 0.00%

Table 5. Analysis on the intermediate steps of our algorithm.

Figure 4. Ablation study of initialization of BREP-MI. “Init” is the
initial sampled point that we start our attack from. “Outp” is the
final output of the attack.

on the CelebA dataset. The attack accuracy was 75.67%,
76.33%, and 75.67%, respectively. This shows that the ran-
dom initial point has little effect quantitatively on our al-
gorithm. Additionally, Fig.4 demonstrates our qualitative
results. We can observe that even under different initial
points, the output is close to the ground truth images.

6. Conclusion
We presented a novel algorithm to perform the first label-

only MI attack. Experiments showed the effectiveness of
our approach on different datasets and model architectures.
Interestingly, BREP-MI provides comparable results with
the state-of-the-art whitebox attacks and outperforms all the
other baselines despite the fact that they make stronger as-
sumption about the attacker knowledge. This indicates that
there is still room for improvement for whitebox attack.
Similarly, the blackbox attack is outperformed by our label-
only attack with a huge margin although it can access more
fine-grained model output than our label-only attack.
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