Label, Verify, Correct: A Simple Few Shot Object Detection Method

Prannay Kaul¹
Weidi Xie¹,²
Andrew Zisserman¹
¹Visual Geometry Group, University of Oxford
²Shanghai Jiao Tong University

http://www.robots.ox.ac.uk/~vgg/research/lvc/

Abstract

The objective of this paper is few-shot object detection (FSOD) – the task of expanding an object detector for a new category given only a few instances for training. We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from the training set, for each new category, vastly increasing the number of training instances and reducing class imbalance; our method finds previously unlabelled instances.

Naïvely training with model predictions yields sub-optimal performance; we present two novel methods to improve the precision of the pseudo-labelling process: first, we introduce a verification technique to remove candidate detections with incorrect class labels; second, we train a specialised model to correct poor quality bounding boxes. After these two novel steps, we obtain a large set of high-quality pseudo-annotations that allow our final detector to be trained end-to-end. Additionally, we demonstrate our method maintains base class performance, and the utility of simple augmentations in FSOD. While benchmarking on PASCAL VOC and MS-COCO, our method achieves state-of-the-art or second-best performance compared to existing approaches across all number of shots.

1. Introduction

Object detection refers to the task of determining if an image contains objects of a particular category, and if so, then localising them. In recent years, the community has seen tremendous successes in object detection by training computational models for a set of pre-defined object classes [8, 16, 32, 36, 40, 46, 55], with large numbers of human annotated labels, e.g., MS-COCO [30], and PASCAL VOC [11]. However, such training paradigms have limited the model to only perform well on a closed, small set of categories for which large training data is available.

In contrast, humans can continuously expand their vocabularies, learning to detect a much larger set of categories, even with access to only a few examples [43]. This is also a desirable ability for modern computer vision systems and is studied in the task of few-shot object detection (FSOD) [13, 21, 45, 51, 56]. The goal of our work is FSOD: given an existing object detector that has been...
trained on abundant data for some categories, termed *base* categories, we wish to learn to detect *novel* categories using only a few annotations, *e.g.* 1–30 per category, whilst maintaining performance on the original base categories.

In this paper, we carefully examine the training procedure of the Faster R-CNN two-stage detector, and identify two critical factors that limit its performance on FSOD. *First*, training on base categories leads to a form of “supervision collapse” [9]; this model is naturally trained against detecting instances from novel classes, as they were unlabelled and treated as background; *second*, the FSOD problem involves learning from extremely unbalanced data — only K instances ($K \leq 30$) are available per novel class for training, so the number of training samples for *base* categories is far larger than that for *novel* ones. A model that overfits to a small number (K) of novel instances naturally lacks generalisation ability.

We adopt a simple pseudo-labelling technique (see Figure 1) and address both the factors that limit performance: we show that the Region Proposal Network (RPN) can be modified to successfully propose regions for the novel categories and use a detector trained with the few-shot novel data to label these regions over the images of the large training dataset, producing a set of candidate detections for each novel category. The novelty of our approach is in the two steps used to improve the precision of this candidate set: *first*, we build a classifier for novel categories to verify the candidate detections using features from a network trained with self-supervision (see Figure 1, centre); *second*, we train a specialised box regressor that improves the quality of the bounding box of the verified candidates (see Figure 1, right). The two steps together yield a large set of high precision pseudo-annotations for the novel categories, removing the class imbalance in the training data. This enables the detector to be trained end-to-end using the pseudo-annotations for the novel categories together with the original groundtruth annotations for *base* categories, and simultaneously avoids the impact of “supervision collapse” for all detector features.

To summarise, our contributions are as follows: (i) we carefully examine the problem of few-shot object detection with the modern two-stage object detector, *e.g.* Faster R-CNN, and identify the issue of “supervision collapse”; (ii) we introduce a novel verification and correction procedure to pseudo-labelling, which significantly improves the precision of pseudo-annotations, both class labels and bounding box coordinates; (iii) we analyse several critical components of data augmentation and conduct thorough ablation studies to validate their necessity; (iv) with the combination of pseudo-labelling and aggressive data augmentations, we set state-of-the-art (SotA) or comparable performance using a standard Faster R-CNN, for both the challenging MS-COCO benchmark and the PASCAL VOC benchmark. We discuss potential ethical concerns and limitations of our work in arXiv version of the paper [23]. Code and pre-trained models are available from the project webpage.

2. Related Work

Object Detection is one of the classical problems in computer vision, which makes it impossible to present a full overview here. We therefore only outline some key milestones here. In general, recent object detection methods can be cast into two sets: one-stage and two-stage detectors. *One-stage* detectors attempt to directly classify and regress bounding boxes by, either densely classifying a set of predefined anchor boxes [32, 33, 37, 38, 39, 46] or densely searching for geometric entities of objects *e.g.* corners, centres or regions [25, 47, 58]. Conversely, most *two-stage* detectors propose class-agnostic bounding boxes using a Region Proposal Network (RPN), with predefined sizes and aspect ratios, filtering out many negative (background) locations. These bounding box proposals are pooled to region-of-interest (RoI) features and are classified by a multilayer perceptron (MLP) in the second stage of the detector [14, 15, 28, 40].

Few-Shot Object Detection aims to expand the vocabulary of an object detector by only annotating a handful of samples. Several works [5, 12, 13, 16, 19, 21, 22, 26, 27, 29, 36, 45, 48, 49, 50, 53, 56, 57, 59] have been proposed in the recent literature. The meta-learning method, FSRW [21] conditions dense query image features from a YOLOv2 network [38] with a separate network operating on a support set. Recently, a simple two-phase fine-tuning approach (TFA) is proposed [48], in which a Faster R-CNN model is initially trained on the base data. In the second training phase, only the final classification layer is finetuned on a few samples of novel classes, with the rest of the model fixed. This work initiates a shift away from meta-learning based methods for few-shot object detection. FSCE [45], alleviates class confusion between novel classes by training a separate supervised contrastive learning [24] head on RoI features. A recent work, DeFRCN [36], decouples the training of RPN features and RoI classification. Another recent work, SRR-FSD [59] combines vision and natural language, projecting image features into semantic class embeddings learnt from a large text corpus.

Semi-supervised Object Detection belongs to another related research area. Such a problem setup can be traced back to the pre-deep learning era [41], where the goal is to train detectors with a combination of labelled, weakly-labelled and unlabelled data. In the recent literature, the idea of exploiting consistency and self-training has been widely adopted, for example, [20] proposed to enforce the predictions of an input image and its flipped version to be consistent; [34, 44] pre-trained a detector using a small amount of labelled data and generated pseudo-labels on
unlabelled data for further fine-tuning. Generally speaking, these methods aim to train a detector on two separate subsets; one contains images with all objects of all classes being exhaustively annotated, and the other subset is fully unlabelled. Therefore, the model trained on the labelled set does not suffer the same issue as in FSOD, where a large number of novel object instances are wrongly treated as background during base training. Hence the scarce data issue of FSOD does exist in semi-supervised object detection, but “supervision collapse” does not.

Self-Training is a method for gaining noisy pseudo-labels which has gained renewed interest since it was initially proposed [42]. In recent years, self-training has been used to improve image classification by using a teacher-student training regime [6, 18, 54]. This idea is extended to general object detection in [60], however, their considered scenario is semi-supervised object detection.

3. Background and Supervision Collapse

In this section, we first outline the few-shot object detection task in Section 3.1. Next, in Section 3.2, we carefully examine the various components of the popular two-stage detector (Faster R-CNN), identify the critical issues that limit its use in the few-shot scenario and draw conclusions to ameliorate such critical issues.

3.1. Problem Definition

In this paper, we consider the same problem setup as in TFA [21]. Specifically, assuming we are given an image dataset, \(\mathcal{D} \), and two annotation sets. First, \(\mathcal{Y}_{\text{BASE}} \), with exhaustive annotations on a set of base categories, \(\mathcal{C}_{\text{BASE}} \). Second, \(\mathcal{Y}_{\text{NOVEL}} \), with only \(K \) annotations on a set of novel categories, \(\mathcal{C}_{\text{NOVEL}} \). Note, the annotations on base categories are exhaustive, but for novel categories most instances are unlabelled as only \(K \) annotations are provided for the image dataset, \(\mathcal{D} \), under the few-shot setting.

3.2. Training Strategy

In this section, we start by describing a baseline two-stage detector for the problem of few-shot object detection, following that of TFA [48]. In general, a Faster R-CNN detector, \(\Phi_{\text{DET}}(\cdot) \), can be formulated as:

\[
\Phi_{\text{DET}}(\cdot) = \Phi_{\text{CLS}} \circ \Phi_{\text{ROIs}} \circ \Phi_{\text{RPN}} \circ \Phi_{\text{ENC}}(\cdot)
\]

where, each input image is sequentially processed by a set of operations: an image encoder, (\(\Phi_{\text{ENC}} \)); a Region Proposal Network, (\(\Phi_{\text{RPN}} \)); a region of interest feature module, (\(\Phi_{\text{ROIs}} \)); and a classification layer on the RoI features, (\(\Phi_{\text{CLS}} \)), mapping to a set of bounding boxes and classes. Note that, each module here contains the same number of convolutional or MLP layers as the standard Faster R-CNN [40].

Training few-shot object detectors involves a two-phase training procedure, as detailed below:

<table>
<thead>
<tr>
<th>Novel Training?</th>
<th># Proposals</th>
<th>nAR(_{\text{IoU}=0.5})</th>
<th>(\min(\text{R50}_{\text{IoU}=0.5}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times)</td>
<td>100</td>
<td>49.7</td>
<td>16.2</td>
</tr>
<tr>
<td>(\checkmark)</td>
<td>100</td>
<td>71.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Ideal RPN [40]</td>
<td>100</td>
<td>84.0</td>
<td>64.5</td>
</tr>
<tr>
<td>(\times)</td>
<td>1000</td>
<td>82.1</td>
<td>55.9</td>
</tr>
<tr>
<td>(\checkmark)</td>
<td>1000</td>
<td>88.5</td>
<td>77.0</td>
</tr>
<tr>
<td>Ideal RPN [40]</td>
<td>1000</td>
<td>95.0</td>
<td>79.2</td>
</tr>
</tbody>
</table>

Table 1. RPN recall evaluation on 20 novel categories from the MS-COCO few-shot object detection benchmark, using an \(\text{IoU}=0.5 \) criterion. \(\text{nAR50} \) – novel class average recall, \(\min(\text{R50}) \) – minimum novel class recall. Please refer to the text for detailed discussion.

Base Training: refers to the standard training for a Faster R-CNN model [40, 52] using base class annotations only, \(\mathcal{Y}_{\text{BASE}} \). In this work, we do not modify this training regime.

Novel Training: requires extending the base detector, such that it can additionally detect instances from novel categories, \(\mathcal{C}_{\text{BASE}} \cup \mathcal{C}_{\text{NOVEL}} \). In recent works, this is usually done by only training (relatively few) layers on novel and base class data, \(\mathcal{Y}_{\text{BASE}} \cup \mathcal{Y}_{\text{NOVEL}} \); the detector is not trained end-to-end on novel class data. For example, in TFA [48], the fewest possible number of parameters are trained on novel class data, namely, \(\Phi_{\text{CLS}} \) only.

Such a two-phase training strategy naturally leads to two questions: (i) Does an RPN trained on base categories actually generalise, \(\mathcal{C}_{\text{BASE}} \cup \mathcal{C}_{\text{NOVEL}} \)? (ii) How well do features trained only on base categories actually generalise, in other words, will the RoI features be discriminative for classifying novel categories? We aim to answer these two questions on the MS-COCO 30-shot object detection benchmark (these benchmarks are detailed in Section 5.1). Specifically, we follow the same data split as in TFA [48], with 60 categories being treated as base categories, and 20 as novel categories.

3.2.1 On Generalisability of RPNs

In standard two-stage object detectors, an RPN is considered as a necessary condition for high-performance detections, as classification and box coordinate regression will only act on the proposed regions. Here, we aim to evaluate the quality of an RPN for FSOD, based on recall with respect to the novel categories.

Specifically, we consider the following three settings: first, to understand whether an RPN trained on 60 base categories can directly propose novel object instances, we evaluate the recall of the RPN from the base detector; second, we finetune the RPN (composed of 2 convolutional layers) on both base and given novel categories, \(\mathcal{C}_{\text{BASE}} \cup \mathcal{C}_{\text{NOVEL}} \); third, the Ideal RPN which is inherited from an off-the-shelf Faster R-CNN trained on exhaustive
data for all categories.

Discussion: Table 1 presents the large performance gap between an RPN from the base detector, and the Ideal RPN with respect to recalling instances from novel categories. However, finetuning the RPN specific parameters, Φ_{RPN}, on a handful of instances ($K = 30$), yields a substantial increase in average recall (49.7 vs. 71.0, 82.1 vs. 88.5, for 100 and 1000 proposals respectively), largely bridging the performance gap to the Ideal RPN. The minimum class recall also increases substantially (16.2 vs. 40.0, 55.9 vs. 77.0, for 100 and 1000 proposals respectively).

3.2.2 On Transferability of Base Features

In this section, we aim to measure the transferability of the visual features trained on base categories. Specifically, we keep the encoder (Φ_{ENC}) fixed, and finetune, individual or combinations of, subsequent modules (Φ_{CLS}, Φ_{ROI}, Φ_{RPN}) during Novel Training.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Novel Training</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Φ_{CLS}</td>
<td>Φ_{ROI}</td>
</tr>
<tr>
<td>A1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>A2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>A3</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>A4 (ALL)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ideal Faster R-CNN [40]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Evaluation on the transferability of base features to 20 novel categories from the MS-COCO few-shot object detection benchmark. During Novel Training, we jointly finetune the different modules with the base and novel category data (only the given few-shot annotations, Y^K_{NOVEL}). As an Oracle test, we also consider to finetune the classifier with all MS-COCO annotations, e.g. A4 (ALL). nAP – novel class average precision. Please refer to the text for discussion.

Discussion: As shown in Table 2, we compare TFA [48] (Setting A1) with finetuning more layers (A3), which tends to be beneficial (13.0 vs. 14.3 nAP), however, it remains substantially lower than the Ideal Faster R-CNN (14.3 vs. 43.5 nAP). To remove the factor caused by insufficient data annotation, we compare TFA (A1) with an Oracle test (A4-ALL) that finetunes the final classifier with exhaustive data on all categories. However, the result still largely underperforms the Ideal Faster R-CNN reference (18.3 vs. 43.5nAP), indicating that the feature encoder is heavily biased towards base classes, and hardly contains discriminative information for classifying instances from novel classes. This may be expected, as these categories were treated as background during Base Training.

These experiments demonstrate the “supervision collapse” issue present in FSOD detectors. We note that “supervision collapse” manifests in two ways: first, many false positives occur due to class confusion and poor bounding box regression (poor detection precision), second, there are many false negatives or missing detections, despite an improved RPN (poor detection recall). We further analyse these manifestations in the arXiv version of the paper [23].

3.2.3 Summary

After careful evaluations, we draw the following two conclusions: first, updating all parameters specific to the RPN (Φ_{RPN}) is essential to improve recall on novel categories; second, features trained on base category data are not discriminative enough to classify novel instances, leading to severe performance degradation, and so we update all parameters in the RoI feature module (Φ_{ROI}), in addition to the classification layer (Φ_{CLS}). These two choices constitute our Novel Training process, yielding a stronger baseline detector. This allows enough alleviation of “supervision collapse”, such that our baseline detector can be used as a starting point in our pseudo-labelling method, as will be detailed in the next section.

4. Method

To address the “supervision collapse” issue, we adopt a simple pseudo-labelling method for mining instances of novel categories, effectively expanding their annotation set. However, pseudo-annotations that are naively sourced from the detector (after Novel Training), are unreliable, containing a large number of false positives. Here, we establish a method for improving the precision of these candidate pseudo-annotations by automatically filtering out candidates with incorrect class labels, and refining the bounding box coordinates for those remaining. Our method yields a large set of high precision pseudo-annotations for novel categories, allowing the final detector to be trained end-to-end on both base and novel category data. We detail the proposed method in the following sections.

4.1. Candidate Sourcing

The goal here is to generate a set of candidate detections that are potentially valid pseudo-annotations for novel categories. Specifically, the detector from Novel Training (as described in Section 3.2), is used to perform inference on the training images (D) to generate a set of candidate detections, each containing a class label and predicted bounding box coordinates (see Figure 1, left). We limit the size of this set to be 1000s by taking novel class detections with high confidence scores, here we use $q > 0.8$, producing \hat{Y}_{NOVEL}.

As demonstrated in earlier evaluations, the detector from Novel Training cannot detect instances from novel categories well, leaving a large number of incorrect predictions in the set of candidates, either misclassification, or imprecise bounding box coordinates. The key question now becomes, *how can we improve the precision of this list?*

4.2. Label Verification

In this section we take inspiration from the work on query expansion by Chum et al. [7], which uses spatial ver-
ification to accept or reject new instances during retrieval. The goal here is to verify the predicted class label for each candidate detection. Specifically, we consider to build a classifier for the novel categories with the very limited few-shot annotations ($\mathcal{Y}_{\text{novel}}$).

Building classifiers with only a few annotations is clearly not a trivial task, as it often demands high-quality feature representations. Here, we benefit from the recent development of self-supervised models, e.g. MoCo [17], SwAV [3], DINO [4], and construct kNN classifiers with the high-quality features produced from those models. In practice, this work uses the output CLS token from a ViT model [10] trained with the self-supervised DINO [4] method, where the NN performance is shown to be particularly strong.

To perform Label Verification (see Figure 1, centre), we first compute features for each of the given novel class groundtruth annotations, using the self-supervised model. These features are used as the training data in our kNN classifier. Similarly, we compute features for each instance in the set of candidate detections using the same self-supervised model. In detail, to compute the feature of a given annotation/candidate detection, we first use the bounding box to crop the relevant image. This crop is then resized and passed as input to the self-supervised model.

We adopt a simple verification policy: a given candidate detection is accepted (or verified) if our kNN classifier, using cosine similarity, predicts the same class as the predicted class label from the detector. With such a verification step, we obtain a verified set of candidate detections with high precision with respect to classification labels.

4.3. Box Correction

In addition to verifying classification labels, we consider refining the bounding boxes for all remaining candidate detections in the verified set (see Figure 1, right). Taking inspiration from the Cascade R-CNN [2], we build a separate model, containing three class-agnostic regressors that gradually produce a higher-quality bounding box, with each only processing boxes of similar IOUs to the groundtruth.

Specifically, during Novel Training, we divide the RPN proposals into three splits using different IoU thresholds, and pass the RoI features through the corresponding regressors. For example, all features pooled from IoU > 0.3 boxes are passed to the first regressor, features pooled from IoU > 0.5 boxes are passed to the second regressor and features pooled from IoU > 0.7 boxes are passed to the third regressor. Once this is trained, the bounding boxes for the verified set can be corrected, by feeding their RoI features through the three regressors in succession.

We now possess a large set of previously unlabelled novel instances, with high precision class labels and high-quality bounding boxes. This verified and corrected set is then used as pseudo-annotations to re-train our detector end-to-end on novel and base class instances.

5. Experiments

In this section, we first introduce the standard experimental benchmarks used in the literature [21, 45]. After this, in Section 5.2 we describe our implementation, training details, and conduct extensive ablation studies on the design choices of this work in Section 5.3. Lastly, inheriting the best experience from the ablation studies, we compare to the existing state-of-the-art approaches in Section 5.4.

5.1. Few-Shot Object Detection Benchmarks

We follow the same benchmarks as in [21], evaluating our model on the MS-COCO [30] and PASCAL VOC [11] datasets. To maintain a fair comparison, we use the same fixed lists of novel samples and data splits given in [21].

MS-COCO has 80 categories in total. In FSOD, the 20 categories present in PASCAL VOC are used as novel classes and the remaining categories are used as base classes. In this case, the benchmarks are designed for testing with $K = 10, 30$ shots, and we report standard MS-COCO metrics, namely Average Precision (IoU=0.5 : 0.95), Average Precision (IoU=0.5) and Average Precision (IoU=0.75) on novel classes, abbreviated to nAP, nAP50 and nAP75, respectively. Our ablation studies are all conducted on the MS-COCO benchmark.

PASCAL VOC contains 20 classes, in FSOD, the data is randomly split into 15 base classes and 5 novel classes. There are three such splits and for each novel class there are $K = 1, 2, 3, 5, 10$ shots available. For this dataset we report the standard PASCAL VOC metric Average Precision (IoU=0.5) for novel classes (nAP50).

5.2. Implementation Details

Experiments are conducted with a standard Faster R-CNN [40], with a FPN [31]. All experiments are run on 4 GPUs with batch-size 16. We use a SGD optimiser with momentum 0.9 and weight decay 10^{-4}, except for models with Transformer based backbones, in which we use the AdamW optimiser with standard hyperparameters and weight decay 0.05, following [35]. The number of fine-tuning iterations is scaled depending on the dataset and the number of available shots.

We apply RandomCrop and ColorJitter augmentations when finetuning our FSOD detector on novel class data, unless stated otherwise. For experiments on MS-COCO, we include the Mosaic augmentation introduced in YOLOv4 [1]. This augmentation helps improve detection performance on “small” objects by stitching 4 images into a 2×2 grid. Mosaic is not used on PASCAL VOC experiments as the dataset does not contain the same scale variation as MS-COCO.

The number of neighbours k used in Label Verification (Section 4.2) is determined by the number
of novel instances, \(k = \min \left(\left\lfloor \frac{K}{3} \right\rfloor + 1, 10 \right) \). Hence for \(K = 1, 2, 3, 5, 10, 30 \), \(k = 1, 1, 2, 2, 4, 10 \). We choose a self-supervised DINO ViT-S/8 [4, 10] to construct the kNN classifier for verification, using the output \(\text{CLS} \) token as the chosen feature. For Box Correction (Section 4.3), we train a series of three box regression heads, where positive boxes are defined as those with IoU > \((0.3, 0.5, 0.7)\), respectively. This choice enables the correction of relatively poor initial bounding boxes.

After Candidate Sourcing, Label Verification and Box Correction, we significantly increase the number of available samples for novel categories, however it is inevitable that many novel instances will remain absent in our pseudo-annotations, and would still be treated as background. To avoid this issue, we introduce “ignore regions”, during end-to-end re-training, which are considered as neither foreground nor background, in practice, we treat all unverified novel class detections as ignore regions. We analyse these “ignore regions” in the arXiv version of the paper [23].

5.3. Ablation Studies

We conduct ablation studies to investigate our design choices. The following experiments are considered: first, we demonstrate the importance of data augmentation to yield a stronger baseline model before any of the pseudo-labelling steps; second, we analyse several critical components of our method and conduct thorough ablation studies to validate their necessity, namely, Candidate Sourcing, Label Verification, Box Correction; third, we show that our proposed approach maintains performance for base class detections. Note that, all ablation experiments are conducted on the MS-COCO benchmark with \(K = 30 \) and a ResNet-50 backbone.

Importance of Augmentations: Given we only have access to a limited number of samples for novel categories at the starting point, maximising data efficiency before any pseudo-labelling is critical. Table 3 presents our observations. When comparing to TFA [48] as a baseline model (equivalent to Setting B1), applying ColorJitter, RandomCrop and Mosaic augmentations (Settings B2-B4) yields negligible performance improvements. Since almost all layers in TFA have been frozen during Novel Training, augmentations can only affect the classification layer of Faster R-CNN, \(\Phi_{\text{CLS}} \). The combination of these three augmentations (Setting B5), only gives a marginal improvement of 0.8nAP.

As explained in Section 3.2, we improve the Novel Training stage by also updating all RoI parameters and the RPN, i.e. \(\Phi_{\text{RPN}}, \Phi_{\text{ROI}} \). With this simple change, all augmentations (Setting C2) substantially improve results, yielding a 3.2nAP boost over the TFA baseline model (Setting B1). In addition, we observe a noticeable improvement in performance on small novel instances (6.2 vs. 4.3nAPs) from Mosaic augmentations, e.g. B5 vs. B1-B3, and C2 vs. C1. To further combat the overfitting issue, we add Dropout on RoI activations (Setting C3), yielding a small additional improvement of 0.4nAP.

Ablation of Pseudo-Labelling Steps: Table 4 shows the importance of our overall pseudo-labelling method and the contribution of each step. Using the Candidate Sourcing step only is equivalent to treating the naïve detections as pseudo-annotations, as done in other self-training works [34, 44]; this gives a marginal performance improvement of 1.8nAP. Removing the pseudo-annotations with incorrect class labels by Label Verification, yields an additional 3.4nAP performance boost. Lastly, Box Correction brings a 3.7nAP performance boost, in particular, such improvement is largely attributed to that from the stricter metric, i.e. nAP75, clearly showing the reduction of bounding box regression errors. Note that, the number and distribution of class labels for pseudo-annotations are identical before and after Box Correction; only the box coordinates of each pseudo-annotation have been changed.

Effect on Base Class Performance: While reading the performance on base classes from Table 4, we observe that, for the Baseline model, the improved performance on novel classes comes at the cost of performance on base classes, e.g., bAP drops from 36.1 to 29.5. Our proposed pseudo-labelling method improves the detection of novel classes, while recovering performance on base classes.

5.4. Comparison to Sota

Existing methods include the meta-learning approaches: CGDP+FSCN [29], CME [27], TIP [26], DCNet [19], and two-phase training works: TFA [48], PCSE [45], Retentive R-CNN [13], SRR-FSD [59], DeFRCN [36], FSSO-UP [50], QA-FewDet [16]. In particular, we note that very few works report results on the base class detection performance, and methods like DeFRCN [36], can actually only detect novel classes and does not maintain the ability to detect base classes as with ours.

We report two sets of results for each task, Baseline which makes use of augmentations and the improved training outlined in Section 3 and Pseudo-Labelling which follows the method as outlined in Section 4.

MS-COCO Results are shown in Table 5. Using a ResNet-50 backbone, our Baseline method, which makes extensive use of augmentations and improved Novel Training, outperforms many existing works for \(K = 30 \), reflecting the importance of our findings in Section 3.2. When applying our Pseudo-Labelling method, we set new SotA performance for \(K=30 \), with a performance boost of up to 2.9, 6.1 and 10.4 for nAP, nAP50 and nAP75 metrics, respectively. When \(K=10 \), with a ResNet-101 backbone, our Pseudo-Labelling method achieves state-of-the-art or second-best performance in terms of nAP, nAP50,
In this paper, we tackle the problem of few-shot object detection by training on pseudo-annotations. We present two novel methods to improve the precision of the pseudo-labeling procedure: \textit{first}, we use the given K few-shot annotations to construct classifiers to verify class labels sourced from a baseline detector; \textit{second}, we train a specialised box correction model to drastically improve the precision of pseudo-annotation bounding box coordinates. Our method generates a large number of high-precision pseudo-annotations with precise bounding boxes, alleviating the identified issues of our detector \textit{end-to-end}, allowing the diversified pseudo-annotations for end-to-end retraining.

6. Conclusion

In this paper, we present the qualitative results after each step of our pseudo-labeling method. The top row of Figure 2 shows examples of Label Verification (Section 4.2). The first three examples demonstrate the case in which the predicted class label from our detector matches ÑNN classification, and so the candidate detection is verified. The last three examples show the opposite case in which candidate detections are correctly rejected. The bottom row of Figure 2 shows examples of Box Correction (Section 4.3). The first three examples show very poor bounding boxes from verified candidates (dashed blue boxes), which are drastically improved during the Box Correction step. The last three examples show acceptable bounding boxes from verified candidates (dashed blue boxes), also being improved with Box Correction. This demonstrates the ability of our Box Correction model to deal with a wide range of bounding box quality with respect to input candidate detections.

In Figure 3, we show precision-recall curves for some novel classes on the MS-COCO benchmark for $K=30$ using the stricter $\text{IoU}=0.75$ criterion. Our Pseudo-Labeling method substantially improves novel class performance, with improved precision and novel class recall. We note that for many novel classes, baseline models suffer from poor recall due to limited novel class annotations. This poor recall is improved by our pseudo-labeling method, however the poor recall of the baseline detector puts a limit on the diversity of pseudo-annotations for end-to-end retraining.

5.5. Qualitative Results

In Figure 2, we present the qualitative results after each step of our pseudo-labeling procedure. The top row of Figure 2 shows examples of Label Verification (Section 4.2). The first three examples demonstrate the case in which the predicted class label from our detector matches ÑNN classification, and so the candidate detection is verified. The last three examples show the opposite case in which candidate detections are correctly rejected. The bottom row of Figure 2 shows examples of Box Correction (Section 4.3). The first three examples show very poor bounding boxes from verified candidates (dashed blue boxes), which are drastically improved during the Box Correction step. The last three examples show acceptable bounding boxes from verified candidates (dashed blue boxes), also being improved with Box Correction. This demonstrates the ability of our Box Correction model to deal with a wide range of bounding box quality with respect to input candidate detections.
Table 6. Few-shot detection performance across the three splits on the PASCAL VOC benchmark. Best and second-best results are coloured blue and red, respectively. Please refer to the text for discussion.

<table>
<thead>
<tr>
<th>Method/Shot</th>
<th>Backbone</th>
<th>Novel Split 1</th>
<th></th>
<th>Novel Split 2</th>
<th></th>
<th>Novel Split 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 5 10</td>
<td></td>
<td>1 2 3 5 10</td>
<td></td>
<td>1 2 3 5 10</td>
<td></td>
</tr>
<tr>
<td>Ours (Baseline)</td>
<td>ResNet-50</td>
<td>40.7 45.1 46.5 57.4 62.4</td>
<td>27.3 31.4 40.8 42.7 46.3</td>
<td>31.2 36.4 43.7 50.1 55.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours (Pseudo-Labelling)</td>
<td>ResNet-101</td>
<td>50.5 53.1 56.4 61.7 62.7</td>
<td>36.4 33.8 46.1 49.3 48.2</td>
<td>42.4 44.3 49.1 55.2 57.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFA w/ cos [48]</td>
<td>ICML 20</td>
<td>39.8 36.1 44.7 55.7 56.0</td>
<td>23.5 26.9 34.1 35.1 39.1</td>
<td>30.8 34.8 42.8 49.5 49.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSCE [45]</td>
<td>CVPR 21</td>
<td>44.2 43.8 51.4 61.9 63.4</td>
<td>27.3 29.5 43.5 44.2 50.2</td>
<td>37.2 41.9 47.5 54.6 58.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retentive R-CNN [13]</td>
<td>CVPR 21</td>
<td>42.4 45.8 45.9 53.7 56.1</td>
<td>21.7 27.8 35.2 37.0 40.3</td>
<td>30.2 37.6 43.0 49.7 50.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRR-FSD [59]</td>
<td>CVPR 21</td>
<td>47.8 50.5 51.3 55.2 56.8</td>
<td>32.5 35.3 39.1 40.8 43.8</td>
<td>40.1 41.5 44.3 46.9 46.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CME [27]</td>
<td>CVPR 21</td>
<td>41.5 47.5 50.4 58.2 60.9</td>
<td>27.2 30.2 41.4 42.5 46.8</td>
<td>34.3 39.6 45.1 48.3 51.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCNet [19]</td>
<td>CVPR 21</td>
<td>33.9 37.4 43.7 51.1 59.6</td>
<td>23.2 24.8 30.6 36.7 46.6</td>
<td>32.3 34.9 39.7 42.6 50.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIP [26]</td>
<td>CVPR 21</td>
<td>27.7 36.5 43.3 50.2 59.6</td>
<td>22.7 30.1 33.8 40.9 46.9</td>
<td>21.7 30.6 38.1 44.5 50.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA-FewDet [16]</td>
<td>ICCV 21</td>
<td>42.4 51.9 55.7 62.6 63.4</td>
<td>25.9 37.8 46.6 48.9 51.1</td>
<td>35.2 42.9 47.8 54.8 53.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSOD-UP [50]</td>
<td>ICCV 21</td>
<td>43.8 47.8 50.3 55.4 61.7</td>
<td>31.2 30.5 41.2 42.2 48.3</td>
<td>35.5 39.7 43.9 50.6 53.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeFRCN [36]</td>
<td>ICCV 21</td>
<td>53.6 57.5 61.5 64.1 60.8</td>
<td>30.1 38.1 47.0 53.3 47.9</td>
<td>48.4 50.9 52.3 54.9 57.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours (Baseline)</td>
<td>ResNet-101</td>
<td>36.0 40.1 48.6 57.0 59.9</td>
<td>22.3 22.8 39.2 44.2 47.8</td>
<td>34.3 43.4 42.9 52.0 54.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours (Pseudo-Labelling)</td>
<td></td>
<td>54.5 53.2 58.8 63.2 65.7</td>
<td>32.8 29.2 50.7 49.8 50.6</td>
<td>48.4 52.7 55.0 59.6 59.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Top Left: Predicted instances which are verified during Label Verification; the predicted class labels from our baseline detector and our kNN classifier match. Top Right: Predicted instances which are rejected during Label Verification; the predicted class labels from our baseline detector (false positive) and the kNN do not match. Bottom Left: Verified bounding boxes with very poor quality (blue dashed) are drastically improved (lime solid) during Box Correction. Bottom Right: Verified bounding boxes which are acceptable (blue dashed) are further improved (lime solid).

Figure 3. Precision-Recall curves (using the stricter IoU=0.75 criterion) for $K=30$ on MS-COCO showing Baseline performance (solid blue) and the substantial performance boost after making use of our Pseudo-Labelling method (dashed red). Our Pseudo-Labelling method yields improved precision and improved recall for novel classes.

around “supervision collapse” in few-shot object detectors. Furthermore, we have illustrated the importance of augmentations for FSOD, this was previously under-explored, despite augmentations being a key part of preventing overfitting. Our method achieves state-of-the-art or second-best performance on both PASCAL VOC and MS-COCO benchmarks, across all number of shots.

7. Acknowledgements

We thank Rhydian Windsor, Sagar Vaze, Ragav Sachdeva and Guanqi Zhan for help with proofreading. This research was supported by the EPSRC CDT in AIMS EP/L015897/1 and EP/S515541/1, EPSRC Programme Grant VisualAI EP/T028572/1, and a Royal Society Research Professorship RP/R1/191132.
References

[16] Guangxing Han, Yicheng He, Shiyuan Huang, Jiawei Ma, and Shih-Fu Chang. Query adaptive few-shot object detection with heterogeneous graph convolutional networks. In Proceedings of the International Conference on Computer Vision, pages 3263–3272, October 2021. 1, 2, 6, 7, 8

[27] Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji, and Qixiang Ye. Beyond max-margin: Class margin equilibrium for few-shot object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2021. 2, 6, 7, 8

[29] Yiting Li, Haiyue Zhu, Yu Cheng, Wenxin Wang, Chek Sing

on Artificial Intelligence, 2020.

