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(a) Conventional image generation (b) (Closed-set) semi-supervised image generation (c) Open-set semi-supervised image generation
(our task)

Figure 1. We explore the conditional image generation in which we relax the assumption about training data. (a) Conventional supervised
image generation [1, 12, 23] principally uses labeled data for training. (b) (Closed-set) semi-supervised image generation [10] generalizes
the supervised image generation, allowing the presence of unlabeled data with samples inside classes of interest, which are closed-set
samples. (c) Our task of open-set semi-supervised image generation further generalizes semi-supervised image generation. The unlabeled
data contain closed-set samples and open-set samples, which do not belong to any of the classes of interest.

Abstract

We introduce a challenging training scheme of condi-

tional GANs, called open-set semi-supervised image gen-

eration, where the training dataset consists of two parts: (i)

labeled data and (ii) unlabeled data with samples belong-

ing to one of the labeled data classes, namely, a closed-

set, and samples not belonging to any of the labeled data

classes, namely, an open-set. Unlike the existing semi-

supervised image generation task, where unlabeled data

only contain closed-set samples, our task is more general

and lowers the data collection cost in practice by allow-

ing open-set samples to appear. Thanks to entropy regu-

larization, the classifier that is trained on labeled data is

able to quantify sample-wise importance to the training of

cGAN as confidence, allowing us to use all samples in un-

labeled data. We design OSSGAN, which provides decision

clues to the discriminator on the basis of whether an unla-

beled image belongs to one or none of the classes of inter-

est, smoothly integrating labeled and unlabeled data during

training. The results of experiments on Tiny ImageNet and

ImageNet show notable improvements over supervised Big-

GAN and semi-supervised methods. Our code is available

at https://github.com/raven38/OSSGAN .

1. Introduction

The outstanding performance of the SoTA conditional
generative adversarial networks (cGANs) [1,12,23] is heav-
ily reliant on having access to a vast amount of labeled data
during training (Fig. 1a). This dependence necessitates sig-
nificant efforts to label the data and limits the applications
of cGANs in real-world scenarios. Reducing the reliance on
labeled data in training cGANs is thus deemed necessary.

Semi-supervised image generation [4, 9, 10, 19, 20] al-
lows the appearance of both labeled and unlabeled data dur-
ing training, with the unlabeled data primarily containing
within classes of interest (closed-set samples) (Fig. 1b). De-
spite the advances, the unlabeled data assumption is at odds
with the fact that the majority of unlabeled data is outside of
classes of interest (open-set samples), and ensuring that un-
labeled data do not contain open-set samples is often costly
and prone to error. In fact, in [4, 9, 10, 19, 20], even open-
set samples are classified into classes that appear in labeled
data, resulting in cGAN performance deterioration.

We go beyond semi-supervised image generation by al-
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lowing the use of unlabeled data gathered miscellaneously
to reduce the effort of labeling and introduce a novel task of
open-set semi-supervised image generation (Fig. 1c). Un-
labeled data contain open-set samples, and the conditional
generator should produce images that are indistinguishable
from real ones even when trained on both labeled and unla-
beled data. Unlike the conventional semi-supervised fash-
ion, the task allows unlabeled data to have the category set
mismatched with labeled data, reducing the required label-
ing effort. Our task is a significant step towards real-world
data, which contains labeled data and unlabeled data (both
closed-set and open-set samples), lowering the data con-
struction cost and expanding the range of real-world appli-
cations of cGANs.

To address our new task, we design Open-Set Semi-
supervised GAN (OSSGAN). We simultaneously train
cGAN and a classifier that assigns labels to unlabeled
data. By incorporating entropy regularization into the cross-
entropy loss, the classifier quantifies the confidence of the
prediction to enable the discriminator to use unlabeled data,
including open-set samples, smoothly. Consequently, OS-
SGAN allows the natural integration of unlabeled data into
cGANs without explicitly eliminating open-set samples.

The results of empirical experiments demonstrate that
OSSGAN effectively utilizes unlabeled data, including
open-set samples. More importantly, we achieve better per-
formance in terms of FID and other metrics against strong
supervised and semi-supervised baselines. Notably, our
method achieves a performance comparable to that of Big-
GAN [1], which has up to five times as many labeled sam-
ples as OSSGAN. Furthermore, the experiments with dif-
ferent degrees of an open-set sample ratio show that the
proposed method is robust to miscellaneous data. Quali-
tative experimental results also reveal the superiority of our
method. Our contributions are summarized as follows.

• We propose a novel open-set semi-supervised image
generation task, which is based on a relaxed assump-
tion in the case of building a dataset at a reasonable
cost.

• We design OSSGAN, thanks to entropy regularization,
smoothly using closed- and open-set samples in unla-
beled data in cGAN training.

• We demonstrate the superiority of the proposed
method over baselines on several benchmarks with
limited labeled data in terms of quantitative metrics
such as FID. Our qualitative experiments also show
that our method achieves better generation quality.

2. Related work

CGANs [12] are a GANs extension, which learns a con-
ditional generative distribution. CGANs can deal with

many types of conditions such as class label [12], text de-
scription [24], or another image [7]. For well-constructed
datasets, [1, 13, 23] are proposed to improve quality, fi-
delity, and training stability. Among them, self-attention
GAN [23] and BigGAN [1] outperform other GANs with
hundreds of classes. The progress in network architectures,
optimization algorithms, and the quality and quantity of
datasets support high-fidelity image generation. We aim
to achieve high-fidelity image generation without a well-
constructed dataset.
Image generation with data constraints is aimed at im-
proving the generation quality without using enormous
amounts of data. Collecting a large labeled dataset re-
quires a tremendous annotation cost. To achieve better per-
formance within limited resources (i.e., time and money),
several studies [6, 8, 18, 25] contribute to the data-efficient
aspect of cGANs. Another line of studies [2, 10] focus-
ing on the fact that unlabeled images are easier to col-
lect than labeled images employs semi-supervised or un-
supervised fashion. For semi-supervised image generation,
[19, 20] employ an unconditional discriminator for unla-
beled data, and [4, 9] take pseudo labels by employing
a classifier. Unlabeled data have been efficiently utilized
in self-supervised learning [10]. A different aspect in the
study of semi-supervised learning and GAN concerns semi-
supervised recognition tasks that employ GAN for generat-
ing pseudo samples [3,17]. Unsupervised image generation
frees us from tedious annotation labor. However, unsuper-
vised methods do not control generated outcomes as semi-
supervised methods do. In this study, we utilize unlabeled
data gathered miscellaneously for training cGANs to reduce
the data construction cost, which will further broaden their
range of application.
Open-set semi-supervised recognition has the same ob-
jective as our method but addresses a totally different task.
The goal of the recognition task is to build a model dis-
tinguishing open-set samples using a dataset consisting of
labeled data with only closed-set classes and unlabeled data
with both closed- and open-set classes. The joint optimiza-
tion of classification and open-set sample detection mod-
els [22] and the consistent regularization with data augmen-
tation [11] are used to tackle the problem. In contrast to
recognition paradigms aimed at separating explicitly open-
and closed-set samples, our generation task does not neces-
sarily require explicit separation of these samples. Instead
of applying a method for detecting open-set samples, we
investigate a method of utilizing open-set samples.

3. Open-set semi-supervised image generation

3.1. Task definition

While labeling data is tremendously costly, we can col-
lect unlabeled data at a relatively low cost. However, as
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the semi-supervised image generation task does not allow
the unlabeled data to contain any open-set samples, filter-
ing out such open-set samples is mandatory. As a step to-
wards reducing the manpower expended in the filtering pro-
cess for building closed-set semi-supervised data, we con-
sider a learning framework without the assumption that the
sets of classes are shared between labeled and unlabeled
data, meaning that open-set samples are freely applicable.
While the aim of our task is to generate the images with the
classes of interest (labeled data) similarly to supervised and
semi-supervised image generation [1,10,13,23], we assume
the unlabeled data contain closed-set and open-set samples
(Fig. 1).

Let x,u 2 Rd be real labeled and unlabeled samples,
respectively, where d = H ⇥ W ⇥ 3 is the dimension of
a sample where H and W are the height and width of the
image. Let y 2 Y = {1, 2, . . . ,K} be the class where K

is the number of known classes. For the sake of simplicity,
we will use a probability vector y 2 {y 2 RK |

PK
1 =

1 and 0  yi} when referring to the class unless otherwise
specified. Thus, class y can be interpreted as a one-hot vec-
tor y = [{ [y = j]}Kj=1]

T. We denote the distribution of
labeled data as p(x,y), whereas the distribution of unla-
beled data is p(u). The unlabeled data contain the samples
that cannot be classified into one of the K classes, and such
samples are considered as open-set samples.

We are given a set of labeled data Dl = {(xi,yi)}nl
i=1 ⇠

p(x,y) with nl samples and a set of unlabeled data Du =
{ui}nu

i=1 ⇠ p(u) with nu samples as training data. By using
the latent variable z 2 Rl with l being the dimension of the
latent variable, the prior distribution is q(z,y) = q(z)q(y)
with a Gaussian distribution q(z) and a uniform distribution
q(y) on {e(1), e(2), . . . , e(K�1)

, e(K)}, where e(i) is the i-
th standard basis vector of RK . The task of open-set semi-
supervised image generation is to learn a generator G : Rl⇥
RK ! Rd such that G takes a latent variable and a label
y ⇠ q(y) and generates images that are indistinguishable
from real ones for a given label.

3.2. General training objective functions

To accomplish the task we proposed, the discriminator
should be able to deal with the unlabeled data (and the
labeled data), that is, it should easily distinguish between
closed-set samples and open-set samples. A straightforward
way to do this is to use an auxiliary classifier to assign a
class to unlabeled samples. Motivated by this observation,
we define a cGAN with an auxiliary classifier as follows.
Given a generator G, a discriminator D, and an auxiliary
classifier C, the general discriminator loss LD and genera-
tor loss LG are defined as

LD =Llbl
adv + Lunlbl

adv + �Lcls (1)
LG =E(z,y)⇠q(z,y)[�D(G(z,y),y)], (2)

where Llbl
adv and Lunlbl

adv are adversarial losses for labeled and
unlabeled data, respectively. The classifier loss Lcls has a
hyperparameter � for balancing the loss terms. The Llbl

adv
follows the conventional adversarial loss with hinge loss
fD(·) = max(0, 1 + ·) for labeled data:

Llbl
adv =E(x,y)⇠p(x,y)[fD(�D(x,y))]

+ E(z,y)⇠q(z,y)[fD(D(G(z,y),y))]. (3)

Naively, the classifier loss Lcls can be cross-entropy loss:

Lcls =� E(x,y)⇠p(x,y)[log pc(y
Ts|x)]. (4)

We note that the discriminator D and the classifier C share
the feature extractor part. Mathematically, D : Rd⇥RK !
R takes the form D(x,y) = W1D̃(x) + b + D̃(x)TW2y,
D̃ : Rd ⇥ RK ! Rh is a feature extractor in D, s is
[0, 1, 2, . . . ,K � 1]T, and pc(y|x) = Cy(D̃(x)) is the y-
th output of the auxiliary classifier C : Rh ! RK . Here,
W1 2 Rh⇥1 is the weight parameter of the fully connected
layer, W2 2 Rh⇥K is the embedding matrix for a label, and
h is the dimension of the extracted feature. The scalar rep-
resentation of a label is represented by yTs with a one-hot
vector y. We will further adaptively customize Llbl

adv, Lunlbl
adv ,

and Lcls for different methods, as discussed later.

4. Proposed method

4.1. Threshold-based method

We introduce two baseline methods for our task, called
RejectGAN and OpensetGAN. These methods are semi-
supervised GANs extended by employing a classifier to as-
sign predicted classes to unlabeled samples as new labels.
RejectGAN only considers labeled samples and closed-set
samples in unlabeled data in the training of GANs by fil-
tering out unlabeled samples that have low confidence, as
open-set samples. OpensetGAN explicitly utilizes open-set
samples in the unlabeled data by assigning K+1 classes, the
open-set class, to unlabeled samples with low confidence.
Below, we describe the details of these methods.
RejectGAN. The principal purpose of this method is to
train cGANs on the dataset with sufficient volume and clean
labels. Whenever the labels of samples are available, we use
them to update an auxiliary classifier in the same manner as
ACGAN [14]. At the same time, we assign the predicted
classes to unlabeled samples when the classifier predictions
have a probability associated with a predicted class equal to
or higher than a threshold. Then, by eliminating unlabeled
samples with a probability associated with the predicated
class less than a threshold, we train the discriminator only
with unlabeled samples with high confidence, labeled sam-
ples, and samples synthesized by a generator. Accordingly,
we modify the adversarial loss for unlabeled samples as

Lunlbl
adv = Eu⇠p(u)[fD(�D(u, ŷ))|max(ỹ) � c], (5)
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where c is a threshold of confidence, ỹ = C(D̃(u)) is a
predicted probability vector, and ŷ = e(argmax ỹ) is a pre-
dicted label with e(i) being the i-th standard basis vector
of RK . A confidence score larger than the threshold means
that the sample is clearly classified into y 2 Y . We ignore
the samples with a confidence score lower than the thresh-
old in calculating the loss.
OpensetGAN. In addition to learning class-specific fea-
tures, this method is also aimed at learning class-invariant
image features by adding a novel class for the open-set sam-
ples to the discriminator inputs. In contrast to RejectGAN,
the discriminator D : Rd ⇥ RK+1 ! R takes a sample and
a label vector with the length of K +1 to consider open-set
samples detected by the auxiliary classifier. Accordingly,
OpensetGAN extends the adversarial losses Llbl

adv and LG to
accept the K + 1-dimensional condition vector:

Llbl
adv =E(x,y)⇠p(x,y)[fD(�D(x,yTIK,K+1))]

+ E(z,y)⇠q(z,y)[fD(D(G(z,y),yTIK,K+1))], (6)

LG =E(z,y)⇠q(z,y)[�D(G(z,y),yTIK,K+1)], (7)

where IK,K+1 = (IK 0) is the K⇥(K+1) rectangular iden-
tity matrix with the K⇥K identity matrix IK and the zero
vector 0. OpensetGAN assigns the K+1 classes to unla-
beled data to train on the labeled data with the K classes,
and then the adversarial loss for unlabeled samples is

Lunlbl
adv =Eu⇠p(u)[fD(�D(u, ŷ))]. (8)

Here, we define the classifier output ŷ 2 RK+1 as

ŷ =

(
e(argmax ỹ)

, if max(ỹ) � c

e(K+1)
, otherwise,

(9)

and we denote the K known classes and an additional open-
set class by {e(1), e(2), . . . , e(K+1)} with the standard basis
vectors of RK+1. The convert matrix IK,K+1 adds the zero-
filled K+1-th column to a label vector for a discriminator.
In Eq. (9), we assign one of the known classes to unlabeled
samples with high confidence score and the open-set class
to unlabeled samples with low confidence score.

4.2. The intuition behind OSSGAN

The methods described above do not efficiently exploit
a given dataset because employing a threshold hinders the
training of GAN. Furthermore, their performance is sensi-
tive to the threshold, and the average entropy of predicted
probabilities shifts with each iteration. In the training phase,
finding the optimal threshold in each iteration is difficult be-
cause we do not know the ratio of known to unknown sam-
ples in unlabeled samples. As a result, because it eliminates
closed-set samples with low confidence score in unlabeled
data, RejectGAN misses out on useful information for train-
ing a generator and discriminator. Similarly, OpensetGAN

Figure 2. Effect of assigning high entropy labels to open-set sam-
ples on Tiny ImageNet. Entropy indicates the method of verify-
ing our approach. BigGAN is trained on only labeled samples.
Here, the experiments contain enough labeled samples for train-
ing cGANs. The method assigning high entropy labels to open-set
samples maintains the performance of BigGAN.

may fail to learn the class feature owing to misclassifying
known class samples as open-set samples. Since these flaws
cause the instability of threshold-based methods, we require
a more robust method that does not need careful tuning.

To devise a threshold-free method, we use the entropy of
the label as a confidence score and feed continuous labels
with confidence into the discriminator. Then, the discrim-
inator uses the information that samples with low entropy
are clearly classified into the known classes, and samples
with high entropy are not classified into the known classes,
resulting in no unlabeled samples being missed.

To ensure that the idea of assigning high entropy la-
bels to open-set samples is effective for the task, we com-
pare the method of manually assigning high entropy la-
bels (as an oracle) to open-set samples with supervised
and semi-supervised methods. The supervised method
is BigGAN [1]. The semi-supervised method, which
is referred to as Baseline in Fig. 2, assigns one of the
known classes to open-set samples with an auxiliary clas-
sifier. BigGAN is only trained on closed-set samples.
The high entropy method, which is abbreviated as En-
tropy, is trained on closed-set and open-set samples labeled
[1/K, 1/K, 1/K, . . . , 1/K]T. Entropy achieves a perfor-
mance comparable to that of BigGAN in the case of a ratio
of open-set samples of 25%, as shown in Fig. 2. It outper-
forms the baseline method in all other cases. These findings
indicate that the strategy of assigning high entropy labels to
open-set class samples helps to save training cGANs from
contamination by open-set samples.

4.3. OSSGAN

To automatically assign high entropy labels to open-set
samples in unlabeled data, we propose a method that quan-
tifies the likelihood that a sample belongs to any one of
the closed-set classes and feeds the samples with likeli-
hoods into the discriminator. OSSGAN is made up of three
parts: a generator, a discriminator, and an auxiliary classi-
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fier (Fig. 3). To train the auxiliary classifier, we use both
real labeled and generated samples. This is due to the fact
that if the number of training data is insufficient, the aux-
iliary classifier performs poorly. To train the discriminator,
we use real labeled, real unlabeled, and generated samples.
While either the label of the real labeled samples or the la-
bel of the generated samples can be fed directly into the
discriminator, we use the classifier output as the label of the
unlabeled samples. As a result, when the samples are la-
beled or generated, the discriminator D : Rd⇥RK! R is
fed a one-hot vector; when the samples are unlabeled, it is
fed a continuous vector. Our adversarial loss for unlabeled
samples is defined as

Lunlbl
adv = Eu⇠p(u)[fD(�D(u, C(D̃(u))))]. (10)

To provide more informative clues for identifying open-
set samples from closed-set ones to the discriminator, we
introduce the entropy regularization term into the cross-
entropy loss. While the standard classification loss, cross-
entropy loss, results in low entropy, entropy regularization
maintains high entropy of open-set samples in unlabeled
data. With the term maximizing the average entropy of the
auxiliary classifier outputs, we customize Lcls:

Lcls =� E(x,y)⇠p(x,y)[log pc(y
Ts|x))]

� E(x,y)⇠p(x,y)[H(C(D̃(x)))]

� E(z,y)⇠q(z,y)[log pc(y
Ts|G(z,y)))]

� E(z,y)⇠q(z,y)[H(C(D̃(G(z,y))))]. (11)

Without the regularization, the classifier predicts low en-
tropy values to all unlabeled samples, resulting in assign-
ing a known class even to unlabeled samples that should be
treated as an open set. The entropy term is defined by

H(x) = �⌃x2xx log x

logK
. (12)

The range of the function is 0  H(x)  1. We use a nor-
malized function because it is difficult to set the hyperpa-
rameter � in the loss function when a function with a range
of 0  H(x) can take a large value. The contribution of the
entropy regularization term varies with different K in the
experiment if we use the original entropy function. While
the cross-entropy loss makes the entropy smaller, the en-
tropy regularization makes the entropy larger. The cross-
entropy loss more strongly affects closed-set samples, re-
sulting in the clear separation between the closed- and open-
set samples. The number of labeled samples in the mini-
batch is quite small because unlabeled samples make up the
majority of the dataset. To avoid a classifier that considers
only the generated samples, which dominate the minibatch,
we balance the ratio of the classification loss terms for la-
beled and generated samples by the number of labeled sam-
ples. Finally, the overall objective function of OSSGAN is
LG of Eq. (2) and LD consisting of Eqs. (3), (10), and (11).

Figure 3. Overview of the proposed method. A classifier is trained
on labeled and generated data with the classifier loss consisting
of cross-entropy and entropy regularization terms and infers labels
for unlabeled data. The generator is trained in the same fashion
as conventional cGANs. For the generated and labeled data, the
discriminator is trained in the same way as conventional cGANs.
It further takes unlabeled samples by regarding them as labeled
samples.

This method employs the raw probability vector for han-
dling open-set samples instead of using thresholds and is
free from investigating the optimal threshold. It also makes
use of the inter-class similarity and class-invariant visual at-
tributes that an auxiliary classifier acquires throughout the
training process. For example, if the dog, cat, and monkey
classes are given as known classes and a cow image is in-
cluded in the open-set sample, the image can be used as an
image with common mammalian attributes.

4.4. Implementation details

We choose BigGAN [1] as an example to verify OSS-
GAN. Here, our method can be applied to different cGANs
(e.g., SAGAN [23] and SNGAN [13]). In detail, we build
all the methods that are used in the experiments upon Big-
GAN [1] by integrating DiffAugment [25].

For the experiments, we use the hierarchical latent space
with 20 dimensions for each latent variable and the shared
embedding with dz = 128. We use minibatch sizes of 1024
and 256 for the resolutions of 64 ⇥ 64 and 128 ⇥ 128, re-
spectively. The learning rates are 1 ⇥ 10�4 and 4 ⇥ 10�4

for the generator and discriminator, respectively.

5. Experiments setting

Datasets. Using existing entirely labeled datasets, we cre-
ate partially labeled datasets for benchmarking open-set
semi-supervised image generation. The dataset construc-
tion procedure is divided into three stages (Fig. 4). We use
three constants: the number of closed-set classes, the ratio
of labeled samples in closed-set class samples, and the us-
age ratio in open-set samples. First, we divide the entirely
labeled dataset into closed-set classes and open-set classes
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Figure 4. Procedure of building open-set semi-supervised datasets.
The procedure has three constants for governing the number of
labeled, closed-set unlabeled, and open-set unlabeled samples.

based on the number of closed-set classes. Then, using the
ratio of labeled samples in closed-set class samples, we split
the closed-set samples into labeled and unlabeled samples.
Finally, we select samples from open-set samples based on
the usage ratio in open-set samples, and we merge unla-
beled samples in closed-set samples with the samples se-
lected from open-set class samples.

We use the Tiny ImageNet [21], which consists of 200
diverse categories. Each class contains 500 and 100 images
for training and testing, respectively. We use the number of
closed-set classes of {150, 100, 50}, the ratio of the labeled
samples in closed-set class samples of {0.95, 0.5, 0.2, 0.1},
and the usage ratio in open-set class samples of 1. Then,
using the above constants, we create 12 data configurations.
The easiest case has labeled samples with approximately
three-quarters of the dataset, and the hardest case has la-
beled samples with less than 3% of the dataset.

We also use ImageNet ILSVRC2012 [15]. It consists of
1000 categories and provides 1.2 million images. For the
dataset, we use the number of closed-set classes of 50, the
ratio of the labeled samples in closed-set class samples of
0.2, and the usage ratio in open-set class samples of 0.1.
The subset consists of around 12,000 labeled images and
around 200,000 unlabeled images.
Compared methods. In the experiments, we select Big-
GAN [1] with DiffAugment [25] as a base model and care-
fully integrate (open-set) semi-supervised methods into it.
We compare OSSGAN with BigGAN [1], RandomGAN,
SingleGAN, S3GAN [10], RejectGAN, and OpensetGAN.
Here, DiffAugment [25] is applied to the compared meth-
ods. We train BigGAN on only the labeled samples. In
other words, the method is trained on clean datasets. The
other methods and OSSGAN are trained on our constructed
open-set dataset, as mentioned above. RejectGAN and
OpensetGAN are introduced in the above section. Random-
GAN does not have a classifier for the unlabeled images and

Figure 5. Effect of the threshold for detecting open-set class on
Tiny ImageNet. We only report the constant scores for OSSGAN,
as it does not employ a threshold. For OpensetGAN and Reject-
GAN, the optimal thresholds are investigated in the range from 0
to 1. Our method achieves a lower (better) FID than the threshold-
based methods because of the difficulty of selecting a threshold.
The data configuration of 100 010 indicates 100 closed classes
and 10% labeled samples. The same notations are applicable to
other data configurations.

assigns labels y 2 Y chosen uniformly at random to unla-
beled samples. RandomGAN is very simple, but it learns
reasonably well when occasionally assigning correct labels
by happenstance. SingleGAN is a naive version of OSS-
GAN and assigns the high entropy labels to all unlabeled
samples regardless of their content.

For OSSGAN, S
3GAN, RejectGAN, and Openset-

GAN, the weighting parameter � is selected from
{0.1, 0.2, 0.4, 0.6}, respectively. The cross-entropy loss can
be large, so care should be taken to set it such that the
training balance between the generator and the discrimina-
tor is not disturbed. For RejectGAN and OpensetGAN, the
threshold c is selected from {0.1, 0.3, 0.5, 0.7, 0.9, 0.95}.
Evaluation metrics. We employ Inception Score (IS) [17],
Fréchet Inception Distance (FID) [5], F1/8 score [16], and
F8 score [16] to measure the whole quality of generated
samples. FID measures both image quality and diversity
with the feature distance between the generated and refer-
ence images, but it was not possible to separate the evalu-
ated values into fidelity and diversity. In contrast, F1/8 and
F8 aim to quantify fidelity and diversity, respectively. We
sample 10K generated images for all the metrics and use the
evaluation set as the reference distribution for FID.

6. Experiment results

We first evaluate the effects of the entropy regularization
term. To this end, we compute the difference in average en-
tropies at the 100k-th iteration. The difference without the
regularization term is 0.104, whereas the difference with the
regularization term is 0.283. This shows that optimizing a
classifier with entropy regularization results in clearly sep-
arated open-set and closed-set samples in unlabeled sam-
ples. Consequently, we can expect the regularization to im-
prove the cGAN model performance even when the model
is trained on a dataset contaminated with open-set samples.
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#known
class

#labeled
sample/class

#unlabeled sample OSSGAN S
3GAN [10] RandomGAN SingleGAN BigGAN [25]

closed-set open-set FID# IS" FID# IS" FID# IS" FID# IS" FID# IS"

150

475 3750 25000 25.97 15.30 20.95 16.51 26.51 12.80 24.38 13.82 17.82 17.65

250 37500 25000 25.06 13.81 24.05 14.38 33.56 10.86 30.11 11.89 18.57 16.99

100 60000 25000 26.34 13.66 27.25 13.12 34.13 10.82 39.67 10.81 62.77 9.74
50 67500 25000 35.39 11.61 54.32 9.36 45.23 10.78 64.25 9.68 109.50 5.94

100

475 2500 50000 31.75 13.81 28.66 14.80 36.70 11.77 18.66 17.67 18.88 17.60
250 25000 50000 28.19 13.88 29.19 14.05 51.33 10.02 25.97 16.66 22.85 17.02

100 40000 50000 31.28 13.29 33.18 12.60 56.50 9.94 37.79 11.46 56.36 9.82
50 45000 50000 40.61 11.54 230.84 2.50 42.05 10.58 43.45 10.51 128.33 4.59

50

475 1250 75000 56.33 13.63 55.12 13.22 68.67 10.25 71.19 9.72 23.81 13.85

250 12500 75000 56.49 13.48 57.16 12.50 67.98 9.88 74.66 9.36 78.39 6.47
100 20000 75000 58.36 12.41 75.94 8.76 72.97 9.82 77.17 9.14 99.78 5.14
50 22500 75000 61.60 11.84 95.01 8.29 79.75 8.53 73.41 9.08 161.65 4.17

Table 1. FID and Inception Scores obtained in experiments of different configurations on Tiny ImageNet. Each row shows the configuration,
statistics, and results of compared methods in an experiment.

References

BigGAN [1]

RandomGAN

S
3GAN [10]

OSSGAN

Figure 6. Visual comparison of class-conditional image synthesis
results on ImageNet. Our method produces plausible images while
respecting the given condition.

We then investigate whether incorporating the threshold
has a negative impact on cGAN training. The FID scores in
baseline methods with different thresholds and in OSSGAN
are shown in Fig. 5. We see that the quantitative perfor-
mances of OpensetGAN and RejectGAN are heavily depen-
dent on threshold selection. Their results are not on par with

Figure 7. Scatter of precision and recall scores obtained in Tiny
ImageNet experiments. Dots show the recall and precision in
experiments. Horizontal line shows the average precision of a
method. Vertical line shows the average recall of a method. Dots
in the upper right indicate high fidelity and high diversity. Con-
versely, dots in the lower right indicate low fidelity and low diver-
sity.

FID# IS" F1/8" F8"
BigGAN [25] 190.88 3.97 0.1178 0.0570
RandomGAN 105.71 12.41 0.6104 0.7679
S
3GAN [10] 180.30 4.38 0.2053 0.1472

OSSGAN 78.43 18.42 0.8379 0.8359

Table 2. Experimental results for our ImageNet dataset. Our
method outperforms the baseline methods in terms of all the quan-
titative metrics.

our results, except in the best-case scenario. This is because
the average entropy of the open-set samples varies greatly
during training, ranging from 0.4 to 0.9. We obtain the av-
erage entropies of open-set and closed-set samples, only for
benchmarking purposes, not in practice, because we cannot
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TinyImageNet ImageNet

Ours w/o H and Fake 60.09 117.78
Ours w/o H 70.55 85.65
Ours w/o Fake 60.06 81.53
Ours (OSSGAN) 35.39 78.43

Table 3. Results of ablation study. We report the FID scores of
each method. In the ablation parts, H and Fake indicate the en-
tropy regularization term and the cross-entropy loss for fake sam-
ples, respectively. The last row is for our OSSGAN model.

divide unlabeled samples into open-set and closed-set sam-
ples. Because we cannot set a threshold with respect to the
average entropy, the method free of threshold adjustments
is more useful for our purposes.

We next compare OSSGAN to S
3GAN, RandomGAN,

SingleGAN, and BigGAN on 12 data configurations of Tiny
ImageNet, as decribed in Sec. 5. Table 1 shows the quantita-
tive results separated into three segments. Each segment has
the same number of closed-set classes while it has different
ratios of labeled samples in the closed-set classes. The total
number of samples (labeled and unlabeled samples) in each
experiment is 100,000. We note that the lower the row, the
more difficult the experiment.

We summarize the experimental results of our Tiny Ima-
geNet datasets. For the dataset with sufficient labeled sam-
ples for each class (e.g., rows 1, 2, and 5), it is not sur-
prising that BigGAN performs best thanks to the use of
data-efficient DiffAugment module. In contrast, when the
data difficulty increases, its performance degrades drasti-
cally. RandomGAN and SingleGAN perform better than
BigGAN for datasets with insufficient number of labeled
samples for each class. While S

3GAN provides further im-
provements over the methods that do not rely on the auxil-
iary classifier for such datasets, it worsens in extreme cases.
Our method outperforms the baselines for the dataset with
limited number of labeled samples even in extreme cases.
The performance gains are a result of smoothly utilizing the
likelihoods quantified by the classifier. OSSGAN with 20%
labeled samples achieves comparable performance to Big-
GAN (see row 10 and row 12 of Tab. 1).

We also conduct experiments with high-resolution im-
ages for a subset of ImageNet. In this experiment, we use
labeled data from only 1% of the original ImageNet. Ta-
ble 2 shows the F1/8, F8, FID, and IS scores for the dataset
mentioned in Sec. 5. BigGAN and S

3GAN completely fail
for this dataset. The low F1/8 and high F8 scores indicate
that RandomGAN probably fails to generate images of a
class that matches the given class condition. Our method
achieves the best quantitative performance in all metrics.
Figure 6 also shows the examples generated by the meth-
ods. The qualitative results are consistent with the quantita-

tive results.

The F1/8 and F8 scores of compared methods in Tiny
ImageNet experiments with several configurations and the
average F1/8 and F8 scores of each method are shown in
Fig. 7. The proposed method has a higher recall, that is,
diversity, than other methods. RandomGAN, which assigns
all classes to each image, fails to learn class-specific fea-
tures, resulting in low diversity. In contrast, our method
learns class-specific and class-invariant features by utilizing
confidence, leading to achieve high diversity.

We perform an ablation study to evaluate the contribu-
tion of each loss term of our model. For ablation models,
we drop either or both the entropy regularization term and
the cross-entropy loss for fake samples. The components
are indicated by H and Fake, respectively. As Tab. 3 shows,
both components contribute to the performance individu-
ally, and the combination of the components yields signif-
icant improvement. Applying only Fake sometimes harms
the performance in the case of a sufficient number of labeled
samples for training the classifier.

7. Conclusion

We introduced a novel task of practical image genera-
tion. We proposed open-set semi-supervised image gener-
ation, a problem that takes into account the properties of
the data available when developing applications for image
generation models in the real world. Furthermore, to ad-
dress the proposed task, we designed OSSGAN by inte-
grating the unlabeled samples with the confidence score ob-
tained by the auxiliary classifier into the training of cGANs.
Thanks to the utilization of entropy regularization, OSS-
GAN promoted the discriminator to learn the class-invariant
features and to avoid missing the useful features of closed-
set classes. The results of our comprehensive experiments
on several configurations showed that OSSGAN outper-
formed other baseline methods and performed well with
limited labeled samples. Therefore, our OSSGAN will re-
duce the cost of building datasets for training cGANs, lead-
ing to the expansion of the range of real-world applications
of cGANs. The limitation of the proposed method is that
the performance improvement by OSSGAN depends on the
success of the training of the classifier. In combination
with unsupervised and self-supervised learning, we expect
to be able to achieve learning of appropriate classifiers from
fewer labels than in our method.
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