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Abstract

Representing scenes with multiple semitransparent col-
ored layers has been a popular and successful choice for
real-time novel view synthesis. Existing approaches infer
colors and transparency values over regularly spaced lay-
ers of planar or spherical shape. In this work, we introduce
a new view synthesis approach based on multiple semitrans-
parent layers with scene-adapted geometry. Our approach
infers such representations from stereo pairs in two stages.
The first stage produces the geometry of a small number of
data-adaptive layers from a given pair of views. The second
stage infers the color and transparency values for these lay-
ers, producing the final representation for novel view syn-
thesis. Importantly, both stages are connected through a
differentiable renderer and are trained end-to-end. In the
experiments, we demonstrate the advantage of the proposed
approach over the use of regularly spaced layers without
adaptation to scene geometry. Despite being orders of mag-
nitude faster during rendering, our approach also outper-
forms the recently proposed IBRNet system based on im-
plicit geometry representation.

1. Introduction

Recent years have seen rapid progress in image-based
rendering and novel view synthesis, with a multitude of var-
ious methods based on neural rendering approaches [32].
Among this diversity, the approaches that are based on
semitransparent multi-layer representations [21, 29, 30, 34,
39] stand out due to their combination of fast rendering
time, compatibility with traditional graphics engines, and
good quality of re-rendering in the vicinity of the input
frames.

Existing approaches [4,17,21,29,30,34,39] build multi-
layer representations over grids of regularly spaced surfaces

*Most of the work was done while Victor Lempitsky was at Samsung
AI Center

such as planes or spheres with uniformly changing inverse
depth. As the number of layers is necessarily limited by
resource constraints and the risk of overfitting, this num-
ber is usually taken to be relatively small (e.g. 32). The re-
sulting semi-transparent representation may therefore only
coarsely approximate the true geometry of the scene, which
limits the generalization to novel views and introduces arte-
facts. The most recent works [4, 17] use excessive num-
ber of spheres (up to 128) and then merge the resulting ge-
ometry using a non-learned post-processing merging step.
While the merge step creates scene-adapted and compact
geometric representation, it is not incorporated into the
learning process of the main matching network, and de-
grades the quality of novel view synthesis [4].

The coarseness of layered geometry used by multi-
layer approaches is in contrast to more traditional image-
based rendering methods that start by estimating the non-
discretized scene geometry in the form of mesh [25, 33],
view-dependent meshes [11], a single-layer depth map [23,
27, 37]. Geometry estimates may come from multiview
dense stereo matching or from monocular depth. All these
approaches obtain a finer approximation to scene geometry,
although most of them have to use a relatively slow neural
rendering step to compensate for the errors in the geometry
estimation.

Our approach called StereoLayers (Fig. 1) combines
scene geometry adaptation with multi-layer representation.
This model is designed for a case known as stereo magni-
fication problem: it reconstructs the scene from as few as
two input images. The proposed method starts by building
a geometric proxy that is customized to a particular scene.
The proxy is formed by a small number of mesh layers with
continuous depth coordinate values. In the second stage,
similarly to other multi-layer approaches, we estimate the
transparency and color textures for each layer, resulting in
the final representation of the scene. When processing a
new scene, both stages take the same pair of images of
that scene as input. Two deep neural networks trained on
a dataset of similar scenes are used to implement these two
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Figure 1. The proposed StereoLayers pipeline estimates scene-adjusted multi-layer geometry from the plane sweep volume using a pre-
trained geometry network, and after that estimates the color and transparency values using a pretrained coloring network. The layered
geometry represents the scene as an ordered set of mesh layers. The geometry and the coloring networks are trained together end-to-end.

stages. Crucially, we train both neural networks together
in an end-to-end fashion using the differentiable rendering
framework [16].

We compare our approach to the previously proposed
methods that use regularly spaced layers on the popular
RealEstate10k [39] and LLFF [21] datasets. In addition,
we propose a more challenging new dataset for novel view
synthesis benchmarking. In both cases, we observe that
scene-adaptive geometry in our approach results in better
novel view synthesis quality than the use of non-adaptive
geometry. To put our work in a broader context, we also
compare our system’s performance with the IBRNet sys-
tem [36], and observe the advantage of our approach, in ad-
dition to the considerably faster rendering time. In general,
our approach produces very compact scene representations
that are amenable for real-time rendering even on low-end
devices.

To sum up, our contributions are as follows. First, we
propose a new method for the geometric reconstruction of
a scene from pairs of stereo. The method represents scenes
using a small number of semitransparent layers with scene-
adapted geometry. Unlike other related methods, ours uses
two jointly (end-to-end) trained deep networks, the first of
which estimates the geometry of the layers, while the sec-
ond estimates the transparency and color textures of the lay-
ers. Finally, we evaluate our approach on previously pro-
posed datasets and introduce a new challenging dataset for
training and evaluation of novel view synthesis methods.

2. Related works

Representations for novel view synthesis. Over the years,
different kinds of representations have been proposed for
novel view synthesis. Almost without exception, when
such representations are acquired from multiple images,
those are registered using structure-and-motion algorithm
or come from a pre-calibrated stereo-rig. Alternatively,
some recent works investigate the creation of such represen-
tations from a single image [35,37]. The proposed represen-
tations fall into several classes, including volumetric repre-
sentations that rely on volumetric rendering [10,19,22,28],

mesh-based representations [7, 11, 12, 25, 33, 40] and point-
based representations [1, 15]. Most representations of these
types require extensive computations to render a novel view,
such as running a raw image through a deep convolutional
rendering network [32] or numerous evaluations of a scene
network that has a perceptron architecture [18, 22].

An important class of representations is based on depth
maps. Such depth maps can be naturally obtained us-
ing stereo matching [5] or from monocular depth estima-
tion [27, 37]. In this class, the 3D layered inpainting ap-
proach [27] is most related to our work, since after starting
from a monocular depth map, it performs its segmentation
into multiple layers and then applies the inpainting proce-
dure to each layer to extend its support behind the more
frontal layers. Our work has several important differences,
as it uses two (rather than one) images as input and predicts
the transparency of the layers. Most importantly, the es-
timation of the multi-layered geometry and the estimation
of their colors and transparency are both implemented us-
ing deep architectures, which are trained in an end-to-end
fashion.
Multi-layer semitransparent representations. In 1999,
[30] proposed representing scenes with multiple fronto-
parallel semitransparent layers and acquiring such represen-
tations through stereo-matching of a pair of input views.
Twenty years later, several approaches [8, 21, 29] starting
from [39] exploited advances in deep learning to build deep
networks that directly map plane sweep volumes (i.e. ten-
sors obtained by the “unprojection” operation) to final rep-
resentations of the same kind. The rendering of semitrans-
parent layers is well supported by modern graphics engines,
thus the resulting representation is in general more suitable
to interactive applications than most other representations
that lead to the similar level of realism.

The multi-layer representations have been extended to
wider fields of view in [3, 4, 17] by replacing planes with
spheres. Two approaches [4, 17] suggested to “coalesce”
(merge) the groups of nearby layers into layers with scene-
adapted geometry. In both cases, the grouping of layers is
predefined and the merge process is non-learnable and uses
simple accumulation heuristics. Consequently, [4] reported
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Figure 2. View extrapolations obtained by our method. The two input images are shown in the middle. The proposed method (StereoLayers)
generate plausible renderings even when the baseline is magnified by a factor of 5x (as in this case).

the loss of rendering quality as a result of such merge, which
is still justified in their case by increased rendering and stor-
age efficiency.

Our research is highly related to previous works on
multi-layer semitransparent representations. Unlike most
works in this group, our pipeline starts with scene-adapted
(non-planar, non-spherical) layer estimation and only then
estimates the colors and transparencies of the layers. While
[4,17] also end up with scene-adapted semi-transparent lay-
ers as a representation, our approach performs the recon-
struction in the opposite order (the geometry is estimated
first). More importantly, unlike [4, 17] we estimate the ge-
ometry of layers using a neural network, which is trained
jointly with the color and transparency estimation network.
In the experiments, we show that such an approach results
in better view synthesis.

Single-layer new view synthesis with differentiable ren-
dering. SynSin [37] and, more recently, Worldsheet [13]
systems predict single-layered geometry from a single im-
age and use differentiable rendering to learn the neural net-
work in a way similar to our method. Our approach consid-
ers the case of two input images and focuses on multi-layer
geometry. While a variant of Worldsheet considers two-
layer extension, it is based on a different architecture and a
different layer aggregation strategy and, most importantly,
does not outperform a single-layer representation in their
experiments.

3. Multi-layer representation from stereo

We consider the task of stereo magnification i.e. gener-
ate a novel view În of the scene, based on two input views
(images): a reference view Ir and a side view Is. We as-
sume that the relative camera poses πs and πn of the side
and novel views to the reference view and the camera in-
trinsics Kr, Ks, and Kn are given. To solve this task, our
approach builds the scene representation that depends only
on side and reference views. Afterward, such a represen-
tation can be rendered on any novel camera with standard

graphic engines (without reestimating the scene represen-
tation). We now describe our approach in detail. We first
explain the rendering procedure of a trained model and then
discuss the training process.

3.1. Geometry estimation

Given a trained model and a new stereo pair, the multi-
layer representation is inferred in two stages. First, the
structure of the scene, such as the geometry of the mesh
layers, is predicted. Then, in the second stage, the layers’
opacity (alpha) and RGB color (textures) are inferred. Note
that we treat the pair of input views asymmetrically, as we
build the scene representation in the frustum of the refer-
ence camera.

We start by computing the plane sweep volume
(PSV) [6] by placing P fronto-parallel planes in the ref-
erence camera frustum and unprojecting the side view onto
these planes. The planes are spaced uniformly in the in-
verse depth space at depths {d1, . . . , dP }. We sample the
planes at H ×W resolution and concatenate the reference
view as an additional set of three channels, resulting in
H × W × (3P + 3)-sized tensor, which is similar to the
one used in other multi-layer approaches, e.g. [39].

The input tensor is then processed by the geometry net-
work Fg . Although we consider several variants of the ar-
chitectures discussed in the following, all these architec-
tures predict L depth maps of size h × w, which corre-
spond to the depths along with the h × w pencil of rays
uniformly spaced in the image coordinate space of the ref-
erence view. In our experiments, we set the resolution of
the layers equal to the size of the reference view, w = W ,
although sampling at different resolutions is also possible.
The backbone of Fg is similar to the depth prediction mod-
ule of SynSin [37], i.e. is a UNet-like 2D-convolutional net
with spectral normalization. The only difference is that we
increased the number of input and output featuremaps to
address the multi-layer nature of our model. More detailed
description of the backbone is provided in Supplementary
(Sec. S1). We consider the following three schemes to en-
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Figure 3. For the two stereo pairs (only reference views are shown), we visualize horizontal slices along the blue line. Mesh vertices are
shown as dots with the predicted opacity. Colors encode the layer number. The horizontal axis corresponds to the pixel coordinate, while the
vertical axis stands for the vertex depth w.r.t. the reference camera (only the most illustrative depth range is shown). StereoLayers method
variants generate scene-adaptive geometry in a more efficient way than StereoMag [39] resulting in more frugal geometry representation,
while also obtaining better rendering quality.

code the layers.

Group compositing (GC) scheme. In this scheme, Fg re-
turns the tensor of shape h×w×P with values in the range
between 0 and 1. The P channels and the corresponding
P planes of PSV are divided into L groups of equal size.
Then L deformable layers are obtained as follows: within
each group j, 1 ≤ j ≤ L, the depth value d̂j is computed
by over-composing [24] the planes’ depths d1 < . . . < dP
with ‘opacities’ {βk}Pk=1 predicted by Fg network.

d̂j =
I+
j∑

k=I−
j

dkβk
k−1∏
i=I−

j

(1− βi) , j = 1, . . . , L, (1)

where I−j and I+j are the indices of the bounding planes for
each group: I−j = 1 + (j − 1)P/L, and I+j = jP/L. For
simplicity of notation, layers and planes in Eq. (1) are enu-
merated in front-to-back order. The ‘opacities’ βI+

j
(corre-

sponding to farmost planes of each group) are manually set
to 1 for 1 ≤ j ≤ L. As a result, the depth of the j-th layer
is bounded by design: dI−

j
≤ d̂j ≤ dI+

j
. The compositing

Eq. (1) is evaluated independently for each of h × w × L
positions.

The group compositing scheme is inspired by the merge
procedure from [4], but moves this procedure inside the
learnable scene representation and before texture and trans-
parency estimation. The main benefit of the GC procedure
is the guarantee that the L layers do not intersect and have
explicit ordering.

Soft-aggregation (SA) scheme. The main drawback of the
GC depth aggregation is non-adaptive partition of the depth
interval into L layers. Such a non-adaptive partition tends

to waste representation capacity for parts that do not contain
scene surfaces and to underfit parts where multiple layers
are beneficial for scene representation. To overcome this,
we make Fg to predict the tensor of size h×w×L ·P , that
is further reshaped to h × w × L × P . After that, softmax
is applied along the last axis, and the values obtained are
used as weights for the planes’ depths {dk}Pk=1 (where the
P depths span the whole depth range). These depths are av-
eraged with the predicted weights, and the resulting tensor
with the shape h × w × L is obtained, which contains the
depths of the layers. It is worth noting that, unlike the GC
approach, this scheme neither provides any ordering of lay-
ers, nor guarantees the absence of intersections. Therefore,
a special loss promoting non-intersection should be applied
during training.

Bounds interpolation (BI) scheme. We also consider a
simplified version of SA scheme that predicts only weights
to blend the minimum depth value d1 and the maximum
depth value dP (effectively predicting depths by direct re-
gression). In this scheme, Fg network returns the tensor
of shape h × w × L with values in the range between 0
and 1. The depth d̂j of j-th layer is computed as d̂j =
βjd1+(1− βj) dP , where βj is the output of the geometry
network. In our experiments, this scheme achieves the best
results; thus, we select the BI method as our default one.

Meshing. Irrespective of the layer depth prediction scheme,
we treat each predicted layer as a mesh. We use the simplest
mesh connectivity pattern, connecting each vertex with the
six nearby nodes with edges so that each quad defined by
four adjacent vertices is meshed with two triangles. Here-
inafter, the whole set of resulting L meshes is referred to
as the layered mesh. The examples of estimated geometry
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are showcased in Fig. 3. Now we explain the explored ap-
proaches to depth prediction.

3.2. Mesh texturing

The second stage of the inference process completes the
reconstruction of the scene by inferring the color and opac-
ity textures of the layered mesh. The process is similar
to [39] and follow-up works with some important modi-
fications. Most importantly, we consider non-planar/non-
spherical layers predicted by the previous stage. We thus
‘unproject’ the side view onto each of the L layers, and
then sample each of those reprojections at the H ×W res-
olution. We employ the nvdiffrast differentiable ren-
derer [16] to make the rasterization process differentiable
w.r.t. the layered mesh geometry. The reference view sam-
pled at the same resolution is concatenated, resulting in a
H ×W × (3L+ 3)-sized tensor.

This tensor is then processed by coloring network Fc

which aims to infer the color and opacity values for the
mesh layers. Ultimately, our goal is predict the RGB and
alpha values for each pixel in each layer. Previously, the
authors of [39] observed that predicting the RGB color in-
directly produces better results. That is, they predicted a
single “background” RGB image of size H ×W × 3 and a
layer-specific tensor of size H ×W × L × 2 that provides
blending weights for the linear combination of the reference
view with the background. We confirm their findings. We
have further observed that in our case even better results can
be obtained by predicting an additional mixture weight ten-
sor of size H ×W × L that contains blending weights for
the side view unprojected to each layer.

Summarizing, within our texture prediction scheme, the
network Fc thus produces a tensor of sizeH×W×(3L+ 3)
with the last three channels corresponding to the back-
ground image, and the remaining channels contain the mix-
ture weights for the Reference view, the unprojected Side
view, and the Background image. We refer to this scheme
as RSBg, and it is default in our experiments. In the abla-
tion study, we further compare it with the scheme employed
in [39], where only reference and background images are
blended into the texture (denoted RBg), and with the scheme
that predicts RGB colors directly (denoted RAW).

In all cases, in addition to the RGB values, the network
Fc also predicts a tensor of shapeH×W×L containing the
opacity (alpha) values for each layer. Note that the textur-
ing scheme is able to eliminate redundant layers by setting
their opacity values to zero. Fig. 3 provides such examples,
where some layers were made transparent by the texturing
network.

The architecture of Fc is borrowed from [39] (except for
different shapes of the output tensors). Thus, it is a 2D-
convolutional UNet-like net with dilated convolutions in the
bottleneck. For completeness, we detail this architecture in

the Supplementary material (Sec. S1).
Rendering. To render a novel view, we project the mesh
layers according to the desired pose of the camera while
composing them using the compose-over operator [24].
Fig. 2 demonstrates novel views synthesized with the pro-
posed pipeline.

3.3. Learning

We learn the parameters of the geometry network Fg and
the coloring network Fc from datasets of short videos of
static scenes, for which camera pose sequences have been
estimated using structure-from-motion [26]. Overall, the
training is performed by minimizing the weighted combi-
nation of losses discussed below.
Image-based losses. Similarly to previous work, e.g. [39],
the main training loss comes from image supervision. For
example, at each training step, we sample the image triplet
(Is, Ir, In) containing the side view Is, the reference view
Ir and the novel (hold-out) view In from a training video.
Given the current network parameters, we estimate the
scene geometry and textures from (Is, Ir) and then project
the resulting representation to the In resulting in the pre-
dicted image În. We then compute the perceptual [14] and
the L1 losses between In and În and backpropagate them
through the networks Fg and Fc.
Regularization losses. As was explained above, BI and
SA schemes of depth prediction cannot guarantee the or-
dering of layers. Therefore, we apply a simple hinge loss
with zero margin to layers with neighbor indices to en-
sure that they are predicted in front-to-back order: Lord =∑L−1

j=0 max
(
0, d̂j − d̂j+1

)
. Additionally, we regularize

the geometry of the layers by imposing the total variation
(TV) loss on the depths of each layer (the total variation is
computed for each of the L maps encoding the depths).
Adversarial loss. While image-based and geometric losses
suffice to obtain the plausible quality of novel view gener-
ation for RSBg and RBg coloring schemes (see Sec. 4 for
metrics), we did not manage to obtain satisfactory results
with RAW scheme without adversarial learning. Specif-
ically, we impose adversarial loss [9] only for the RAW
scheme on the predicted images În. The main goal of ad-
versarial loss is to reduce unnatural artefacts such as ghost-
ing and duplications. To regularize the discriminator, R1

penalty [20] is applied. We stress that adversarial loss is
only needed for RAW prediction and is not used in our de-
fault configuration.

4. Experiments
4.1. Datasets

We consider the RealEstate10k dataset and the Local
Lightfield Fusion (LLFF) dataset introduced in previous
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SWORD RealEstate10K LLFF

PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓
StereoMag-32 24.45 0.76 0.107 0.17 31.40 0.93 0.031 0.10 20.67 0.65 0.132 0.24
StereoMag-8 23.00 0.69 0.126 0.21 27.76 0.90 0.044 0.17 19.13 0.55 0.152 0.29
StereoMag-P8 22.31 0.66 0.209 0.22 22.00 0.69 0.160 0.24 20.11 0.63 0.156 0.27
StereoMag-P4 23.69 0.74 0.137 0.20 28.06 0.89 0.066 0.15 20.29 0.64 0.150 0.26
IBRNet 23.82 0.71 0.188 0.17 30.26 0.90 0.058 0.10 21.19 0.67 0.207 0.22
StereoLayers-8 25.54 0.79 0.113 0.14 31.52 0.92 0.027 0.10 21.58 0.69 0.149 0.21
StereoLayers-4 25.95 0.81 0.096 0.14 32.61 0.94 0.026 0.08 22.19 0.73 0.125 0.20
StereoLayers-2 25.28 0.78 0.102 0.14 31.29 0.92 0.025 0.09 20.78 0.66 0.141 0.22

Table 1. Results of the evaluation on SWORD, RealEstate10K [39], and LLFF datasets [21]. For the latter dataset, models were trained on
SWORD. All metrics are computed on central crops of synthesized novel views. Our approach outperforms all baselines on these datasets,
although it contains fewer layers in the scene proxy. In particular, the StereoLayers method surpasses IBRNet despite the fact that the
latter was trained on 80% of LLFF scenes in a multiview setting. The digit after the type of the model denotes the number of layers in the
estimated geometry. Suffix P stands for the model after the applied postprocessing.

Depth
estimation

Texturing
scheme

PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓

BI RSBg 25.95 0.81 0.096 0.14
BI RBg 24.96 0.77 0.111 0.15
BI RAW 24.90 0.77 0.099 0.15
SA RSBg 24.66 0.76 0.121 0.16
SA RAW 24.30 0.75 0.099 0.15
GC RSBg 25.24 0.77 0.115 0.15
GC RAW 24.90 0.77 0.107 0.15

Table 2. Evaluation of StereoLayers configs. Top row represents a
model chosen as a default one. Details of the predicting schemes
are discussed in Sec. 3. All the configurations were trained with
P = 32 planes and L = 4 layers.

Dataset Baseline Our score, % p-value

SWORD StereoMag-32 61 < 0.001
IBRNet 81 < 0.001

LLFF StereoMag-32 54 < 0.001
IBRNet 70 < 0.001

Table 3. User study results. The 3rd column contains the ratio
of users who selected the output of our model (StereoLayers-4) as
more realistic in side-by-side comparison.

works, while also proposing a new dataset. The details of
the three datasets are provided below.

RealEstate10k dataset. Following prior works [27,
37, 39], we evaluate our approach on the subset of
RealEstate10k [39] dataset containing consecutive frames
from real estate videos with camera parameters. The subset
used in our experiments consists of 10, 000 scenes for train-
ing and 7, 700 scenes for test purposes. The RealEstate10k
dataset serves as the most popular benchmark for novel
view synthesis pipelines. Despite the relatively large size,
the diversity of scenes in the dataset is limited. The dataset
is predominantly indoor and also does not contain enough
scenes with central objects. Consequently, models trained
on RealEstate10k generalize poorly to outdoor scenes or
scenes with large close-by objects [27, 39].

Transfer Model PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓

(R)→ (S) StereoMag-32 24.45 0.76 0.107 0.17
StereoLayers-4 25.47 0.79 0.098 0.14

(S)→ (R) StereoMag-32 31.40 0.93 0.031 0.10
StereoLayers-4 31.91 0.93 0.029 0.09

(R)→ (L) StereoMag-32 20.31 0.62 0.129 0.23
StereoLayers-4 21.52 0.69 0.133 0.21

(S)→ (L) StereoMag-32 20.67 0.65 0.132 0.24
StereoLayers-4 22.19 0.73 0.125 0.20

Table 4. Cross-dataset generalization. We evaluate models on
RealEstate10k (R), SWORD (S) and LLFF (L) datasets. Notaion
(X) → (Y) stands for a model, trained on dataset X and being eval-
uated on Y. Generally, our approach is on par or more robust to the
dataset shift, while having a more compact representation. Evalu-
ation on hold-out LLFF dataset also shows the benefit of training
on the proposed SWORD dataset (compared to RealEstate10k).

SWORD dataset. To evaluate both our and prior meth-
ods on more diverse data, we have collected a new dataset,
which we call ‘Scenes With Occluded Regions’ Dataset
(SWORD). The new dataset contains around 1, 500 train
video and 290 test videos, with 50 frames per video on aver-
age. The dataset was obtained after processing the manually
captured video sequences of static real-life urban scenes.
The processing pipeline was the same as described in [39].

The main property of the dataset is the abundance of
close objects and, consequently, the larger prevalence of
occlusions. To prove this quantitatively, we calculate the
occlusion areas, that is, areas of those regions of the novel
frames that are occluded in the reference frames. To ob-
tain masks for such regions, the off-the-shelf optical flow
estimator [31] is employed. The complete procedure for
getting the occlusion masks and the examples of those
masks are provided in Supplementary (Sec. S5). Accord-
ing to this heuristic, the mean area of occluded image parts
for SWORD is approximately five times larger than for
RealEstate10k data (14% vs 3% respectively). This ratio-
nalizes the collection and usage of SWORD and explains
that SWORD allows training more powerful models despite

8692



being of smaller size.
LLFF dataset. LLFF dataset is another popular dataset
with central objects that was released by the authors of the
paper on Local Light Field Fusion [21]. It is too small to
train a network on it (40 scenes), and we use these data for
evaluation goals only to test the models trained on the other
two datasets.

4.2. Evaluation details

Compared approaches. We use the system described
in [39] as our main baseline and refer to it as StereoMag. By
default, StereoMag uses 32 regularly spaced fronto-parallel
planes (with uniformly spaced inverse depth), for which
color and transparency textures are estimated by a deep net-
work operating on a plane sweep volume. The obtained rep-
resentation is known as “multi-plane images” (MPI). The
original system uses this plane-based geometry for final ren-
derings. We refer to this baseline as StereoMag-32 or omit
the number of planes for brevity if it is equal to the default.

Additionally, we have evaluated variants of the Stere-
oMag (denoted as StereoMag-P8 and -P4) that coalesce
the 32 planes into 8 or 4 non-planar meshes respectively.
The coalescence procedure is detailed in the Supplemen-
tary (Sec. S4) and is very similar to the one proposed in [4].
Finally, we trained a variant of StereoMag with eight planes
(StereoMag-8). We stress that while StereoMag system was
proposed some time ago, based on the comparison in the re-
cent work [27, Appendix A], it remains state-of-the-art for
two image inputs.

We also consdider the more recent IBRNet [36] system
trained to model the radiance field of the scene by blending
features of the source images. Unlike StereoMag, this ap-
proach has no restrictions on the number of input frames,
although it requires a very significant amount of computa-
tion to generate each view. Moreover, as the authors have
shown, IBRNet shows its best quality after fine-tuning to
the new scene under consideration. For evaluation, we used
the implementation and checkpoints of the network, pro-
vided by the authors, who used 80% of LLFF dataset for
training among other data. Despite this, we compared our
approach with this method on all data (including LLFF).
We also tried to retrain IBRNet on the SWORD dataset (in
the setting of two input images). This, however, led to con-
siderably worse performance, so we stick with the authors’
provided variant. We also note that test-time fine-tuning of
IBRNet is not possible with two view inputs.

We trained different variations of our model with L ∈
{2, 4, 8} layers obtained from P = 32 planes of PSV, un-
less another number is specified. All models were trained
for 500, 000 iterations with batch size 4 on a single NVIDIA
P40 GPU. The training time is not particularly different for
the listed variants of the model. For our approach, we set
the following weights for the losses described above: 1 for

L1 loss, 10 for perceptual loss, 5 for TV regularization, and
2 for ordering loss. The RAW scheme for RGB predic-
tion requires a careful tuning of parameters, and we report
its results for the configuration with adversarial and feature
matching losses with weights set to 5, while the discrimina-
tor gradient was penalized every 16-th step with the weight
of R1 penalty equal to 0.0001. Most experiments were con-
ducted at the resolution of 256 on the smallest side.

Metrics. We follow the standard evaluation process for the
novel view task and measure how similar the synthesized
view is to the ground-true image. Therefore, we compute
the peak signal-to-noise ratio (PSNR), structural (SSIM),
and perceptual (LPIPS [38]) similarity, as well as the re-
cently introduced FLIP metric [2] between the obtained ren-
dering and the ground truth. Artifacts in areas near the im-
age boundary are similar both for planes and layers, and
we exclude those regions from consideration by computing
metrics over the central crops.

Finally, to measure the plausibility of rendered images,
we perform the study of human preference on a crowd-
sourcing platform. The evaluation protocol was as follows:
The assessors were shown two short videos with the vir-
tual camera moving along the predefined trajectory in the
same scene from SWORD (validation subset) or LLFF: one
video was obtained using the baseline model, and another
one was produced with our approach. We asked the users
which of the two videos looked more realistic to them. In
total, we generated 280 pairs of videos (120 from LLFF and
160 from SWORD scenes), and twenty different workers
assessed each pair.

4.3. Main results

Ablation results. In Tab. 2 we present the relative per-
formance of several schemes of depth estimation (denoted
GC, SA and BI) and mesh texturing (RSBg, RBg, RAW).
For this ablation, all systems were trained and evaluated on
the SWORD dataset. As the results show, the best metrics
are obtained with a combination of BI + RBSBg methods.
Therefore, we choose this model as our default one and re-
fer to it as just StereoLayers model. This pipeline is used in
further experiments, unless another configuration is explic-
itly specified.

Comparison with prior art. The main results are reported
in Tab. 1. Here, due to the relatively small size of the val-
idation part of the both of SWORD and LLFF datasets,
we sampled multiple triplets (the reference, side, and novel
cameras) for each scene to get a more accurate estimation
of the score. We selected the model with L = 4 layers
as our main variant because it performs better on the hold-
out LLFF data. It consistently outperforms the baseline
StereoMag-32 model according to the considered metrics,
while containing significantly less layers.
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Figure 4. Comparison on challenging scenes from the LLFF [21].
The leftmost column shows the ground truth, two other columns
demonstrate patches of a novel view obtained with StereoMag-32
and our system respectively. In the cutout StereoMag results, small
translations of a camera from the reference pose reveal discontinu-
ities in the approximate scene geometry leading to ghosting arte-
facts. In our case, thanks to the scene-adapted geometry, ghosting
is not so apparent.

Post hoc coalescing of StereoMag representations into
non-planar layers worsened the results (this finding is con-
sistent with one reported in [4]). Finally, the eight-planar
structure is consistently worse than the 32-plane one.

At the same time, the results of our model with four lay-
ers are even better than when using more (eight) layers.
Furthermore, a configuration with just two layers remains
competitive (better than eight-layer configuration in some
metrics and better than StereoMag-32 in most metrics).

Notably, there is a large gap between our configuration
with four layers and the StereoMag method with geome-
try merged into four layers (StereoMag-P4). This empha-
sizes the benefit of the end-to-end training used by our
method. As showcased in Fig. 3, the novel approach ap-
proximates the scene geometry in a reasonable way even
with just two layers and, vice versa, is able to ‘zero out’ the
redundant layers. We attribute the superiority of our method
over StereoMag-P to the proposed end-to-end training pro-
cedure.

We show the percentage of times users prefer each
method in Tab. 3. One of our qualitative improvements
is illustrated in Fig. 4: the deformable layers successfully
overcome the “ghost” edge artifacts, occasionally observed
in the case of rigid planes.

Also, we conducted a separate study of the model’s sen-

sitivity to the group size when estimating the scene geom-
etry (i.e. the ratio of the number of planes in PSV P to the
number of layers L). In summary, quality does not change
dramatically under variation in group size; see Supplemen-
tary (Sec. S2) for numerical details.

In the supplementary video, we show the results on a
wide range of photos from different datasets. The video
contains a comparison with StereoMag and IBRNet that
demonstrates that our approach produces less blurry details
while having a similar quality of estimated geometry. We
encourage the reader to watch the supplementary video.

Cross-dataset evaluation. As mentioned above, SWORD
contains mostly outdoor scenes with a central object, which
is similar in nature to the LLFF dataset. It is the main rea-
son why we observed a pretty good quality of the model
trained on SWORD and evaluated on LLFF (the rightmost
part of Tab. 1). We have also investigated a more challeng-
ing setting: the performance of methods in the cross-dataset
setting is reported in Tab. 4: we cross-evaluate our and base-
line models on RealEstate10k and SWORD datasets that are
rather different.

Timings. The representations produced by our method are
well suited for rendering within mobile photography appli-
cations. Thus, on Samsung Galaxy S20 (Mali-G77 GPU),
rendering our representations at 512×256 resolution runs at
about 180 frames per second. Furthermore, our representa-
tions can be quickly created from new stereo pairs (our cur-
rent unoptimized inference takes 0.19 seconds on an NVidia
P40 GPU).

5. Summary and discussion

In this work, we proposed an end-to-end pipeline that
recovers the geometry of the scene from an input stereo
pair using a fixed number of semitransparent layers. De-
spite using fewer layers (4 layers vs. 32 planes for the base-
line StereoMag model), our approach demonstrated supe-
rior quality in terms of commonly used metrics for the novel
view synthesis problem, as well as human evaluation. Un-
like the StereoMag system, the quality of which heavily
depends on the number of planes, our method has reached
better scores while being robust to reducing the number of
layers. We have verified that the proposed method can be
trained on multiple datasets and generalizes well to unseen
data. The resulting mesh geometry can be effectively ren-
dered using standard graphics engines, making the approach
attractive for mobile 3D photography.

Additionally, we presented a new challenging SWORD
dataset, which contains cluttered scenes with heavily oc-
cluded regions. Even though SWORD consists of fewer
scenes than the popular RealEstate10K dataset, systems
trained on SWORD are likely to generalize better to other
datasets, e.g. the LLFF dataset.
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