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Abstract

Two-stage and query-based instance segmentation meth-
ods have achieved remarkable results. However, their seg-
mented masks are still very coarse. In this paper, we present
Mask Transfiner for high-quality and efficient instance seg-
mentation. Instead of operating on regular dense tensors,
our Mask Transfiner decomposes and represents the image
regions as a quadtree. Our transformer-based approach
only processes detected error-prone tree nodes and self-
corrects their errors in parallel. While these sparse pix-
els only constitute a small proportion of the total number,
they are critical to the final mask quality. This allows Mask
Transfiner to predict highly accurate instance masks, at
a low computational cost. Extensive experiments demon-
strate that Mask Transfiner outperforms current instance
segmentation methods on three popular benchmarks, signif-
icantly improving both two-stage and query-based frame-
works by a large margin of +3.0 mask AP on COCO and
BDD100K, and +6.6 boundary AP on Cityscapes. Our code
and trained models are available at https://github.
com/SysCV/transfiner.

1. Introduction

Advancements in image instance segmentation has
largely been driven by the developments of powerful ob-
ject detection paradigms. Approaches based on Mask R-
CNN [12,21,24,28,34] and more recently DETR [15,17,23]
have achieved ever increasing performance on, for instance,
the COCO challenge [33]. While these methods excel in
detection and localization of objects, the problem of effi-
ciently predicting highly accurate segmentation masks has
so far remained elusive.

As shown in Figure 3, there is still a significant gap be-
tween the bounding box and segmentation performance of
the recent state-of-the-art methods, especially for the re-
cent query-based methods. This strongly indicates that im-
provements in mask quality has not kept pace with the ad-
vancements detection capability. In Figure 2, the predicted
masks of previous methods are very coarse, most often over-
smoothing object boundaries. In fact, efficient and accurate
mask prediction is highly challenging, due to the need for
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Figure 1. We propose Mask Transfiner for high-quality instance
segmentation. It first builds a quadtree based on the sparse inco-
herent regions on the RoI pyramid and then jointly refines all tree
nodes using the refinement transformer with quadtree attention.

high-resolution deep features, which demands large compu-
tational and memory costs [38].

To address these issues, we propose Mask Transfiner,
an efficient transformer-based approach for high-quality in-
stance segmentation. In Figure 1, our approach first iden-
tifies error-prone regions, which are mostly strewn along
object boundaries or in high-frequency regions. To this
end, our network learns to detect incoherent regions, de-
fined by the loss of information when downsampling mask
itself. These incoherent pixels are sparsely located, con-
sisting only of a small portion of the total pixels. How-
ever, as they are shown to be critical to the final segmenta-
tion performance, it allows us to only process small parts of
the high-resolution feature maps in the refinement process.
Thus, we build a hierarchical quadtree [18] to represent and
process the incoherent image pixels at multiple scales.

To refine the mask labels of the incoherent quadtree
nodes, we design an refinement network based on the trans-
former instead of standard convolutional networks because
they require operating on uniform grids. Our transformer
has three modules: node encoder, sequence encoder and
pixel decoder. The node encoder first enriches the feature
embedding for each incoherent point. The sequence en-
coder then takes these encoded feature vectors across mul-
tiple quadtree levels as input queries. Finally, the pixel de-
coder predicts their corresponding mask labels. Comparing
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Mask R-CNN BMask R-CNN SOLQ Mask Transfiner (Ours)PointRend
Figure 2. Instance Segmentation on COCO [33] validation set by a) Mask R-CNN [21], b) BMask R-CNN [12], c) SOLQ [15], d)
PointRend [28], g) Mask Transfiner (Ours) using R50-FPN as backbone, where Mask Transfiner produces significantly more detailed
results at high-frequency image regions by replacing Mask R-CNN’s default mask head. Zoom in for better view.
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Figure 3. The performance gap between object detection and seg-
mentation for instance segmentation models on COCO test-dev set
using R50-FPN as backbone. Detailed comparisons are in Table 9.

to MLP [28], the sequential representation and multi-head
attention enables Mask Transfiner to flexibly takes as in-
put sparse feature points across levels in parallel, models
their pixel-wise relations, and then propagates information
among them even in a long distance range.

We extensively analyze our approach on COCO,
Cityscapes and BDD100K benchmarks, where quantitative
and qualitative results show that Mask Transfiner not only
outperforms existing two-stage and query-based methods,
but also is efficient in computation and memory cost com-
pared to standard transformer usages. We establish a new
state-of-the-art result on COCO test-dev of 41.6 APMask us-
ing ResNet-50, outperforming most recent SOLQ [15] and
QueryInst [17] by a significant margin.

2. Related Work
Instance Segmentation Two-stage instance segmentation
methods [2, 6, 8, 12, 16, 21, 24, 31] first detects bounding
boxes and then performing segmentation in each RoI re-
gion. Mask R-CNN [21] extends Faster R-CNN [35] with
an FCN branch. The follow-up works [7, 12, 25, 26] also
contribute to the family of Mask R-CNN models. One-stage
methods [5, 8, 29, 30] and kernel-based method [48], such
as PolarMask [44], YOLOACT [1], and SOLO [40, 41] re-
move the proposal generation and feature re-pooling steps,
achieving comparable results with higher efficiency.

Query-based instance segmentation methods [15, 17, 19,
23, 42], which are inspired by DETR [4], have emerged
very recently by treating segmentation as a set prediction
problem. These methods use queries to represent the in-
terested objects and jointly perform classification, detection
and mask regression on them. In [15, 23], the object masks
are compressed as encoding vectors using DCT or PCA al-

gorithms, while QueryInst [17] adopts dynamic mask heads
with mask information flow. However, the large gaps be-
tween the detection and segmentation performance in Fig-
ure 3 reveals that the mask quality produced by these query-
based methods are still unsatisfactory. In contrast to the
above methods, Mask Transfiner is targeted for high-quality
instance segmentation. In our efficient transformer the input
queries are incoherent pixels nodes, instead of representing
the objects. Our method is applicable to and effective in
both the two-stage and query-based frameworks.
Refinement for Instance Segmentation Most exist-
ing works on instance segmentation refinement rely on
specially designed convolutional networks [36, 47] or
MLPs [28]. PointRend [28] samples feature points with
low-confidence scores and refines their labels with a shared
MLP, where the selected points are determined by the
coarse predictions of the Mask R-CNN. RefineMask [47]
incorporates fine-grained features with an additional se-
mantic head as the guidance. The post-processing method
BPR [36] crops boundary patches of images and initial
masks as input and use [38] for segmentation. Notably some
methods [11, 14, 46] focus on refining semantic segmenta-
tion details. However, it is challenging for instance segmen-
tation due to the more complex segmentation setting, with
varying number of objects per image and the requirement
of delineating overlapping objects [27].

Compared to these refinement methods, Mask Trans-
finer is an end-to-end instance segmentation method, us-
ing a transformer for correcting errors. The regions to be
refined are predicted using a lightweight FCN, instead of
non-deterministic sampling based on mask scores [28]. Dif-
ferent from the MLP in [28], the sequential and hierarchical
input representation enables Mask Transfiner to efficiently
take non-local sparse feature points as input queries, where
the strong global processing of transformers is a natural fit
for our quadtree structure.

3. Mask Transfiner

We propose an approach to efficiently tackle high-quality
instance segmentation. The overall architecture of Mask
Transfiner is depicted in Figure 5. From the base object de-
tection network, e.g. Mask R-CNN [21], we employ a multi-
scale deep feature pyramid. The object detection head then
predicts bounding boxes as instance proposals. This com-
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Figure 4. Illustration on incoherent regions definition by simulat-
ing mask information loss.

ponent also generates a coarse initial mask prediction at low
resolution. Given this input data, our aim is to predict highly
accurate instance segmentation masks.

Since much of the segmentation errors are attributed to
the loss of spatial resolution, we first define such incoherent
regions and analyze their properties in Section 3.1. To iden-
tify and refine incoherent regions in multiple scales, we em-
ploy a quadtree, discussed in Section 3.2. The lightweight
incoherent region detector takes as input the coarse initial
mask alongside the multi-scale features, and predicts the in-
coherent regions for each scale in a cascaded manner. This
allows ours Mask Transfiner to save huge computational
and memory burdens, because only a small part of the high-
resolution image features are processed by the refinement
network itself. Our refinement transformer, detailed in Sec-
tion 3.3, operates in the detected incoherent regions. Since
it operates on feature points on the constructed quadtree,
and not in a uniform grid, we design a transformer architec-
ture which jointly processes all incoherent nodes in all lev-
els of the quadtree. Finally, we present the training strategy
of Mask Transfiner along with the implementation details.

3.1. Incoherent Regions

Much of the segmentation errors produced by existing
instance segmentation methods [15, 21] are due to the loss
of spatial resolution, such as the mask downsampling op-
erations, small RoI pooling size, and coefficients compres-
sion [15, 23], where mask prediction itself is performed at
a coarse feature scale. Despite its efficiency, low spatial
resolution makes it challenging to predict accurate object
boundaries, due to the loss of high-frequency details. In this
section, we first define incoherent regions, where mask in-
formation is lost due to reduced spatial resolution. Then, by
analyzing their properties, we observe that a large portion
of the errors are indeed located in these regions.
Definition of Incoherent Regions To identify incoherent
regions, we simulate the loss of information due to down-
sampling in the network by also downsampling the mask
itself. Specifically, information is lost in regions where the
mask cannot be correctly reconstructed by a subsequent up-

sampling step, as illustrated in Figure 4. Formally, let Ml

be a binary ground-truth instance mask of an object at scale
level l. The resolution at each scale level differs by a factor
of 2, where l = 0 is the finest and l = L is the coarsest
scale. We denote 2× nearest neighbor down and upsam-
pling by S↓ and S↑ respectively. The incoherent region at
scale l is then the binary mask achieved as,

Dl = O↓(Ml−1 ⊕ S↑(S↓(Ml−1))) . (1)

Here, ⊕ denotes the logical ‘exclusive or’ operation and O↓
is 2× downsampling by performing the logical ‘or’ oper-
ation in each 2 × 2 neighborhood. A pixel (x, y) is thus
incoherent Dl(x, y) = 1 if the original mask value Ml−1

differs from its reconstruction in at least one pixel in the
finer scale level. Intuitively, incoherent regions are mostly
strewn along object instance boundaries or high-frequency
regions, consisting of points with missing or extra predicted
wrong labels by coarse masks. We provide the visualiza-
tions of them in Figure 6 and Supp. file, which are sparsely
and non-contiguously distributed on a typical image.
Table 1. Experimental analysis of the incoherent regions on
COCO val set. Percent denotes the area ratio of incoherent regions
in the object bounding boxes. RecallErr is the ratio for all wrongly
predicted pixels per object. Acc is the accuracy rate for coarse
mask predictions inside incoherent regions. APCoarse is measured
by using coarse mask predictions for whole object regions while
APGT only fills the incoherent regions with the ground truth labels.

Percent RecallErr Acc APGT APCoarse

14% 43% 56% 51.0 35.5

Properties of Incoherent Regions In Table 1, we pro-
vide an analysis of the incoherent regions defined above.
It shows that a large portion of prediction errors are con-
centrated in these incoherent regions, occupying 43% of
all wrongly predicted pixels, while only taking 14% to the
corresponding bounding box areas. The accuracy of the
coarse mask prediction in incoherent regions is 56%. By
fixing the bounding boxes detector, we conduct an oracle
study to fill all these incoherent regions for each object with
ground truth labels, while leaving the remaining parts as ini-
tial mask predictions. Compared to using initial mask pre-
dictions in the incoherent regions, the performance surges
from 35.5 AP to 51.0 AP, indeed justifying they are critical
for improving final performance.

3.2. Quadtree for Mask Refinement

In this section, we describe our approach for detecting
and refining incoherent regions in the image. Our approach
is based on the idea of iteratively detecting and dividing
the incoherent regions in each feature scale. By only split-
ting the identified incoherent pixels for further refinement,
our approach efficiently processes high-resolution features
by only focusing on the important regions. To formalize
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our approach, we employ a quadtree structure to first iden-
tify incoherent regions across scales. We then predict the
refined segmentation labels for all incoherent nodes in the
quadtree, using our network detailed in Section 3.3. Finally,
our quadtree is employed to fuse the new predictions from
multiple scales by propagating the corrected mask probabil-
ities from coarse to finer scales.
Detection of Incoherent Regions The right part of Figure 5
depicts the design of our lightweight module to efficiently
detect incoherent regions on a multi-scale feature pyramid.
Following a cascaded design, we first concatenate the small-
est features and coarse object mask predictions as input,
and use a simple fully convolutional network (four 3×3
Convs) followed by a binary classifier to predict the coars-
est incoherence masks. Then, the detected lower-resolution
masks are upsampled and fused with the larger-resolution
feature in neighboring level to guide the finer incoherence
predictions, where only single 1×1 convolution layer is em-
ployed. During training, we enforce the groundtruth inco-
herent points in lower-level generated by Eq. 1 within the
coverage of their parent points in higher-level feature map.
Quadtree Definition and Construction We define a point
quadtree for decomposing the detected incoherent regions.
Our structure is illustrated in Figure 5, where one yellow
point in higher-level of FPN feature (such as feature reso-
lution 28 ×28) has four quadrant points in its neighboring
lower-level FPN feature map (such as resolution 56×56).
These are all feature points but with different granularities
because they are on different pyramid levels. In contrast to
the conventional quadtree ‘cells’ used in computer graph-
ics, where a quadtree ‘cell’ can have multiple points, the
subdivision unit for our point quadtree is always on a single
point, with the division of points decided by the detected
incoherent values and the threshold for the binary classifier.

Based on the detected incoherent points, we construct
a multi-level hierarchical quadtree, beginning from using
the detected points in the highest-level feature map as root
nodes. These root nodes are selected for subdividing to their
four quadrants on the lower-level feature map, with larger
resolution and more local details. Note that at the fine level,
only the quadrant points detected as incoherent could make
a further break down and the expansion of incoherent tree
nodes is restricted in regions corresponding to the incoher-
ent predictions at the previous coarse level.
Quadtree Refinement We refine the mask predictions of
the incoherent nodes of the quadtree using a transformer-
based architecture. Our design is described in Sec. 3.3. It
directly operates on the nodes of the quadtree, jointly pro-
viding refined mask probabilities at each incoherent node.
Quadtree Propagation Given the refined mask predictions,
we design a hierarchical mask propagation scheme that ex-
ploits our quadtree structure. Given the initial coarse masks
predictions in low-resolution, Mask Transfiner first corrects

the points labels belong to the root level of the quadtree, and
then propagates these corrected point labels to their corre-
sponding four quadrants in neighboring finer level by near-
est neighbor interpolation. The process of labels correction
is efficiently conducted on the incoherent nodes in a level-
wise manner until reaching the finest quadtree level. Com-
paring to only correcting the labels of finest leaf nodes on
the quadtree, it enlarges the refinement areas with negligi-
ble cost by propagating refinement labeled to leaf nodes of
the intermediate tree levels.

3.3. Mask Transfiner Architecture

In this section, we describe the architecture of the refine-
ment network, which takes as input the incoherent points
on the built quadtree (Section 3.2) for final segmentation
refinement. These points are sparsely distributed along the
high-frequency regions across levels and not spatially con-
tiguous. Thus, standard convolutional networks operating
on uniform grids are not suitable. Instead, we design a
refinement transformer, Mask Transfiner, that corrects the
predictions of all incoherent quadtree nodes in parallel.

Accurately segmenting ambiguous points requires both
fine-grained deep features and coarse semantic informa-
tion. The network therefore needs strong modeling power
to sufficiently relate points and their surrounding context,
including both spatial and cross-level neighboring points.
Thus, a transformer, which can take sequential input and
perform powerful local and non-local reasoning through the
multi-head attention layers, is a natural choice for our Mask
Transfiner design. Compared to the MLP in [28], the strong
global processing of transformers is a natural fit for our
quadtree structure. It benefits the effective fusion of the
multi-level feature points information with different granu-
larities and the explicit modeling of pairwise point relations.

Figure 5 shows the overall architecture of our Mask
Transfiner. Based on the hierarchical FPN [32], instance
segmentation is tackled in a multi-level and coarse-to-fine
manner. Instead of using single-level FPN feature for each
object [21], Mask Transfiner takes as input sequence the
sparsely detected feature points in incoherent image regions
across the RoI feature pyramid levels, and outputs the cor-
responding segmentation labels.
RoI Feature Pyramid Given an input image, the CNN
backbone network equipped with FPN first extracts hierar-
chical feature maps for downstream processing, where we
utilize feature levels from P2 to P5. The base object detec-
tor [15, 21] predicts bounding boxes as instance proposals.
Then the RoI feature pyramid is built by extracting RoI fea-
tures across three different levels {Pi, Pi−1, Pi−2} of FPN
with increasing square sizes {28, 56, 112}. The starting
level i is computed as i =

⌊
i0 + log2(

√
WH/224)

⌋
, where

i0 = 4, W and H are the RoI width and height. The coarsest
level features contain more contextual and semantic infor-
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Figure 5. The framework of Mask Transfiner. On the point quadtree, yellow point grids denote detected incoherent regions requiring further
subdivision to four quadrants. The incoherent query sequence is composed of points across three levels of the quadtree for joint refinement.
The encoder of Transfiner consists of node encoder and sequence encoder, while the pixel decoder is on top of each self-attended query pixel
and output their final labels. The incoherence detector is detailed in the right part of the figure with detections on multi-level incoherent
regions (Yellow). The higher-resolution detection is under the guidance of the predicted incoherent mask up-sampled from lower level.

mation, while the finer levels resolve more local details.

Input Node Sequence Given the quadtree discussed in Sec-
tion 3.2 along with the associated FPN features for each
node, we construct the input sequence for our transformer-
based architecture. The sequence consists of all incoherent
nodes from all three levels of the quadtree. The resulting
sequence thus has a size of C × N , where N is the total
number of nodes and C is the feature channel dimension.
Notably, N ≪ HW due to the high degree of sparsity.
Moreover, the ordering of the sequence does not matter due
to the permutation invariance of transformer. In contrast to
standard transformer encoder, the encoder of Transfiner has
two parts: the node encoder and the sequence encoder.

Node Encoder To enrich the incoherent points feature, the
node encoder of Mask Transfiner encodes each quadtree
node using the following four different information cues:
1) The fined-grained features extracted from correspond-
ing location and level of the FPN pyramid. 2) The ini-
tial coarse mask prediction from the base detector provides
region-specific and semantic information. 3) The relative
positional encoding in each RoI encapsulates spatial dis-
tances and relations between nodes, capturing important lo-
cal dependence and correlations. 4) The surrounding con-
text for each node captures local details to enrich the infor-
mation. For each node, we use features extracted from the
3×3 neighborhood, compressed by a fully connected layer.
Intuitively, this helps in localizing edges and boundaries, as
well as capturing the local shape of the object. As illustrated
in Figure 5, the fine-grained features, coarse segmentation
cues and context features are first concatenated and fused
by a FC layer to original feature dimension. The positional
embedding is then added to the resulting feature vector.

Sequence Encoder and Pixel Decoder Then, the sequence

transformer encoder of Transfiner jointly processes the en-
coded nodes from all levels in the quadtree. The transformer
thus performs both global spatial and inter-scale reasoning.
Each sequence encoder layer has a standard transformer
structure, formed by a multi-head self-attention module and
a fully connected feed forward network (FFN). To equip
the incoherent points sequence with adequate positive and
negative references, we also use all feature points from the
coarsest FPN level with small size 14×14. Different from
the standard transformer decoder [4] with deep attention
layers, the pixel decoder in Mask Transfiner is a small two-
layer MLP, which decodes the output query for each node
in the tree, in order to predict the final mask labels.
Training and inference Based on the constructed quadtree,
we develop flexible and adaptive training and inference
schemes for Mask Transfiner, where all detected incoherent
nodes across quadtree levels are formed into a sequence for
parallel prediction. During inference, to obtain final object
masks, Mask Transfiner follows the quadtree propagation
scheme (Section 3.2) after obtaining the refined labels for
incoherent nodes. During training, the whole Mask Trans-
finer framework can be trained in an end-to-end manner. We
employ a multi-task loss,

L = λ1LDetect + λ2LCoarse + λ3LRefine + λ4LInc . (2)

Here, LRefine denotes the refinement with L1 loss between
the predicted labels for incoherent nodes and their ground-
truth labels. A Binary Cross Entropy loss LInc is for de-
tecting incoherent regions. The detection loss LDetect in-
cludes the localization and classification losses from the
base detector, e.g. Faster R-CNN [35] or DETR detector.
Finally, LCoarse represents the loss for the initial coarse seg-
mentation prediction used by [21]. λ{1,2,3,4} are hyper-
parameter weights {1.0, 1.0, 1.0, 0.5}.
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Implementation Details Mask Transfiner is implemented
on both the two-stage detector Faster R-CNN [35] and
query-based detector [4]. We design a 3-level quadtree and
use the hyper-parameters and training schedules of Mask R-
CNN implemented in Detectron2 [43] for the backbone and
coarse mask head. The Mask Transfiner encoder consists of
three standard transformer layers. Each layer has four at-
tention heads with feature dimension at 256. In our ablation
study, R-50-FPN [22] and Faster R-CNN with 1× learn-
ing schedule are adopted. For COCO leaderboard compar-
ison, we adopt the scale-jitter with shorter image side ran-
domly sampled from [640, 800], following training sched-
ules in [26, 30]. More details are in the Supp. file.

4. Experiments
4.1. Experimental Setup

COCO We perform experiments on COCO dataset [33],
where we train our networks on 2017train and evaluate our
results on both the 2017val and 2017test-dev. We employ
the standard AP metrics and the recently proposed bound-
ary IoU metrics [10]. Notably, APB for boundary IoU is a
measure focusing on boundary quality. Following [28], we
also report AP⋆, which evaluates the val set of COCO with
significantly higher-quality LVIS annotations [20] that can
better reveal improvements in mask quality.
Cityscapes We report the results on Cityscapes [13], a high-
quality instance segmentation dataset containing 2975, 500,
1525 images with resolution of 2048×1024 for training,
validation and test respectively. Cityscapes focus on self-
driving scenes with 8 categories (e.g., car, person, bicycle).
BDD100K We further train and evaluate Mask Transfiner
on the BDD100K [45] instance segmentation dataset, which
has 8 categories with 120K high-quality instance mask an-
notations. We follow the standard practice, using 7k, 1k, 2k
images for training, validation and testing respectively.

4.2. Ablation Experiments

We conduct detailed ablation studies on the COCO vali-
dation set, analyzing the impact of the proposed incoherent
regions and individual components of Mask Transfiner.
Effect of the Incoherent Regions Table 1 presents an anal-
ysis on the properties of incoherent regions described in
Section 3.1. It reveals they are critical to the final segmen-
tation performance. Table 2 presents analyzes the effective-
ness of the detected incoherent regions by replacing the re-
finement regions with full RoIs or detected object boundary
regions. Due to memory limitation, the full RoIs only uses
output size 28×28. The comparison shows the advantage
of incoherent regions, with 1.8 AP and 0.7 AP gain over the
use of full RoIs and detected boundary regions respectively.

To study the influence of incoherent regions on different
pyramid levels, in Table 2, we also perform ablation ex-
periments by removing the refinement regions of the Mask

Table 2. Effect of the incoherent regions on COCO val set. APB

is evaluated Boundary IoU [10] while AP⋆ uses LVIS annotations.

Region Type AP APB AP⋆ AP⋆
50

Full RoIs (28 × 28) 35.5 21.4 38.3 59.5
Boundary regions 36.6 23.8 40.1 60.2
Incoherent regions 37.3 24.2 40.5 60.7

Incoherent regions (w/o L1) 36.5 23.5 39.8 59.7
Incoherent regions (w/o L2) 36.8 23.8 40.2 60.1
Incoherent regions (w/o L3) 36.7 23.6 40.0 59.9

Table 3. Effect of lower-level masks guidance in detecting inco-
herent regions on COCO val. AP and APB are final performance.

Lower-level Guidance Acc Recall AP APB

79% 73% 36.6 23.7
✓ 84% 86% 37.3 24.2

Table 4. Analysis of node encoding cues on COCO val set.

Fine Coarse Pos. Context AP APB AP⋆ AP⋆
50

✓ 33.8 20.1 37.0 53.8
✓ ✓ 34.2 20.4 37.3 54.3
✓ ✓ ✓ 36.8 23.9 40.1 60.1
✓ ✓ ✓ ✓ 37.3 24.2 40.5 60.7

Transfiner in a level-wise order. We find that all three levels
are beneficial to the final performance, while L1 contributes
most with 0.8 AP increase, where L1 denotes the root level
of Mask Transfiner with the smallest feature size.
Ablation on the Incoherent Regions Detector We evalu-
ate the performance of the light-weight incoherent region
detector by computing its recall and accuracy rates. In Ta-
ble 3, with the guidance of the predicted incoherent mask
up-sampled from lower level (Figure 5), the recall rate of
detected incoherent regions has an obvious improvement
from 74% to 86%, and the accuracy rate also increases from
79% to 84%. Note that recall rate is more important here to
cover all the error-prone regions for further refinements.
Effect of Incoherent Points Encoding We analyze the ef-
fect of the four information cues in the incoherent points en-
coding. In Table 4, comparing to only using the fine-grained
feature, the coarse segmentation features with semantic in-
formation brings a gain of 0.4 point AP. The positional en-
coding feature has a large influence on model performance
by significantly improving 2.6 points on AP and 3.5 points
on APB respectively. The positional encoding for incoher-
ent points are crucial, because transformer architecture is
permutation-invariant and the segmentation task is position-
sensitive. The surrounding context feature further promotes
the segmentation results from 36.8 AP to 37.3 AP by aggre-
gating local neighboring details.
Influence of Quadtree Depths In Table 5, we study the
influence on hierarchical refinement stages by constructing
the quadtree in our Mask Transfiner with different depths.
Depth 0 denotes the baseline using coarse head mask pre-
diction w/o refinement steps. The output size grows twice
larger than its preceding stage. By varying the output sizes
from 28×28 to 224×224, the mask AP⋆ increases from 38.4
to 40.7 with increased tree depth. This reveals that models
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Table 5. Analysis of the quadtree depth on the
COCO val using R50-FPN as backbone.

Depth Output size AP AP⋆ APL APM APS FPS

0 28×28 35.2 37.6 50.3 37.7 17.2 12.3

1 28×28 35.5 38.4 50.9 38.1 17.2 10.6
2 56×56 36.2 39.1 51.9 38.7 17.3 8.9
3 112×112 37.3 40.5 52.9 39.5 17.5 7.1
4 224×224 37.1 40.7 53.1 39.3 17.4 5.2

Table 6. Mask Transfiner vs. MLP and CNN
on COCO val set using ResNet-50-FPN.

Model AP APB AP⋆ AP⋆
50

CNN (full regions, 56 × 56) 35.7 21.8 38.7 58.8

MLP (full regions, 56 × 56) 36.1 23.4 39.2 59.2
MLP (PointRend [28], 112 × 112) 36.2 23.1 39.1 59.0
MLP (incoherent regions) 36.4 23.7 39.7 59.8

Mask Transfiner (D = 3, H = 4) 37.3 24.2 40.5 60.7
Mask Transfiner (D = 3, H = 8) 37.1 24.1 40.2 60.8
Mask Transfiner (D = 6, H = 4) 37.4 24.4 40.6 60.9

Table 7. Efficacy of Transfiner compared
to standard attention models on COCO val.
NLA denotes non-local attention [39].

Model AP FLOPs (G) Memory (M) FPS

NLA [39] (112×112) 36.3 24.6 8347 4.6
NLA [39] (224×224) 36.6 80.2 18091 2.4

Transformer [4] (28×28) 36.1 37.2 4368 6.9
Transformer [4] (56×56) 36.5 68.3 17359 2.1

Mask Transfiner (112×112) 37.3 16.8 2316 7.1
Mask Transfiner (224×224) 37.1 38.1 4871 5.2

Quadtree Depth 1 (28 × 28) Quadtree Depth 2 (56 × 56) Quadtree Depth 3 (112 × 112)

Quadtree Attention for Node R1

R1

R2

R3

Quadtree Attention for Node R2 Quadtree Attention for Node R3

Coarse Mask (28 × 28)

R4
Quadtree Attention for Node R4

Figure 6. Qualitative results comparison between the coarse mask
predictions by our baseline [22] and the refinement results with
various depths of the quadtree built on detected incoherent regions.
The bottom row visualizes the quadtree attention weights distribu-
tion in the sparse incoherent regions for four sampled red nodes.

with more levels and larger output sizes for an object in-
deed brings more gain to segmentation performance. The
large objects benefit most from the increasing sizes with an
improvement of 2.8 point in APL. We further find that the
performance saturates when the output size is larger than
112×112, while the 3-stage Transfiner also has a lower
computational cost and runs at 7.1 fps. Figure 6 visual-
izes results with increasing quadtree depths, where masks
become substantially finer detail around object boundaries.
Mask Transfiner vs. MLP and CNN We compare different
popular choices of the refinement networks, including the
MLP and CNN structures. MLP is implemented with three
hidden layers of 256 channels [28], while CNN is a FCN
with four convolution layers with 3×3 kernels [21]. Note
that for full refinement regions, CNN and MLP are limited
to the RoI size 56 × 56 due to memory limitations, and
CNN is not suitable for incoherent regions because uniform
grids are required. In Table 6, our Mask Transfiner outper-
forms the MLP by 0.9 AP, benefiting from the non-local
pixel-wise relation modeling, where we use the same inco-
herent regions on all three quadtree levels for fair compar-
ison. Moreover, we investigate the influence of layer depth
D and width W of Mask Transfiner and find that deeper
and wider attention layers only lead to minor performance
change. In Figure 6, we visualize the sparse quadtree atten-
tion maps of the last sequence encoder layer of the Trans-
finer, focusing on a few incoherent points. The encoder
already seems to distinguish between foreground instances
and background, where the neighboring attended regions of
point R1 are separated by the object boundary.
Efficacy of Quadtree Structure Table 7 compares Mask
Transfiner with different attention mechanisms. Compared
to pixels relation modeling using 3-layer non-local atten-

tion [39] or standard transformer [4, 37], Mask Transfiner
not only obtains higher accuracy but also is very efficient
in computation and memory consumption. For example,
Mask Transfiner with multi-head attention uses 3 times less
memory than the non-local attention given same output size,
due to the small number of incoherent pixels. Compared
to standard transformer operating on full RoI regions of
much smaller size 56×56, the quadtree subdivision and in-
ference allows Mask Transfiner to produce a high-resolution
224×224 prediction using only half of the FLOPs compu-
tation. Note that the standard transformer with output size
112×112 runs out of memory in our experiments.
Effect of Multi-level Joint Refinement Given incoherent
nodes from the 3-level quadtree, Transfiner forms all of
them into a sequence for joint refinement in single forward
pass. In Table 8, we compare it with separately refining the
quadtree nodes on each level with multiple sequences. The
performance boost of 0.6 AP⋆ shows the benefit of multi-
scale feature fusion and richer context in global reasoning.
Effect of Quadtree Mask Propagation During inference,
after Mask Transfiner has refined all incoherent points,
we utilize a hierarchical coarse-to-fine mask propagation
scheme along the quadtree levels to obtain the final pre-
dictions. Comparing to only correcting the labels of finest
leaf nodes on the quadtree in Table 8, the propagation en-
larges the refinement areas and improves the performance
from 36.5 AP to 37.0 AP. The propagation brings negligible
computation because the new labels for the quadrant leaf
(coherent) nodes in intermediate tree levels are obtained via
duplicating the refined label values of their parents.

Table 8. Effect of the multi-level joint refinement (MJR) and
quadtree mask propagation (QMP) on COCO val set.

MJR QMP AP APB AP⋆ AP⋆
50

36.5 23.7 39.6 59.7
✓ 36.9 23.9 40.2 60.2

✓ 37.0 24.0 40.1 60.2
✓ ✓ 37.3 24.2 40.5 60.7

4.3. Comparison with State-of-the-art

We compare our approach with the state-of-the-art meth-
ods on the benchmarks COCO, Cityscapes and BDD100K,
where Mask Transfiner outperforms all existing methods
without bells and whistles, demonstrating efficacy on both
two-stage and query-based segmentation frameworks.
COCO Table 9 compares Mask Transfiner with state-of-
the-art instance segmentation methods on COCO dataset.
Transfiner achieves consistent improvement on different
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Mask R-CNN BMask R-CNN PointRend Mask Transfiner (Ours)
Figure 7. Qualitative comparisons with instance segmentation methods Mask R-CNN [21], BMask R-CNN [12], PointRend [28] and our
Mask Transfiner on Cityscapes val set. Mask Transfiner produces more natural boundaries while revealing details for small parts, such as
the rear mirrors of the car and the high-heeled shoes. Zoom in for better view. Refer to the supplemental file for more visual comparisons.
Table 9. Comparison with SOTA methods on COCO test-dev and
val set. All methods are trained on COCO train2017. †: trained
with DCN [49]. AP⋆ denotes evaluation using LVIS [20] annota-
tion and APB denotes using Boundary IoU [10]. Type T denotes
two-stage methods while Q denotes query-based methods.

Method Backbone Type AP AP⋆
val APB

val APBox APS APM APL

Mask R-CNN [21] R50-FPN T 37.5 38.2 21.2 41.3 21.1 39.6 48.3
PointRend [28] R50-FPN T 38.1 39.7 23.5 41.5 18.8 40.2 49.4
B-MRCNN [12] R50-FPN T 37.8 39.8 23.5 41.6 19.7 40.3 49.6
BPR [36] R50-FPN T 38.4 40.2 24.3 41.3 20.2 40.5 49.7
Mask Transfiner R50-FPN T 39.4 42.3 26.0 41.8 22.3 41.2 50.2
Mask Transfiner† R50-FPN T 40.5 43.1 26.8 43.2 22.8 42.3 52.5
Mask R-CNN [21] R101-FPN T 38.8 39.3 23.1 43.1 21.8 41.4 50.5
PointRend [28] R101-FPN T 39.6 41.4 25.3 43.3 19.8 42.6 53.7
MS R-CNN† [24] R101-FPN T 39.6 41.1 25.0 44.1 18.9 42.7 55.1
HTC [6] R101-FPN T 39.7 42.5 25.4 45.9 21.0 42.2 53.5
RefineMask [47] R101-FPN T 39.4 42.3 26.8 43.8 21.6 42.0 53.1
BCNet [26] R101-FPN T 39.8 41.9 26.1 43.5 22.7 42.4 51.1
Mask Transfiner R101-FPN T 40.7 43.6 27.3 43.9 23.1 42.8 53.8
Mask Transfiner† R101-FPN T 42.2 45.0 28.6 45.8 24.1 44.8 55.4
ISTR [23] R50-FPN Q 38.6 39.5 23.0 46.8 22.1 40.4 50.6
QueryInst [17] R50-FPN Q 39.9 42.1 25.1 44.5 22.9 41.7 51.9
SOLQ [15] R50-FPN Q 39.7 39.8 23.3 47.8 21.5 42.5 53.1
Mask Transfiner R50-FPN Q 41.6 45.4 28.2 46.5 24.2 44.6 55.2

Table 10. Performance comparison between two-stage instance
segmentation methods on Cityscapes val set using R50-FPN.

Method APB APB
50 AP AP50

Mask R-CNN (Baseline) [21] 11.4 37.4 33.8 61.5
PointRend [28] 16.7 47.2 35.9 61.8
BMask R-CNN [12] 15.7 46.2 36.2 62.6
Panoptic-DeepLab [9] 16.5 47.7 35.3 57.9
RefineMask [47] 17.4 49.2 37.6 63.3

Mask Transfiner (Ours) 18.0 49.8 37.9 64.1

Table 11. Performance comparison between instance segmenta-
tion methods on BDD100K val set.

Method Backbone APmask APbox

Mask R-CNN (Baseline) [21] R101-FPN 20.5 26.1
Cascade Mask R-CNN [3] R101-FPN 19.8 24.7
Mask R-CNN + DCNv2 [49] R101-FPN 20.9 26.0
HRNet [38] HRNet-w32 22.5 28.2

Mask Transfiner (Ours) R101-FPN 23.6 26.2

backbones and object detectors, demonstrating its effective-
ness by outperforming RefineMask [47] and BCNet [26] by
1.3 AP and 0.9 AP using R101-FPN and Faster R-CNN, and
exceeding QueryInst [17] by 1.7 AP using query-based de-
tector [4]. Note QueryInst consists of six-stage refinement
in parallel with far more parameters to optimize. Besides,
we find that Transfiner using Faster R-CNN and R50-FPN
with much lower object detection performance still achieves
comparable segmentation results with query-based meth-

ods [15,23] on mask AP, and over 2 points gain in boundary
APB , further validating the higher AP achieved by Trans-
finer is indeed contributed by the fine-grained masks.
Cityscapes The results of Cityscapes benchmark is tabu-
lated in Table 10, where Mask Transfiner achieves the best
mask AP 37.6 and boundary APB 18.0. Our approach
significantly surpasses existing SOTA methods, including
PointRend [28] and BMask R-CNN [12] by a margin of 1.3
APB and 2.3 APB using the same Faster R-CNN detector.
Compared to our baseline Mask R-CNN [21], Transfiner
greatly improves the boundary AP from 11.4 to 18.0, which
shows the effectiveness of the quadtree refinement.
BDD100K Table 11 shows results on BDD100K dataset,
where Mask Transfiner obtains the highest APmask of 23.5
and outperforms the baseline [22] by 3 points under the
comparable APBox. The significant advancements reveals
the high accuracy of the predicted masks by Transfiner.
Qualitative Results Figure 7 shows qualitative compar-
isons on Cityscapes, where our Mask Transfiner produces
masks with substantially higher precision and quality than
previous methods [12, 21, 28], especially for the hard re-
gions, such as the small rear mirrors and high-heeled shoes.
Refer to supplementary file for more visual comparisons.

5. Conclusion

We present Mask Transfiner, a new high-quality and effi-
cient instance segmentation method. Transfiner first detects
and decomposes the image regions to build a hierarchical
quadtree. Then, all points on the quadtree are transformed
into to a query sequence for our transformer to predict fi-
nal labels. In contrast to previous segmentation methods
using convolutions limited by uniform image grids, Mask
Transfiner produces high-quality masks with low computa-
tion and memory cost. We validate the efficacy of Trans-
finer on both the two-stage and query-based segmentation
frameworks, and show that Transfiner achieves large perfor-
mance advantages on COCO, Cityscapes and BDD100K. A
current limitation is the fully supervised training required
by our Mask Transfiner as well as the competing methods.
Future work will strive towards relaxing this assumption.
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