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Figure 1. Label, Verify, Correct: Object detectors naı̈vely trained with K-shot annotations perform poorly on novel classes (bottom left).
We propose to expand the novel class annotation set and re-train end-to-end. 1. Given a baseline few-shot object detector, noisy candidate
detections are sourced from unlabelled images (left). 2. Labels for each candidate detection are verified by a kNN classifier, constructed
from a self-supervised model using the same few-shot annotations, removing large numbers of false positives (centre). 3. A specialised
box corrector, drastically improves the remaining bounding boxes, yielding high-quality pseudo-annotations (right). Re-training end-to-end
with our pseudo-labelling method yields a large performance boost on novel class detection, improving precision and recall (bottom right).

Abstract
The objective of this paper is few-shot object detection

(FSOD) – the task of expanding an object detector for a
new category given only a few instances for training. We
introduce a simple pseudo-labelling method to source high-
quality pseudo-annotations from the training set, for each
new category, vastly increasing the number of training in-
stances and reducing class imbalance; our method finds
previously unlabelled instances.

Naı̈vely training with model predictions yields sub-
optimal performance; we present two novel methods to im-
prove the precision of the pseudo-labelling process: first,
we introduce a verification technique to remove candidate
detections with incorrect class labels; second, we train a
specialised model to correct poor quality bounding boxes.
After these two novel steps, we obtain a large set of high-
quality pseudo-annotations that allow our final detector to
be trained end-to-end. Additionally, we demonstrate our
method maintains base class performance, and the utility
of simple augmentations in FSOD. While benchmarking on
PASCAL VOC and MS-COCO, our method achieves state-

of-the-art or second-best performance compared to existing
approaches across all number of shots.

1. Introduction
Object detection refers to the task of determining if an

image contains objects of a particular category, and if so,
then localising them. In recent years, the community has
seen tremendous successes in object detection by train-
ing computational models for a set of pre-defined object
classes [8, 16, 32, 36, 40, 46, 55], with large numbers of
human annotated labels, e.g. MS-COCO [30], and PAS-
CAL VOC [11]. However, such training paradigms have
limited the model to only perform well on a closed, small
set of categories for which large training data is available.

In contrast, humans can continuously expand their vo-
cabularies, learning to detect a much larger set of cate-
gories, even with access to only a few examples [43]. This
is also a desirable ability for modern computer vision sys-
tems and is studied in the task of few-shot object detec-
tion (FSOD) [13, 21, 45, 51, 56]. The goal of our work
is FSOD: given an existing object detector that has been
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trained on abundant data for some categories, termed base
categories, we wish to learn to detect novel categories us-
ing only a few annotations, e.g. 1–30 per category, whilst
maintaining performance on the original base categories.

In this paper, we carefully examine the training proce-
dure of the Faster R-CNN two-stage detector, and iden-
tify two critical factors that limit its performance on FSOD.
First, training on base categories leads to a form of “super-
vision collapse” [9]; this model is naturally trained against
detecting instances from novel classes, as they were unla-
belled and treated as background; second, the FSOD prob-
lem involves learning from extremely unbalanced data –
only K instances (K ≤ 30) are available per novel class
for training, so the number of training samples for base cat-
egories is far larger than that for novel ones. A model that
overfits to a small number (K) of novel instances naturally
lacks generalisation ability.

We adopt a simple pseudo-labelling technique (see Fig-
ure 1) and address both the factors that limit performance:
we show that the Region Proposal Network (RPN) can be
modified to successfully propose regions for the novel cat-
egories and use a detector trained with the few-shot novel
data to label these regions over the images of the large
training dataset, producing a set of candidate detections for
each novel category. The novelty of our approach is in the
two steps used to improve the precision of this candidate
set: first, we build a classifier for novel categories to ver-
ify the candidate detections using features from a network
trained with self-supervision (see Figure 1, centre); second,
we train a specialised box regressor that improves the qual-
ity of the bounding box of the verified candidates (see Fig-
ure 1, right). The two steps together yield a large set of
high precision pseudo-annotations for the novel categories,
removing the class imbalance in the training data. This en-
ables the detector to be trained end-to-end using the pseudo-
annotations for the novel categories together with the origi-
nal groundtruth annotations for base categories, and simul-
taneously avoids the impact of “supervision collapse” for
all detector features.

To summarise, our contributions are as follows: (i) we
carefully examine the problem of few-shot object detection
with the modern two-stage object detector, e.g. Faster R-
CNN, and identify the issue of “supervision collapse”; (ii)
we introduce a novel verification and correction procedure
to pseudo-labelling, which significantly improves the pre-
cision of pseudo-annotations, both class labels and bound-
ing box coordinates; (iii) we analyse several critical compo-
nents of data augmentation and conduct thorough ablation
studies to validate their necessity; (iv) with the combination
of pseudo-labelling and aggressive data augmentations, we
set state-of-the-art (SotA) or comparable performance us-
ing a standard Faster R-CNN, for both the challenging MS-
COCO benchmark and the PASCAL VOC benchmark.

We discuss potential ethical concerns and limitations of
our work in arXiv version of the paper [23]. Code and pre-
trained models are available from the project webpage.

2. Related Work
Object Detection is one of the classical problems in
computer vision, which makes it impossible to present
a full overview here. We therefore only outline some
key milestones here. In general, recent object detection
methods can be cast into two sets: one-stage and two-stage
detectors. One-stage detectors attempt to directly classify
and regress bounding boxes by, either densely classifying
a set of predefined anchor boxes [32, 33, 37, 38, 39, 46]
or densely searching for geometric entities of objects
e.g. corners, centres or regions [25, 47, 58]. Conversely,
most two-stage detectors propose class-agnostic bounding
boxes using a Region Proposal Network (RPN), with
predefined sizes and aspect ratios, filtering out many
negative (background) locations. These bounding box
proposals are pooled to region-of-interest (RoI) features
and are classified by a multilayer perceptron (MLP) in the
second stage of the detector [14, 15, 28, 40].

Few-Shot Object Detection aims to expand the vocabulary
of an object detector by only annotating a handful of sam-
ples. Several works [5, 12, 13, 16, 19, 21, 22, 26, 27, 29,
36, 45, 48, 49, 50, 53, 56, 57, 59] have been proposed in the
recent literature. The meta-learning method, FSRW [21]
conditions dense query image features from a YOLOv2
network [38] with a separate network operating on a sup-
port set. Recently, a simple two-phase fine-tuning approach
(TFA) is proposed [48], in which a Faster R-CNN model
is initially trained on the base data. In the second training
phase, only the final classification layer is finetuned on a
few samples of novel classes, with the rest of the model
fixed. This work initiates a shift away from meta-learning
based methods for few-shot object detection. FSCE [45],
alleviates class confusion between novel classes by training
a separate supervised contrastive learning [24] head on
RoI features. A recent work, DeFRCN [36], decouples the
training of RPN features and RoI classification. Another
recent work, SRR-FSD [59] combines vision and natural
language, projecting image features into semantic class
embeddings learnt from a large text corpus.

Semi-supervised Object Detection belongs to another
related research area. Such a problem setup can be traced
back to the pre-deep learning era [41], where the goal is
to train detectors with a combination of labelled, weakly-
labelled and unlabelled data. In the recent literature, the
idea of exploiting consistency and self-training has been
widely adopted, for example, [20] proposed to enforce the
predictions of an input image and its flipped version to be
consistent; [34, 44] pre-trained a detector using a small
amount of labelled data and generated pseudo-labels on
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unlabelled data for further fine-tuning. Generally speaking,
these methods aim to train a detector on two separate
subsets; one contains images with all objects of all classes
being exhaustively annotated, and the other subset is fully
unlabelled. Therefore, the model trained on the labelled
set does not suffer the same issue as in FSOD, where a
large number of novel object instances are wrongly treated
as background during base training. Hence the scarce
data issue of FSOD does exist in semi-supervised object
detection, but “supervision collapse” does not.

Self-Training is a method for gaining noisy pseudo-labels
which has gained renewed interest since it was initially pro-
posed [42]. In recent years, self-training has been used
to improve image classification by using a teacher-student
training regime [6, 18, 54]. This idea is extended to general
object detection in [60], however, their considered scenario
is semi-supervised object detection.

3. Background and Supervision Collapse
In this section, we first outline the few-shot object de-

tection task in Section 3.1. Next, in Section 3.2, we care-
fully examine the various components of the popular two-
stage detector (Faster R-CNN), identify the critical issues
that limit its use in the few-shot scenario and draw conclu-
sions to ameliorate such critical issues.

3.1. Problem Definition

In this paper, we consider the same problem setup as in
TFA [21]. Specifically, assuming we are given an image
dataset, D, and two annotation sets. First, YBASE, with ex-
haustive annotations on a set of base categories, CBASE. Sec-
ond, YK

NOVEL, with only K annotations on a set of novel cate-
gories, CNOVEL. Note, the annotations on base categories are
exhaustive, but for novel categories most instances are un-
labelled as only K annotations are provided for the image
dataset, D, under the few-shot setting.

3.2. Training Strategy

In this section, we start by describing a baseline two-
stage detector for the problem of few-shot object detection,
following that of TFA [48]. In general, a Faster R-CNN
detector, ΦDET(·), can be formulated as:

ΦDET(·) = ΦCLS ◦ ΦROI ◦ ΦRPN ◦ ΦENC(·)
where, each input image is sequentially processed by a set
of operations: an image encoder, (ΦENC); a Region Pro-
posal Network, (ΦRPN); a region of interest feature mod-
ule, (ΦROI); and a classification layer on the RoI fea-
tures, (ΦCLS), mapping to a set of bounding boxes and
classes. Note that, each module here contains the same
number of convolutional or MLP layers as the standard
Faster R-CNN [40].

Training few-shot object detectors involves a two-phase
training procedure, as detailed below:

Novel Training? # Proposals nARIoU=0.5 min(R50IoU=0.5)

✗ 100 49.7 16.2
✓ 100 71.0 40.0

Ideal RPN [40] 100 84.0 64.5

✗ 1000 82.1 55.9
✓ 1000 88.5 77.0

Ideal RPN [40] 1000 95.0 79.2

Table 1. RPN recall evaluation on 20 novel categories from
the MS-COCO few-shot object detection benchmark, using an
IoU=0.5 criterion. nAR50 – novel class average recall, min(nR50)
– minimum novel class recall. Please refer to the text for detailed
discussion.

Base Training: refers to the standard training for a Faster
R-CNN model [40, 52] using base class annotations only,
YBASE. In this work, we do not modify this training regime.

Novel Training: requires extending the base detector, such
that it can additionally detect instances from novel cate-
gories, i.e. CBASE ∪ CNOVEL. In recent works, this is usually
done by only training (relatively few) layers on novel and
base class data, YK

BASE ∪ YNOVEL; the detector is not trained
end-to-end on novel class data. For example, in TFA [48],
the fewest possible number of parameters are trained on
novel class data, namely, ΦCLS only.

Such a two-phase training strategy naturally leads to two
questions: (i) Does an RPN trained on base categories ac-
tually generalise, i.e. are regions proposed for instances of
the novel categories? (ii) How well do features trained only
on base categories actually generalise, in other words, will
the RoI features be discriminative for classifying novel cat-
egories? We aim to answer these two questions on the MS-
COCO 30-shot object detection benchmark (these bench-
marks are detailed in Section 5.1). Specifically, we follow
the same data split as in TFA [48], with 60 categories being
treated as base categories, and 20 as novel categories.

3.2.1 On Generalisability of RPNs
In standard two-stage object detectors, an RPN is consid-
ered as a necessary condition for high-performance detec-
tions, as classification and box coordinate regression will
only act on the proposed regions. Here, we aim to evalu-
ate the quality of an RPN for FSOD, based on recall with
respect to the novel categories.

Specifically, we consider the following three settings:
first, to understand whether an RPN trained on 60 base
categories can directly propose novel object instances, we
evaluate the recall of the RPN from the base detector;
second, we finetune the RPN (composed of 2 convolu-
tional layers) on both base and given novel categories,
i.e. YBASE ∪ Y30

NOVEL; third, the Ideal RPN which is inherited
from an off-the-shelf Faster R-CNN trained on exhaustive
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data for all categories.

Discussion: Table 1 presents the large performance gap be-
tween an RPN from the base detector, and the Ideal RPN
with respect to recalling instances from novel categories.
However, finetuning the RPN specific parameters, ΦRPN, on
a handful of instances (K = 30), yields a substantial in-
crease in average recall (49.7 vs. 71.0, 82.1 vs. 88.5, for 100
and 1000 proposals respectively), largely bridging the per-
formance gap to the Ideal RPN. The minimum class recall
also increases substantially (16.2 vs. 40.0, 55.9 vs. 77.0, for
100 and 1000 proposals respectively).

3.2.2 On Transferability of Base Features
In this section, we aim to measure the transferability of
the visual features trained on base categories. Specifically,
we keep the encoder (ΦENC) fixed, and finetune, individual
or combinations of, subsequent modules (ΦCLS,ΦROI,ΦRPN)
during Novel Training.

Novel Training Metrics

Setting ΦCLS ΦROI ΦRPN nAP nAP50 nAP75

A1 ✓ ✗ ✗ 13.0 24.7 12.3
A2 ✓ ✓ ✗ 13.3 25.6 12.6
A3 ✓ ✓ ✓ 14.3 27.5 12.9

A4 (ALL) ✓ ✗ ✗ 18.3 33.3 17.7

Ideal Faster R-CNN [40] 43.5 67.4 46.6

Table 2. Evaluation on the transferability of base features to 20
novel categories from the MS-COCO few-shot object detection
benchmark. During Novel Training, we jointly finetune the dif-
ferent modules with the base and novel category data (only the
given few-shot annotations, YK

NOVEL). As an Oracle test, we also
consider to finetune the classifier with all MS-COCO annotations,
e.g. A4 (ALL). nAP – novel class average precision. Please refer
to the text for discussion.

Discussion: As shown in Table 2, we compare TFA [48]
(Setting A1) with finetuning more layers (A3), which tends
to be beneficial (13.0 vs. 14.3 nAP), however, it remains
substantially lower than the Ideal Faster R-CNN (14.3
vs. 43.5 nAP). To remove the factor caused by insuffi-
cient data annotation, we compare TFA (A1) with an Oracle
test (A4-ALL) that finetunes the final classifier with exhaus-
tive data on all categories. However, the result still largely
underperforms the Ideal Faster R-CNN reference (18.3 vs.
43.5nAP), indicating that the feature encoder is heavily bi-
ased towards base classes, and hardly contains discrim-
inative information for classifying instances from novel
classes. This may be expected, as these categories were
treated as background during Base Training.

These experiments demonstrate the “supervision col-
lapse” issue present in FSOD detectors. We note that “su-
pervision collapse” manifests in two ways: first, many false
positives occur due to class confusion and poor bounding
box regression (poor detection precision), second, there are

many false negatives or missing detections, despite an im-
proved RPN (poor detection recall). We further analyse
these manifestations in the arXiv version of the paper [23].

3.2.3 Summary
After careful evaluations, we draw the following two con-
clusions: first, updating all parameters specific to the
RPN (ΦRPN) is essential to improve recall on novel cate-
gories; second, features trained on base category data are
not discriminative enough to classify novel instances, lead-
ing to severe performance degradation, and so we update
all parameters in the RoI feature module (ΦROI), in addi-
tion to the classification layer (ΦCLS). These two choices
constitute our Novel Training process, yielding a stronger
baseline detector. This allows enough alleviation of “super-
vision collapse”, such that our baseline detector can be used
as a starting point in our pseudo-labelling method, as will be
detailed in the next section.

4. Method
To address the “supervision collapse” issue, we adopt

a simple pseudo-labelling method for mining instances of
novel categories, effectively expanding their annotation set.
However, pseudo-annotations that are naı̈vely sourced from
the detector (after Novel Training), are unreliable, con-
taining a large number of false positives. Here, we estab-
lish a method for improving the precision of these candi-
date pseudo-annotations by automatically filtering out can-
didates with incorrect class labels, and refining the bound-
ing box coordinates for those remaining. Our method yields
a large set of high precision pseudo-annotations for novel
categories, allowing the final detector to be trained end-to-
end on both base and novel category data. We detail the
proposed method in the following sections.

4.1. Candidate Sourcing
The goal here is to generate a set of candidate detections

that are potentially valid pseudo-annotations for novel cat-
egories. Specifically, the detector from Novel Training (as
described in Section 3.2), is used to perform inference on
the training images (D) to generate a set of candidate detec-
tions, each containing a class label and predicted bounding
box coordinates (see Figure 1, left). We limit the size of this
set to be 1000s by taking novel class detections with high
confidence scores, here we use q > 0.8, producing ŶNOVEL.

As demonstrated in earlier evaluations, the detector from
Novel Training cannot detect instances from novel cate-
gories well, leaving a large number of incorrect predictions
in the set of candidates, either misclassification, or impre-
cise bounding box coordinates. The key question now be-
comes, how can we improve the precision of this list?

4.2. Label Verification
In this section we take inspiration from the work on

query expansion by Chum et al. [7], which uses spatial ver-
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ification to accept or reject new instances during retrieval.
The goal here is to verify the predicted class label for each
candidate detection. Specifically, we consider to build a
classifier for the novel categories with the very limited few-
shot annotations (YNOVEL).

Building classifiers with only a few annotations is clearly
not a trivial task, as it often demands high-quality feature
representations. Here, we benefit from the recent develop-
ment of self-supervised models, e.g. MoCo [17], SwAV [3],
DINO [4], and construct kNN classifiers with the high-
quality features produced from those models. In practice,
this work uses the output CLS token from a ViT model [10]
trained with the self-supervised DINO [4] method, where
the NN performance is shown to be particularly strong.

To perform Label Verification (see Figure 1, centre), we
first compute features for each of the given novel class
groundtruth annotations, using the self-supervised model.
These features are used as the training data in our kNN
classifier. Similarly, we compute features for each in-
stance in the set of candidate detections using the same
self-supervised model. In detail, to compute the feature
of a given annotation/candidate detection, we first use the
bounding box to crop the relevant image. This crop is then
resized and passed as input to the self-supervised model.

We adopt a simple verification policy: a given candi-
date detection is accepted (or verified) if our kNN classi-
fier, using cosine similarity, predicts the same class as the
predicted class label from the detector. With such a verifi-
cation step, we obtain a verified set of candidate detections
with high precision with respect to classification labels.

4.3. Box Correction
In addition to verifying classification labels, we consider

refining the bounding boxes for all remaining candidate de-
tections in the verified set (see Figure 1, right). Taking in-
spiration from the Cascade R-CNN [2], we build a sepa-
rate model, containing three class-agnostic regressors that
gradually produce a higher-quality bounding box, with each
only processing boxes of similar IOUs to the groundtruth.

Specifically, during Novel Training, we divide the RPN
proposals into three splits using different IoU thresholds,
and pass the RoI features through the corresponding re-
gressors. For example, all features pooled from IoU> 0.3
boxes are passed to the first regressor, features pooled from
IoU> 0.5 boxes are passed to the second regressor and fea-
tures pooled from IoU> 0.7 boxes are passed to the third
regressor. Once this is trained, the bounding boxes for the
verified set can be corrected, by feeding their RoI features
through the three regressors in succession.

We now possess a large set of previously unlabelled
novel instances, with high precision class labels and high-
quality bounding boxes. This verified and corrected set
is then used as pseudo-annotations to re-train our detector

end-to-end on novel and base class instances.

5. Experiments
In this section, we first introduce the standard experi-

mental benchmarks used in the literature [21, 45]. After
this, in Section 5.2 we describe our implementation, train-
ing details, and conduct extensive ablation studies on the
design choices of this work in Section 5.3. Lastly, inheriting
the best experience from the ablation studies, we compare
to the existing state-of-the-art approaches in Section 5.4.

5.1. Few-Shot Object Detection Benchmarks
We follow the same benchmarks as in [21], evaluating

our model on the MS-COCO [30] and PASCAL VOC [11]
datasets. To maintain a fair comparison, we use the same
fixed lists of novel samples and data splits given in [21].

MS-COCO has 80 categories in total. In FSOD, the 20 cat-
egories present in PASCAL VOC are used as novel classes
and the remaining categories are used as base classes. In
this case, the benchmarks are designed for testing with
K = 10, 30 shots, and we report standard MS-COCO met-
rics, namely Average Precision (IoU=0.5 : 0.95), Average
Precision (IoU=0.5) and Average Precision (IoU=0.75)
on novel classes, abbreviated to nAP, nAP50 and nAP75,
respectively. Our ablation studies are all conducted on the
MS-COCO benchmark.

PASCAL VOC contains 20 classes, in FSOD, the data is
randomly split into 15 base classes and 5 novel classes.
There are three such splits and for each novel class there
are K = 1, 2, 3, 5, 10 shots available. For this dataset we
report the standard PASCAL VOC metric Average Preci-
sion (IoU=0.5) for novel classes (nAP50).

5.2. Implementation Details
Experiments are conducted with a standard Faster R-

CNN [40], with a FPN [31]. All experiments are run on
4 GPUs with batch-size 16. We use a SGD optimiser with
momentum 0.9 and weight decay 10−4, except for mod-
els with Transformer based backbones, in which we use
the AdamW optimiser with standard hyperparameters and
weight decay 0.05, following [35]. The number of fine-
tuning iterations is scaled depending on the dataset and the
number of available shots.

We apply RandomCrop and ColorJitter augmen-
tations when finetuning our FSOD detector on novel class
data, unless stated otherwise. For experiments on MS-
COCO, we include the Mosaic augmentation introduced
in YOLOv4 [1]. This augmentation helps improve detec-
tion performance on “small” objects by stitching 4 images
into a 2 × 2 grid. Mosaic is not used on PASCAL VOC
experiments as the dataset does not contain the same scale
variation as MS-COCO.

The number of neighbours k used in Label Ver-
ification (Section 4.2) is determined by the number
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of novel instances, k=min
(⌊

K
3

⌋
+ 1, 10

)
. Hence for

K = 1, 2, 3, 5, 10, 30, k = 1, 1, 2, 2, 4, 10. We choose a
self-supervised DINO ViT-S/8 [4, 10] to construct the kNN
classifier for verification, using the output CLS token as the
chosen feature. For Box Correction (Section 4.3), we train
a series of three box regression heads, where positive boxes
are defined as those with IoU > (0.3, 0.5, 0.7), respectively.
This choice enables the correction of relatively poor initial
bounding boxes.

After Candidate Sourcing, Label Verification and Box
Correction, we significantly increase the number of avail-
able samples for novel categories, however it is inevitable
that many novel instances will remain absent in our pseudo-
annotations, and would still be treated as background. To
avoid this issue, we introduce “ignore regions”, during end-
to-end re-training, which are considered as neither fore-
ground nor background, in practice, we treat all unverified
novel class detections as ignore regions. We analyse these
“ignore regions” in the arXiv version of the paper [23].

5.3. Ablation Studies

We conduct ablation studies to investigate our design
choices. The following experiments are considered: first,
we demonstrate the importance of data augmentation
to yield a stronger baseline model before any of the
pseudo-labelling steps; second, we analyse several critical
components of our method and conduct thorough ablation
studies to validate their necessity, namely, Candidate
Sourcing, Label Verification, Box Correction; third, we
show that our proposed approach maintains performance
for base class detections. Note that, all ablation experi-
ments are conducted on the MS-COCO benchmark with
K = 30 and a ResNet-50 backbone.
Importance of Augmentations: Given we only have
access to a limited number of samples for novel cate-
gories at the starting point, maximising data efficiency
before any pseudo-labelling is critical. Table 3 presents
our observations. When comparing to TFA [48] as
a baseline model (equivalent to Setting B1), applying
ColorJitter, RandomCrop and Mosaic augmenta-
tions (Settings B2-B4) yields negligible performance im-
provements. Since almost all layers in TFA have been
frozen during Novel Training, augmentations can only af-
fect the classification layer of Faster R-CNN, ΦCLS. The
combination of these three augmentations (Setting B5),
only gives a marginal improvement of 0.8nAP.

As explained in Section 3.2, we improve the Novel
Training stage by also updating all RoI parameters and
the RPN, i.e. ΦRPN,ΦROI. With this simple change, all
augmentations (Setting C2) substantially improve results,
yielding a 3.2nAP boost over the TFA baseline model (Set-
ting B1). In addition, we observe a noticeable improvement
in performance on small novel instances (6.2 vs. 4.3nAPs)

from Mosaic augmentations, e.g. B5 vs. B1-B3, and C2
vs. C1. To further combat the overfitting issue, we add
Dropout on RoI activations (Setting C3), yielding a small
additional improvement of 0.4nAP.

Ablation of Pseudo-Labelling Steps: Table 4 shows
the importance of our overall pseudo-labelling method
and the contribution of each step. Using the Candidate
Sourcing step only is equivalent to treating the naı̈ve
detections as pseudo-annotations, as done in other self-
training works [34, 44]; this gives a marginal performance
improvement of 1.8nAP. Removing the pseudo-annotations
with incorrect class labels by Label Verification, yields an
additional 3.4nAP performance boost. Lastly, Box Cor-
rection brings a 3.7nAP performance boost, in particular,
such improvement is largely attributed to that from the
stricter metric, i.e. nAP75, clearly showing the reduction
of bounding box regression errors. Note that, the number
and distribution of class labels for pseudo-annotations are
identical before and after Box Correction; only the box
coordinates of each pseudo-annotation have been changed.

Effect on Base Class Performance: While reading the per-
formance on base classes from Table 4, we observe that, for
the Baseline model, the improved performance on novel
classes comes at the cost of performance on base classes,
e.g., bAP drops from 36.1 to 29.5. Our proposed pseudo-
labelling method improves the detection of novel classes,
while recovering performance on base classes.

5.4. Comparison to SotA
Existing methods include the meta-learning approaches:
CGDP+FSCN [29], CME [27], TIP [26], DCNet [19],
and two-phase training works: TFA [48], FCSE [45],
Retentive R-CNN [13], SRR-FSD [59], DeFRCN [36],
FSOD-UP [50], QA-FewDet [16]. In particular, we note
that very few works report results on the base class detection
performance, and methods like DeFRCN [36], can actually
only detect novel classes and does not maintain the ability
to detect base classes as with ours.

We report two sets of results for each task, Baseline
which makes use of augmentations and the improved
training outlined in Section 3 and Pseudo-Labelling
which follows the method as outlined in Section 4.

MS-COCO Results are shown in Table 5. Using a ResNet-
50 backbone, our Baseline method, which makes exten-
sive use of augmentations and improved Novel Training,
outperforms many existing works for K = 30, reflecting
the importance of our findings in Section 3.2. When apply-
ing our Pseudo-Labelling method, we set new SotA
performance for K=30, with a performance boost of up
to 2.9, 6.1 and 10.4 for nAP, nAP50 and nAP75 metrics,
respectively. When K=10, with a ResNet-101 backbone,
our Pseudo-Labelling method achieves state-of-the-
art or second-best performance in terms of nAP, nAP50,
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Setting Augmentations Finetune
ΦRPN , ΦROI?

ΦROI

Dropout? nAP nAPs
Color
Jitter

Random
Crop

Mosaic

B1 13.0 5.5
B2 ✓ 13.2 5.6
B3 ✓ 13.2 5.6
B4 ✓ 12.8 6.1
B5 ✓ ✓ ✓ 13.8 6.8

C1 ✓ ✓ ✓ 14.5 4.3
C2 ✓ ✓ ✓ ✓ 16.2 6.2
C3 ✓ ✓ ✓ ✓ ✓ 16.6 7.0

Table 3. Few-shot object detection performance on novel
classes on the MS-COCO 30-shot task. Note that, the base-
line model B1 is equivalent to a strong baseline proposed in
TFA [48]. nAP – novel class average precision (nAPs is for
small instances only)

Method nAP nAP50 nAP75 bAP bAP50 bAP75

Baseline 16.6 30.9 15.8 29.5 46.7 32.4
+ Candidate Sourcing 18.4 34.0 18.2 31.7 53.2 35.6
+ Label Verification 21.8 40.3 21.1 31.6 53.4 35.2
+ Box Correction 25.5 42.0 27.3 33.3 53.6 36.1

Ideal Faster R-CNN [40] 43.5 67.4 46.6 36.1 56.0 39.2

Table 4. Ablation study on our pseudo-labelling method.

Method Backbone nAP nAP50 nAP75 bAP
10 30 10 30 10 30 10 30

CGDP+FSCN [29] 11.3 15.1 20.3 29.4 - - - -
Ours (Baseline) ResNet-50 11.4 16.6 21.2 30.9 11.1 15.8 28.4 29.5
Ours (Pseudo-Labelling) 17.6 25.5 30.9 42.0 17.3 27.3 29.7 33.3

TFA w/ cos [48] 10.0 13.7 19.1 24.9 9.3 13.4 32.4 34.2
FCSE [45] 11.9 16.4 - - 10.5 16.2 - -
Retentive R-CNN [13] 10.5 13.8 - - - - 39.2 39.3
SRR-FSD [59] 11.3 14.7 23.0 29.2 9.8 13.5 - -
CME [27] 15.1 16.9 24.6 28.0 16.4 17.8 - -
DCNet [19] 12.8 18.6 23.4 32.6 11.2 17.5 - -
TIP [26] 16.3 18.3 33.2 35.9 14.1 16.9 - -
QA-FewDet [16] 11.6 16.5 23.9 31.9 9.8 15.5 - -
FSOD-UP [50] 11.0 15.6 - - 10.7 15.7 - -
DeFRCN [36] 18.5 22.6 - - - - N/A N/A
Ours (Baseline) 12.1 17.8 22.0 31.6 11.8 17.7 31.9 31.8
Ours (Pseudo-Labelling)

ResNet-101

17.8 24.5 30.9 41.1 17.8 25.0 31.9 33.0

Ours (Baseline) 12.6 19.0 23.3 35.3 12.1 18.3 27.2 31.5
Ours (Pseudo-Labelling) Swin-T 18.6 26.1 32.1 45.0 18.5 26.8 29.2 31.1

Ours (Baseline) 14.4 20.3 25.8 37.2 14.4 20.2 33.0 36.2
Ours (Pseudo-Labelling) Swin-S 19.0 26.8 34.1 45.8 19.0 27.5 28.7 34.8

Table 5. Few-shot detection performance on the MS-COCO benchmark.
We report performance on the 20 novel classes of MS-COCO in the FSOD
setting. Best and second-best results, per backbone, are coloured blue and
red, respectively. We also report performance on base classes.

nAP75. In terms of nAP, only DeFRCN outperforms our
work. However, note that, DeFRCN is not able to detect
base classes after training on novel categories, which strives
for a different purpose than ours, we aim to expand our de-
tector, rather than to transfer the detector.

In addition, while using a more powerful Transformer
backbone models (Swin-T, Swin-S [35]), our proposed
pseudo-labelling provides additional performance boosts.

PASCAL VOC Results are shown for the three stan-
dard novel splits in Table 6. Incorporating our proposed
Pseudo-Labellingmethod is among the top 2 best per-
forming models in all cases (except Novel Split 2 for K=2),
and sets SotA performance for the majority of cases.

Notably, for Novel Split 3, our Pseudo-Labelling
method achieves SotA for all K, with a boost of up to
4.7 nAP50, when using a ResNet-101 backbone. In many
cases our weaker detection backbone (ResNet-50) already
achieves SotA performance. Note that, once again the trans-
ferred detector DeFRCN outperforms ours in some cases.

5.5. Qualitative Results

In Figure 2, we present the qualitative results after each
step of our pseudo-labelling procedure. The top row of Fig-
ure 2 shows examples of Label Verification (Section 4.2).
The first three examples demonstrate the case in which the
predicted class label from our detector matches kNN classi-
fication, and so the candidate detection is verified. The last
three examples show the opposite case in which candidate
detections are correctly rejected. The bottom row of Fig-
ure 2 shows examples of Box Correction (Section 4.3). The
first three examples show very poor bounding boxes from

verified candidates (dashed blue boxes), which are drasti-
cally improved during the Box Correction step. The last
three examples show acceptable bounding boxes from ver-
ified candidates (dashed blue boxes), also being improved
with Box Correction. This demonstrates the ability of our
Box Correction model to deal with a wide range of bound-
ing box quality with respect to input candidate detections.

In Figure 3, we show precision-recall curves for some
novel classes on the MS-COCO benchmark for K=30 us-
ing the stricter IoU=0.75 criterion. Our Pseudo-Labelling
method substantially improves novel class performance,
with improved precision and novel class recall. We note that
for many novel classes, baseline models suffer from poor
recall due to limited novel class annotations. This poor re-
call is improved by our pseudo-labelling method, however
the poor recall of the baseline detector puts a limit on the
diversity of pseudo-annotations for end-to-end retraining.

6. Conclusion

In this paper, we tackle the problem of few-shot object
detection by training on pseudo-annotations. We present
two novel methods to improve the precision of the pseudo-
labelling procedure: first, we use the given K few-shot
annotations to construct classifiers to verify class labels
sourced from a baseline detector; second, we train a spe-
cialised box correction model to drastically improve the
precision of pseudo-annotation bounding box coordinates.
Our method generates a large number of high-precision
pseudo-annotations with precise bounding boxes, removing
the class imbalance issue in FSOD. This enables re-training
of our detector end-to-end, alleviating the identified issues
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Method/Shot Backbone Novel Split 1 Novel Split 2 Novel Split 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

CGDP+FSCN [29] CVPR 21 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6
Ours (Baseline) 37.7 42.0 50.3 57.0 58.0 19.8 22.8 35.6 42.7 44.2 33.9 36.0 38.6 49.8 51.6
Ours (Pseudo-Labelling)

ResNet-50
50.5 53.1 56.4 61.7 62.7 36.4 33.8 46.1 49.3 48.2 42.4 44.3 49.1 55.2 57.6

TFA w/ cos [48] ICML 20 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
FSCE [45] CVPR 21 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
Retentive R-CNN [13] CVPR 21 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
SRR-FSD [59] CVPR 21 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
CME [27] CVPR 21 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
DCNet [19] CVPR 21 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
TIP [26] CVPR 21 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
QA-FewDet [16] ICCV 21 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
FSOD-UP [50] ICCV 21 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5
DeFRCN [36] ICCV 21 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
Ours (Baseline) 36.0 40.1 48.6 57.0 59.9 22.3 22.8 39.2 44.2 47.8 34.3 43.4 42.9 52.0 54.5
Ours (Pseudo-Labelling)

ResNet-101

54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6

Table 6. Few-shot detection performance across the three splits on the PASCAL VOC benchmark. Best and second-best results are coloured
blue and red, respectively. Please refer to the text for discussion.

Input  IoU : 0.27
Output IoU : 0.97

Input  IoU : 0.33
Output IoU : 0.97

Input  IoU : 0.33
Output IoU : 0.94

Pred: Dog
kNN : Cow

Pred: Bus
kNN : Train

Pred: Motorcycle
kNN : Bicycle

Pred: Person
kNN : Person

Input  IoU : 0.71
Output IoU : 0.97

Input  IoU : 0.72
Output IoU : 0.97

Input  IoU : 0.71
Output IoU : 0.98

Pred: Horse
kNN : Horse

Pred: Sheep
kNN : Sheep

Figure 2. Top Left: Predicted instances which are verified during Label Verification; the predicted class labels from our baseline detector
and our kNN classifier match. Top Right: Predicted instances which are rejected during Label Verification; the predicted class labels from
our baseline detector (false positive) and the kNN do not match. Bottom Left: Verified bounding boxes with very poor quality (blue dashed)
are drastically improved (lime solid) during Box Correction. Bottom Right: Verified bounding boxes which are acceptable (blue dashed)
are further improved (lime solid).

38.3

17.1

10.7

13.9

48.6

15.2

8.1

13.2

21.0

19.5

Figure 3. Precision-Recall curves (using the stricter IoU=0.75 criterion) for K=30 on MS-COCO showing Baseline performance (solid
blue) and the substantial performance boost after making use of our Pseudo-Labelling method (dashed red). Our Pseudo-Labelling method
yields improved precision and improved recall for novel classes.

around “supervision collapse” in few-shot object detectors.
Furthermore, we have illustrated the importance of augmen-
tations for FSOD, this was previously under-explored, de-
spite augmentations being a key part of preventing overfit-
ting. Our method achieves state-of-the-art or second-best
performance performance on both PASCAL VOC and MS-
COCO benchmarks, across all number of shots.
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