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Abstract

This paper studies domain generalization via domain-
invariant representation learning. Existing methods in
this direction suppose that a domain can be characterized
by styles of its images, and train a network using style-
augmented data so that the network is not biased to par-
ticular style distributions. However, these methods are re-
stricted to a finite set of styles since they obtain styles for
augmentation from a fixed set of external images or by in-
terpolating those of training data. To address this limitation
and maximize the benefit of style augmentation, we propose
a new method that synthesizes novel styles constantly dur-
ing training. Our method manages multiple queues to store
styles that have been observed so far, and synthesizes novel
styles whose distribution is distinct from the distribution of
styles in the queues. The style synthesis process is formu-
lated as a monotone submodular optimization, thus can be
conducted efficiently by a greedy algorithm. Extensive ex-
periments on four public benchmarks demonstrate that the
proposed method is capable of achieving state-of-the-art
domain generalization performance.

1. Introduction
Convolutional neural networks (CNNs) have driven re-

markable advances in visual recognition for the last decade.
However, their performance is often degraded when train-
ing and test data are drawn from different distributions [8,
21, 46]. As such a distribution shift appears frequently and
significantly in the wild, it has been a major obstacle to ap-
plying CNNs to real-world applications. The most common
solution to this issue is domain adaptation [8, 30, 41, 42],
which aims at adapting a model trained on source domains
to a known target domain. However, domain adaptation
models in general do not well generalize to unseen domains
since they assume a single target domain.

Domain generalization (DG) [1, 2, 7, 22, 32] has been
studied to resolve this limitation of domain adaptation.
The goal of DG is to improve the generalization capa-
bility of a model on arbitrary domains unseen at training
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Figure 1. The motivation of our method. We improve the gen-
eralization ability of a model by adaptively synthesizing diverse,
plausible, and novel styles that are distinct from both source do-
main styles and previously synthesized novel styles, then injecting
them into intermediate features of the model during training for
learning style-invariant representation.

time. DG has been achieved by learning domain-invariant
features [14, 24, 26, 39, 48] that capture semantics relevant
to the target task while not being biased towards domain-
specific characteristics. In this context, styles of images
have been used to characterize their domains [27,58]; it has
been demonstrated that reducing model bias towards styles
could improve the generalization ability [5,33]. As a simple
yet effective realization of this idea, style augmentation has
been investigated recently [16,17,51,58]. It allows a model
to be unbiased to particular style distributions by augment-
ing training images with varying styles. Although they have
been proven to be effective for domain generalization, how-
ever, there is still room for further improvement in terms of
the style diversity; existing style augmentation methods ob-
tain styles for augmentation from a restricted set of external
images [17, 51] or by interpolating styles of source domain
images [58], both of which lead to a limited range of styles.

In this paper, we present a novel framework to further
enlarge the benefit of style augmentation. The key idea is to
constantly generate novel and plausible styles and augment
training images with the synthetic styles. Specifically, to
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be novel, synthetic styles generated by our method should
be distinct not only from styles of source domain images
but also from previously generated synthetic styles, as illus-
trated in Fig. 1. To be plausible, on the other hand, they
should not deviate too much from real image styles.

For efficient style synthesis, our framework begins with
sampling a few prototypes that well represent the entire dis-
tribution of source image styles. Then the source style pro-
totypes and previously synthesized novel styles are used to
approximate the distribution of styles that have been ob-
served by the model. To synthesize novel styles, we first
generate plausible candidates of novel styles by jittering
source image styles with random noises, and then sample
a subset of such candidates that are diverse and not well
represented by the approximate distribution of observed
styles. This sampling process is implemented efficiently
using (1) style queues that store source image styles and
previously synthesized novel styles, and (2) score functions
that measure the quality of sampled source style prototypes
and novel styles. In particular, we employ monotone sub-
modular score functions so that near-optimal prototypes and
novel styles can be efficiently estimated by a greedy algo-
rithm.

Our method is evaluated and compared with previous
work on four public benchmarks for DG: PACS [21], Of-
ficeHome [45], and DomainNet [35] for image classifica-
tion, and the other for cross-domain person re-ID [28, 54].
Extensive experiments on these benchmarks demonstrate
that our method is capable of achieving state-of-the-art do-
main generalization performance. The contribution of this
paper is three-fold:

• We propose a novel approach to domain generalization
that constantly synthesizes novel, diverse, and plausi-
ble styles to maximize the generalization effect of style
augmentation.

• We present a novel framework based on style queues
and submodular optimization for maintaining and gen-
erating styles effectively and efficiently.

• Our method outperforms existing DG techniques on
four public benchmarks, in particular on those depict-
ing large domain discrepancy.

2. Related work
Domain generalization. Domain generalization aims to
generalize to the unseen domain by training with mul-
tiple source domains. Motivated by domain adaptation
methods, initial studies for DG carried out domain align-
ment [14, 24, 26, 39, 48] to learn domain invariant fea-
tures by reducing the distance of distribution among mul-
tiple domains. Specifically, most methods were imple-
mented by adversarial learning [14, 26, 39], minimizing KL

divergence [24, 48] and minimizing maximum mean dis-
crepancy (MMD) [23]. In addition, self-supervised learn-
ing [3], ensemble learning [37, 50], and meta-learning [22]
have been also studied on. Recent studies have focused
on data augmentation [25, 56, 57] using a generator net-
work. DDAIG [56] and PDEN [25] used domain adversarial
learning to generate augmented data for multi-source and
single-source domain generalization, respectively. L2A-
OT [57] increased the generalization ability of a model
by generating pseudo-novel domain images different from
each source domain using a conditional generator. How-
ever, these methods have a problem of lack of diversity in
the novel domains since optimization becomes more diffi-
cult when learning to synthesize more novel domains than
the number of source domains. Our method is free from this
limitation in that it allows the model to generate not images,
but the novel styles at the feature level. In particular, it gen-
erates novel styles which have not been observed so far, then
style augmentation with them allows the model to improve
generalization by recognizing diverse novel styles.
Neural style representation. Neural style transfer has been
focused on understanding the style information not relevant
to the content. Gatys et al. [9] first studied that the style of
an image can be captured by feature statistics of CNNs. In
particular, AdaIN [12] showed that the channel-wise mean
and standard deviation of features also can represent the
style of an image. Recent studies [13, 17, 33, 58] utilize
the style information as the characteristic of the domain,
and they use the style representation at the feature level
for domain generalization. MixStyle [58] mixed the feature
statistics of source instances for simulating novel styles and
injected them to regularize the CNN. However, they only
consider a limited range of styles calculated by external im-
ages [17, 51] or formed by a linear interpolation of features
statistics in the source domains [58]. Our method is free
from this limitation since it synthesizes novel styles distinct
from both the source styles and previously generated styles
to increase the style diversity.
Maximum mean discrepancy. The maximum mean dis-
crepancy [10] is a measure of the difference between two
distributions. It is widely used to measure or minimize the
divergence between distributions for generative adversarial
learning [20] and improving interpretability of data distri-
butions [15]. In the field of domain adaptation [29–31]
and generalization [23], MMD has been applied to measure
the divergence between different domains in the high-level
space. MMD is utilized in our method as well, but to mea-
sure the discrepancy in the style space for selecting proto-
types representing the source style distribution.

3. Method
Following previous work on DG [17, 33, 58], we assume

that a domain can be characterized by the styles of its sam-
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Figure 2. Overall pipeline of the proposed method. (1) For each iteration of training, source styles are computed from the source domain
images by a network. Then, we enqueue them and dequeue previous source styles in the source style queues. (2) Source style prototypes
that represent the style distributions of the source style queues are selected. (3) Candidates of novel styles are generated by jittering the
source styles with random noises. (4) We select novel styles not represented by both prototypes of source domains and previous novel
styles. (5) Selected novel styles are enqueued and previous novel styles are dequeued in the novel style queues. Then, randomly selected
novel styles in the novel style queues are injected into our model during training on the fly. Steps (2)-(5) are executed every predefined
number of iterations to constantly seek novel styles.

ples, and accordingly, that style-invariant representations
will generalize well to arbitrary unseen domains. In this
context, as a solution to DG, we propose a new framework
for learning a style-invariant model via style augmentation.
The key idea is to constantly feed a CNN with training data
whose styles have not been observed before for maximizing
the effect of style augmentation. To implement this idea,
our framework constantly generates synthetic yet plausible
styles that are distinct from those observed at the previ-
ous iterations, and replaces styles of training images with
these synthetic ones while preserving semantic information
of the images. The remainder of this section presents an
overview of our framework (Sec. 3.1), the detailed algo-
rithm for novel style synthesis (Sec. 3.2), and the training
strategy with the novel styles (Sec. 3.3).

3.1. Overview

Our method represents the style of an image by channel-
wise mean and standard deviation µ(Z), σ(Z) ∈ RC of its
feature map Z ∈ RC×H×W [58] as follows:

µ(Z) =
1

HW

H∑
h=1

W∑
w=1

Z·,h,w, (1)

σ(Z) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Z·,h,w − µ(Z))
2
, (2)

where H and W denote height and width of the feature map.
In advance of synthesizing novel styles, we first approxi-

mate the distribution of styles that the network has observed
so far. To approximate and track the style distribution, our
method deploys two types of style queues: source style
queues and novel style queues. The source style queues

keep the styles of recently observed source images. On the
other hand, the novel style queues store novel styles that are
synthesized to be distinct from previously observed ones
in both queues. Note that µ(Z) and σ(Z) are kept sepa-
rately. When the number of stored styles exceeds the limit,
the styles are dequeued from the oldest. Based on these
style queues, we constantly seek novel styles by an iterative
procedure of selecting source prototypes and synthesizing
novel styles, as presented in Fig. 2.

3.2. Novel style synthesis

We ensure that novel styles meet two criteria: diversity
and plausibility. For the diversity, we seek styles not ob-
served at previous iterations. At the same time, they should
be plausible, i.e., not too much deviated from the distribu-
tion of real source styles, in order to provide realistic styles.

To this end, we propose a novel style synthesis method
composed of three steps: prototype selection, random jit-
tering, and novel style selection. First, a few representa-
tives of source styles, called source style prototypes, are se-
lected to identify the source style distribution efficiently in
a non-parametric way (Fig. 2(2)). Also, candidates of novel
styles are generated by jittering the source styles with ran-
dom noises (Fig. 2(3)). Then a subset of the candidates that
are most distinct from the prototypes and previously gener-
ated novel styles are chosen as novel styles (Fig. 2(4)). By
iterating these steps, novel styles different from what have
been observed can be continually synthesized and stored in
the novel style queues. The remaining part of this section
elaborates on each step of novel style synthesis.
Prototype selection. We select mp prototypes that well
represent the distribution of source styles stored in the
source style queue. Suppose that we have a set of source
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styles S stored in the queue. Let P ⊆ S be the prototype
set. Inspired by a sampling technique for interpretable ma-
chine learning [15], we adopt the squared maximum mean
discrepancy (MMD) between S and P with a kernel func-
tion k to measure the discrepancy between them:

MMD2
k(S,P) =

1

|S|2
∑

si,sj∈S
k(si, sj)

− 2

|S||P|
∑

si∈S,pj∈P
k(si,pj)

+
1

|P|2
∑

pi,pj∈P
k(pi,pj).

(3)

To select the most representative styles P whose distribu-
tion is close to that of S, the score function is designed as

Jb(P) =
1

|S|2
∑

si,sj∈S
k(si, sj)− MMD2

k(S,P)

=
2

|S||P|
∑

si∈S,pj∈P
k(si,pj)−

1

|P|2
∑

pi,pj∈P
k(pi,pj),

(4)

where the first constant term is introduced to guarantee that
Jb(∅) = 0, i.e., Jb is a normalized score function. We select
the prototypes P maximizing the objective:

max
P⊆S,|P|≤mp

Jb(P). (5)

While this maximization problem is generally known to be
intractable, it has been proved that a greedy procedure re-
turns a near-optimal solution for any normalized monotonic
submodular function [34]. Since Eq. (4) with the radial ba-
sis function (RBF) kernel k(xi,xj) = exp(−γ||xi − xj ||)
is monotonic and submodular as proven in [15], the proto-
type selection is done by the greedy forward selection, i.e.,
repeatedly sampling the style that increases the score func-
tion the most as a prototype.
Random jittering for style candidates. As candidates for
novel styles, a set of random styles D are generated by
adding random noises to the source styles S. First, we cal-
culate the channel-wise standard deviation σ(S) ∈ RC of
source styles S = {s1, s2, ...sN}. Random noise vectors
are then sampled from a Gaussian distribution, N

(
0, λ ·

diag(σ(S))
)
, where λ is a scalar hyper-parameter; the stan-

dard deviations of the Gaussian distribution is set propor-
tional to σ(S) for sampling plausible noises by consider-
ing real source style distributions. The sampled noises are
then added to source styles for constituting D of diverse and
plausible random styles. We then sample a fixed number of
novel styles from D in the next step.
Novel style selection. To guarantee the diversity of the
novel styles, we select mc novel styles that are not well rep-
resented by an approximate distribution of observed styles.

Let P ′ = P ∪ V be the total set of observed styles where V
is the set of previously synthesized styles in the novel style
queue. To quantify the quality of a novel style, we adopt the
following witness function:

g(x) =
1

|D|
∑
di∈D

k(x,di)−
1

|P ′|
∑

pj∈P′

k(x,pj), (6)

where the first term measures the similarity to the novel
style candidates, and the second term measures the simi-
larity to the observed styles. A novel style that maximizes
the witness function will well represent the novel style can-
didates and at the same time be distinct from the observed
styles. The score function for sampled novel styles C ⊆ D
is then given by

L(C) =
∑
xl∈C

g(xl). (7)

Moreover, we additionally adopt the log-determinant regu-
larizer [15] that encourages the diversity of selected novel
styles in the process of the optimization and is known to be
submodular [19]. The regularizer is formally given by

r(C) = log detKC,C , (8)

where KC,C is the kernel matrix with entries ki,j =
k(xi,xj) for all xi,xj ∈ C. Finally, we select the novel
styles maximizing the following score function:

max
C⊆D,|C|≤mc

L(C) + r(C). (9)

Since the score function in Eq. (9) is monotone submodu-
lar, the optimization is done also by a greedy algorithm that
chooses the novel style increasing the function the most re-
peatedly; the sampled novel styles are then stored in the
novel style queue.

In summary, our novel style synthesis process consists of
these 3 steps and is executed every predefined number of it-
erations to constantly seek novel styles in the entire learning
process. The process is performed separately for the mean
and standard deviation components to synthesize respective
novel styles.

3.3. Training with novel styles

During training the target model, we diversify style of
feature maps of input images by injecting the synthetic
novel styles on the fly. Following previous work [12, 17,
58], we first normalize the feature maps by Instance Nor-
malization [43] and then inject the novel styles into the
style-normalized feature maps. For a feature map Z ∈
RC×H×W , this style injection is formulated by

StyIn(Z;a,b) = a · Z− µ(Z)

σ(Z)
+ b, (10)
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where a,b ∈ RC are random novel styles for standard de-
viation and mean, respectively. It can be applied to mul-
tiple convolutional blocks of the network, which is further
discussed in Sec. 4.2. The remaining part of this section
describes the overall training procedure and loss functions
incorporating the novel style injection.

Let f = f (2) ◦ f (1) denote the target network, and sup-
pose that novel styles are injected to the output of f (1).
Given a source image X as input along with its one-hot label
vector y, the network is trained by minimizing the ordinary
cross-entropy loss:

Lori
ce = −y⊤ log f(X). (11)

Meanwhile, the source styles, µ(Z) and σ(Z) where Z =
f (1)(X), are computed and stored in the source style
queues, respectively. We then forward the same image to
the network while injecting novel styles to its feature map
Z, and apply the cross-entropy loss to the output:

Lsty
ce = −y⊤ log f (2)(StyIn(f (1)(X))). (12)

Optimizing the two cross-entropy losses enables f (2) to be
style-invariant and well-generalized. To further boost the
generalization capability, we in addition introduce losses
that force the consistency between the soften prediction
for the original input and that for the style-injected ones.
Specifically, the losses are formulated as the Kullback-
Leibler (KL) divergence between the predictions:

Lo2s
const = KL(f(X)/τ || f (2)(StyIn(f (1)(X)))/τ), (13)

Ls2o
const = KL(f (2)(StyIn(f (1)(X)))/τ || f(X)/τ), (14)

where τ is a temperature hyper-parameter. Combining all
together, the total objective is given by

Ltotal = (1−w1)Lori
ce +w1Lsty

ce +w2(Lo2s
const +Ls2o

const), (15)

where w1 and w2 are balancing hyper-parameters. In sum-
mary, the network is trained using the objective in Eq. (15),
and meanwhile, source styles are stored in the queues. As
training progresses, the novel style synthesis step is regu-
larly executed to constantly seek novel styles.

4. Experiments
4.1. Datasets for evaluation

Generalization in image classification. The proposed
method is evaluated on three conventional DG benchmarks
for image classification. (1) PACS [21] consists of four do-
mains, i.e., Art Painting, Cartoon, Photo, and Sketch, and
contains 9,991 images of 7 classes with large domain dis-
crepancy. (2) OfficeHome [45] includes 15,500 images of
65 classes from four domains, Art, Clipart, Product, and

Real World. (3) DomainNet [35] is a large-scale dataset
that contains 586,575 images of 345 classes from six do-
mains, Clipart, Infograph, Painting, Quickdraw, Real, and
Sketch. For fair comparisons with previous work, we follow
the leave-one-domain-out-protocol [49,56,57]. In detail, we
choose one domain as the test domain and use the remaining
domains as the source domains; the model showing the best
performance on the validation splits of all source domains
are chosen as the final model. The evaluation metric is the
top-1 classification accuracy.
Generalization in instance retrieval. Our method is
also evaluated for cross-domain person re-identification (re-
ID) [56–58]. The goal of this task is to retrieve target per-
son from multiple disjoint cameras, which are considered
as different domains. We adopt the Market1501 [52] and
DukeMTMC-reID (Duke) [36, 53] datasets. Market1501
consists of 32,668 images of 1,501 identities captured by
6 cameras and Duke contains 36,411 images of 1,812 iden-
tities captured by 8 cameras. Our model is trained on one
dataset and tested on the other. In this task, the label space
is disjoint between training and test identities. Mean Av-
erage Precision (mAP) and ranking accuracy are used for
evaluation metrics.

4.2. Implementation details

Generalization in image classification. ResNet [11] pre-
trained on ImageNet [6] is adopted as our classification net-
work. The novel style injection is applied to the outputs
of 1st and 2nd residual blocks of the network. For PACS
and OfficeHome, our network is trained by SGD with batch
size of 16 and weight decay of 5e-4 for 50 epochs and 25
epochs. The initial learning rate is set to 0.001 and decayed
by 0.1 at 80% of total epochs. We adopt the augmenta-
tion strategy used in [3, 49]. For DomainNet, we use Adam
optimizer [18] and inverse learning rate scheduling follow-
ing [4], and train the network for 20 epochs. For all datasets,
τ = 4 and w2 = 2 for the consistency regularization loss
with sigmoid-rampup [40] at initial 5 epochs. Loss balanc-
ing weight w1 is set to 0.1 for OfficeHome and 0.5 for the
others. For the novel style synthesis, we set the synthesis
cycle as 32 iterations. The length of the source style queue
and that of the novel style queue are 1024 and 128, respec-
tively. For DomainNet, the number of prototypes and that
of novel styles in a single novel style synthesis are all 32,
and for the other datasets, are 8 and 16, respectively.
Generalization in instance retrieval. Two different net-
works are adopted: ResNet50 and OSNet-IBN [55]. In both
architectures, the style injection is applied to the outputs of
the 1st and 2nd residual blocks. The re-ID model is trained
for classification where each person identity is considered
as a class. For fair comparisons with previous work, we
use l2 normalized features for OSNet-IBN and reproduce
MixStyle [58] on the same setting by their public code.
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Method Art Cartoon Photo Sketch Avg.

ResNet18

Baseline 77.63 76.77 95.85 69.50 79.94
MetaReg [1] 83.70 77.20 95.50 70.30 81.70
Jigen [3] 79.42 75.25 96.03 71.35 80.51
DDAIG [56] 84.20 78.10 95.30 74.70 83.10
L2A-OT [57] 83.30 78.20 96.20 73.60 82.80
EISNet [47] 81.89 76.44 95.93 74.33 82.15
SagNet [33] 83.58 77.66 95.47 76.30 83.25
MixStyle [58] 84.10 78.80 96.10 75.90 83.70
DSON [37] 84.67 77.65 95.87 82.23 85.11
FACT [49] 85.37 78.38 95.15 79.15 84.51
Ours 84.41±0.62 79.25±0.98 94.93±0.07 83.27±2.03 85.47

ResNet50

Baseline 84.94 76.98 97.64 76.75 84.08
MetaReg [1] 87.20 79.20 97.60 70.30 83.60
EISNet [47] 86.64 81.53 97.11 79.07 85.84
DSON [37] 87.04 80.62 95.99 82.90 86.64
FACT [49] 89.63 81.77 96.75 84.46 88.15
Ours 90.35±0.62 84.20±1.43 96.73±0.46 85.18±0.46 89.11

Table 1. Leave-one-domain-out generalization results on PACS.

Method Art Clipart Product Real Avg.

Baseline 57.88 52.72 73.57 74.80 64.72
MMD-AAE [23] 56.50 47.30 72.10 74.80 62.70
CrossGrad [38] 58.40 49.40 73.90 75.80 64.40
Jigen [3] 53.04 47.51 71.47 72.79 61.20
SagNet [33] 60.20 45.38 70.42 73.38 62.34
DDAIG [56] 59.20 52.30 74.60 76.00 65.50
MixStyle [58] 58.70 53.40 74.20 75.90 65.50
L2A-OT [57] 60.60 50.10 74.80 77.00 65.60
FACT [49] 60.34 54.85 74.48 76.55 66.56
Ours 59.55±0.21 55.01±0.29 73.57±0.28 75.52±0.21 65.89

Table 2. Leave-one-domain-out generalization results on Office-
Home.

4.3. Quantitative results in image classification

Evaluation on PACS. Quantitative results of our and exist-
ing methods are summerized in Table 1; the baseline model
is trained only with the cross-entropy loss. Our method
consistently achieves the best performance in the aver-
aged accuracy regardless of the type of its backbone net-
work. In detail, ours outperforms existing methods in three
test domains (Art, Cartoon, and Sketch) with ResNet50.
When incorporating ResNet18, our method clearly sur-
passes MixStyle [58], a style augmentation technique based
on linear interpolation of known styles. Unlike previous
work synthesizing novel domain samples, such as L2A-
OT [57] and DDAIG [56], our method requires neither data
generator nor domain label. The only overhead of ours is
the memory footprint for the style queues, which is mostly
negligible. While being simpler and imposing less over-
head, ours improves performance substantially since it en-
ables to learn style-invariant representation effectively by
synthesizing novel and diverse styles on the fly. Overall,
these results demonstrate the efficacy of our method for
domain generalization and justifies our motivation of con-
stantly seeking diverse novel styles to prevent the style bias.

Method Clip. Info. Paint. Quick. Real Sketch Avg.

ResNet18

Baseline 56.56 18.44 45.30 12.47 57.90 38.83 38.25
MetaReg [1] 53.68 21.06 45.29 10.63 58.47 42.31 38.57
DMG [4] 60.07 18.76 44.53 14.16 54.72 41.73 39.00
Our 60.14±0.48 17.82±0.32 46.52±0.23 14.58±0.15 55.36±0.98 45.26±0.53 39.95

ResNet50

Baseline 64.04 23.63 51.04 13.11 64.45 47.75 44.00
MetaReg [1] 59.77 25.58 50.19 11.52 64.56 50.09 43.62
DMG [4] 65.24 22.15 50.03 15.68 59.63 49.02 43.63
Our 66.11±0.66 21.42±0.12 51.36±0.37 15.25±0.35 61.73±0.23 51.76±0.21 44.60

Table 3. Leave-one-domain-out generalization results on Domain-
Net.

Method
Market1501 → Duke Duke → Market1501

mAP R1 R5 R10 mAP R1 R5 R10

ResNet50

Baseline 19.3 35.4 50.3 56.4 20.4 45.2 63.6 70.9
MixStyle [58] 23.8 42.2 58.8 64.8 24.1 51.5 69.4 76.2
Ours 26.3 46.5 62.4 68.0 27.2 55.0 73.9 85.5

OSNet-IBN

Baseline 26.7 48.5 62.3 67.4 26.1 57.7 73.7 80.0
CrossGrad [38] 27.1 48.5 63.5 69.5 26.3 56.7 73.5 79.5
MixStyle∗ [58] 27.7 48.4 62.7 72.1 28.8 59.7 76.7 82.7
DDAIG [56] 28.6 50.6 65.2 70.3 29.0 60.9 77.1 83.2
L2A-OT [57] 29.2 50.1 64.5 70.1 30.2 63.8 80.2 84.6
Ours 29.7 50.6 65.4 74.2 32.2 64.7 80.2 89.1

Table 4. Generalization results on cross-domain person re-ID. (∗:
Reproduced by the official implementation).

Evaluation on OfficeHome. OfficeHome is composed of
four domains with less domain discrepancy compared with
the other datasets. As summarized in Table 2, despite the
small domain gap in this benchmark, which is unfavorable
for domain generalization by synthesizing novel styles, our
method is on par with the state of the art. In particular, our
method consistently improves the performance of the base-
line in all domains while most of existing methods perform
poorly in certain domains. Note that ours also outperforms
the methods synthesizing novel domain samples like L2A-
OT [57] and MixStyle [58] in the averaged accuracy.
Evaluation on DomainNet. Table 3 presents the results
on DomainNet consisting of 6 domains with much larger
discrepancy than the other datasets. On this more challeng-
ing benchmark, our method shows better performance in
the averaged accuracy than existing methods and improves
the top-1 averaged accuracy by 1.70%p and 0.60%p using
ResNet18 and ResNet50 backbones, respectively. While
our method clearly outperform the baseline, existing meth-
ods are often inferior to the baseline when using ResNet50
backbone. Also, on both PACS and DomainNet, our method
consistently improves the performance for both ResNet18
and ResNet50 models, respectively.
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Style
injection

Novel style
synthesis L∗

const Art Cartoon Photo Sketch Avg.

✗ ✗ ✗ 77.63 76.77 95.85 69.50 79.94

✓ ✗ ✗ 81.88 78.03 94.67 78.93 83.38
✓ ✓ ✗ 84.38 78.21 95.05 80.13 84.44
✓ ✓ ✓ 84.41 79.25 94.93 83.27 85.47

Table 5. Ablation studies on each component of our method on
PACS with ResNet18. * denotes both s2o and o2s.

4.4. Quantitative results in instance retrieval

The efficacy of our method is also demonstrated on the
person re-ID task. As summarized in Table 4, ours con-
sistently improves performance in both of the two cross-
domain scenarios, from Market1501 to Duke and vice
versa. Our method is effective when using OSNet-IBN as
well as ResNet. Even in the setting where each camera view
is considered as a domain, our method surpasses previous
work on DG in both mAP and ranking accuracy. These re-
sults demonstrate the superiority of our method over previ-
ous work synthesizing novel samples.

4.5. Ablation studies

Impact of each component. In Table 5, we carry out
an ablation study to investigate the effect of each com-
ponent: style injection, novel style synthesis, and consis-
tency losses. The style injection of adding random noises
to the original feature statistics improves the overall accu-
racy. Although the simple augmentation strategy that per-
turbs feature statistics with Gaussian noises is useful for
DG, it is still inferior to existing methods. The performance
is boosted and becomes comparable to the state of the art
by injecting novel styles synthesized by our method instead
of the random noises. This result validates the effective-
ness of our novel style synthesis technique for style aug-
mentation; it surpasses existing methods synthesizing novel
domain samples such as L2A-OT [57] and MixStyle [58].
Lastly, the consistency losses further improve the perfor-
mance, which enables our method to clearly outperform ex-
isting DG methods.
Diversity of novel styles. Our method synthesizes novel
styles that are distinct from not only source styles but also
those synthesized previously, which guarantees their diver-
sity. In Fig. 3, we demonstrate the diversity by compar-
ing synthetic styles generated by our method with those
made by MixStyle [58], which is a representative style aug-
mentation method for DG. First, we measure their diversity
through their channel-wise deviations in Fig. 3(a), show-
ing that synthetic styles of our method are substantially
more scattered. Second, to examine how much the syn-
thetic styles are distinct from source styles, we estimate the
squared MMD between them; Fig. 3(b) suggests that ours
generates styles more distinct from source styles.
Sensitivity to queue length. Our method introduces source
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Figure 3. Empirical analysis on the diversity of styles synthesized
by MixStyle and ours with ResNet18 on PACS. (a) Channel-wise
deviations of synthesized styles. (b) MMD2
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Figure 4. Evaluation on PACS with the change of queue length.

style queues and novel style queues to approximate the
distribution of observed styles and thus is affected by the
lengths of the queues to some extent. We investigate how
sensitive our method to the length of each queue; the exper-
iment is conducted without the consistency losses to clearly
identify the effect of the queue length. Fig. 4 shows the re-
sults in the averaged top-1 accuracy measured by varying
the length of each style queue on PACS using ResNet18.
The performance is fairly high and stable in the length
from 256 (64) to 1024 (512) of source (novel) style queues.
Hence, we argue that our method is insensitive to the length
of each style queue. Note that, in this experiment, we fol-
low the hyper-parameter setting of our final model as-is; the
setting is not optimal for this experiments, but our results
in the setting still outperform or are comparable to those of
existing methods.
Qualitative analysis of novel styles. To verify that our syn-
thesized styles are novel, diverse, and plausible, we analyze
and compare the synthetic novel styles with source styles in
qualitative manners. Fig. 5(a) presents t-SNE [44] visual-
ization of source and novel style distributions in the mid-
dle of training. It shows that novel styles are almost evenly
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Figure 5. (a) t-SNE visualization of style vectors. The mean and standard deviation are computed from feature maps of the 1st and 2nd
residual blocks of ResNet18 while being trained on PACS. (b) Examples of PACS images of source style prototypes. (c) Examples of
ImageNet [6] images whose styles are closest to source style prototypes (b) in style space. (d) Examples of ImageNet images whose styles
are closest to novel styles in the style space.

scattered (i.e., diverse) and often occupy areas where source
styles are not well distributed (i.e., novel, as intended) while
being not too much deviated from the distribution of source
styles (i.e., plausible). These properties of novel styles are
also verified in another qualitative way through ImageNet
examples whose styles are closest to the source and novel
styles in the style spaces. Note that we utilize ImageNet
examples for the analysis since our method does not gener-
ate images but directly synthesizes styles whose visualiza-
tion is not straightforward. First, Fig. 5(b) and Fig. 5(c)
show PACS examples of the source style prototypes and
ImageNet examples closest to the prototypes, respectively,
demonstrating the high similarity between them in terms of
styles. In contrast, ImageNet examples in Fig. 5(d), whose
styles are the closest to the novel styles, are diverse among
themselves and show a larger discrepancy from those in
Fig. 5(b) and Fig. 5(c).

5. Limitations
Our method has two limitations. First, it shows a large

variance of performance in specific settings. Since our
method performs the stochastic process in the random jit-
tering step for novel style candidates, it causes the prob-
lem. Second, our method performs on-par on Office-
Home, in which the discrepancy between domains is much
smaller than the other datasets. When the discrepancy be-

tween domains is minimal, our strategy provides a relatively
marginal performance boost since the influence of the novel
style is diminished. In future work, we will improve the
generalization ability while resolving the two problems.

6. Conclusion
We have proposed a novel method to learn style-invariant

representations for domain generalization. It continually
seeks novel, diverse, and plausible styles to maximize the
benefit of style augmentation. Based on the two types of
style queues, we efficiently approximate the style distribu-
tion that has been observed so far and generate novel styles
that are different from observed styles including both source
and previously synthesized novel styles. Since the process
is formulated as monotone submodular optimization tasks,
it can be conducted by greedy algorithms. Then, we inject
synthesized novel styles into the feature map, which can re-
duce model bias toward styles and increase the generaliza-
tion ability. We confirm that our attempt to constantly seek
and utilize novel styles is effective in domain generalization
on multiple public benchmarks.
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