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Abstract

It is a mystery which input features contribute to a neu-

ral network’s output. Various explanation (feature attribu-

tion) methods are proposed in the literature to shed light

on the problem. One peculiar observation is that these ex-

planations (attributions) point to different features as being

important. The phenomenon raises the question, which ex-

planation to trust? We propose a framework for evaluating

the explanations using the neural network model itself. The

framework leverages the network to generate input features

that impose a particular behavior on the output. Using the

generated features, we devise controlled experimental se-

tups to evaluate whether an explanation method conforms

to an axiom. Thus we propose an empirical framework for

axiomatic evaluation of explanation methods. We evaluate

well-known and promising explanation solutions using the

proposed framework. The framework provides a toolset to

reveal properties and drawbacks within existing and future

explanation solutions.
1

1. Introduction

Considering a neural network function, how do we
know which features (patterns) within the input are im-
portant for its output? The problem is called feature at-
tribution [16, 35], and the solutions are commonly known
as explanation, attribution, or saliency methods. There is
an extensive list of explanation methods in the literature
[8,9,13,15,16,19,26,27,29,32,33,35,39,41]. One peculiar
observation is that these solutions point to different features
as being important. Though they are solutions to the same
problem, feature attribution, the resulting explanations are
curiously dissimilar. The phenomenon raises the question,
which explanation is correct? Or are the explanations cor-
rect but revealing the problem in a different light?

*denotes equal contribution
1https : / / github . com / CAMP - eXplain - AI / Do -

Explanations-Explain

One approach is to compare the explanations against
ground truth (e.g., bounding box) annotations on the dataset
[27,38,41]. But how do we know what is important for a hu-
man is also important for the model? There is no guarantee
(or reason) that the model would use the same features as
humans. To resolve this issue, we need to take a step back
and ask what it means for a feature to be “important” for
an output. The intuitive approach is to remove the feature
and observe the output behavior [8, 11, 25]. Such removal
of evidence is indeed the foundation of many explanation
approaches [8, 9, 16, 26, 35]. However, such a conception
could lead to ambiguities. Consider the scenario of hav-
ing equivalent features (e.g., repeated features), where the
existence of each feature alone suffices for a specific out-
put value. Add to the scenario that the removal of any of
these features does not affect the output value. In this case,
the conception based on removal assigns zero importance
to each feature. However, a desirable property, in this case,
could be assigning equal importance to each feature.

The concept of importance can thus be further chiseled
by specifying desirable properties that an importance as-
signment method ought to satisfy. Such desirable proper-

ties are formalized via axioms [16, 34, 35]. The axiomatic
view provides a complementary framework for evaluating
feature attribution solutions. Explanation methods can be
evaluated whether they conform to an axiom. The axiomatic
view has the advantage that the methods can be mathemat-
ically proven to comply with a particular axiom. For in-
stance, solutions such as the Shapley value [16, 28] and in-
tegrated gradients [34, 35] are proven to conform with par-
ticular axioms. However, proofs can be broken in practi-
cal implementations. For instance, [34] show that inherent
assumptions within methods that approximate the Shapley
value result in methods not conforming with the axioms.
Moreover, certain conditions might be overlooked in proofs.
Thus experiments are required to test whether final solu-

tions comply with the axioms. Even if methods are accom-
panied by elegant and solid mathematical derivations and
proofs, they must comply with the axioms in observations

10244



in designed experiments. If they do not comply with ax-
ioms in experiments, we may revisit our assumptions and
methodologies. Such is the way of the scientific method.

This work lays out an experimental framework for eval-
uating attribution solutions axiomatically. We set up each
experiment such that the solution can be tested whether it
complies with a specific axiom. We generate input fea-
tures that impose a particular behavior on the network’s
input/output relationship. Features are generated via opti-
mization on the input space while the network parameters
are kept constant. Using optimization, we can impose the
desired relationship between the generated input and the
output. We can thus engineer setups to evaluate axioms. For
instance, one axiom that attribution methods are required to
conform to is the Null-player axiom. The null-player axiom
requires the following; If removal of a feature in all pos-
sible coalitions with other features does not affect the out-
put, it should be assigned zero importance. With our pro-
posed framework, we can generate a null player feature for
the neural network function. Subsequently, we can test dif-
ferent feature attributions solutions and check whether they
assign importance to the null player feature. Thus we can
test whether a solution conforms to the Null-player axiom.
We also devise experiments to evaluate the explanations in
terms of other desirable properties; The class-sensitivity and
the feature-saturation. With our framework, we evaluate
well-known and recently introduced promising solutions.
With our experiments, we intend to reveal properties and
drawbacks within existing explanations.

2. Background and Related Work

2.1. Background

We first introduce the feature attribution literature as our
framework is designed to evaluate these methods. Then we
introduce feature visualization/generation methods since
they can be used within our framework.

2.1.1 Explaining Predictions via Feature Attribution

The feature attribution problem is concerned with identify-
ing the input features that contribute to the output value.
The solutions can be roughly categorized as follows (some
solutions belong to multiple categories).

Backpropagation [4, 30] linearly approximate the net-
work and propose the gradient as attribution. Deconvolu-
tion [37], GuidedBackProp [32] backpropagate a modified
gradient. Integrated Gradients [35] distributes the change in
output with respect to a baseline input by integrating gradi-
ents between the two input states. LRP [19], DeepLIFT [29]
bacpropagate contribution layer-wise. The contribution no-
tion in LRP and DeepLIFT is also grounded on removal.

Perturbation/Removal Methods in this category are ex-
plicitly grounded on the removal of features. They
mask/perturb input features and observe the output change
[8, 9, 18, 23]. E.g., Extremal Perturbations [8] searches for
the smallest region in the input such that the keep the re-
gion preserves the target prediction. [37] propose occluding
pixels or a patch of pixels and measure the output change.
IBA [26] inserts an information bottleneck by removing
hidden features (via replacing them with noise) and keeps
the smallest region that preserves the predictive informa-
tion. InputIBA [39, 40] enables inserting the information
bottleneck on the input.

Latent Features CAM/GradCAM [27, 41] leverage acti-
vation values (aka network’s attention) of convolutional lay-
ers. GradCAM++ uses different summation rules on layers
and is applicable to all layers. IBA [26] also utilizes latent
features. FullGrad leverages the activation, gradient and,
bias values from all layers. PathwayGrad [13] leverages
critical pathways (pathway important neurons).

Game Theory The attribution problem can be considered
as credit assignment in cooperative game theory. This is
achieved by presuming the network’s function is a score
function, and input features are players. A solution to this
problem that satisfies several axioms is the Shapley Value.
This notion is also grounded upon the removal of players
and the effect of removal on score function. Shapley Value
considers the removal of a player in all possible coalitions.
Due to computational complexity, several approximations
are proposed for neural networks. DeepSHAP [16] back-
propagates SHAP values via DeepLift [29] framework. It is
recently shown [34] that Integrated Gradients [35] approxi-
mates Shapley value in continuous setting.

2.1.2 Generating Features that Activate a Neuron

These works identify what input patterns/features activate a
neuron and are commonly referred to as feature visualiza-
tion. In essence, the methods generate images that maxi-
mize certain neuron activations [7, 17, 20, 22, 30, 36]. This
can be achieved by performing the optimization on the im-
age while freezing networks parameters. We can use any of
these solutions within our framework. We opt for deep im-
age prior [36] (refer to Sec. 3.5). Another method that we
utilize within our framework is the adversarial patch [5].

2.2. Related Work

This section introduces the works that evaluate explana-
tions. Our framework belongs to both ”ground truth” and
”axiomatic” categories. We discuss the differences to exist-
ing works in each section separately (more in appendix).
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Do Explanations Explain? An early work [21] demon-
strates that Deconvolution [37] and Guided Backpropaga-
tion [32] are reconstructing image features rather than ex-
plaining the prediction. Thus an explanation can be visually
interpretable but not really be an explanation. The works
in this section investigate whether an explanation method
is indeed explaining the prediction and whether it can be
trusted. Each work evaluates an explanation from a differ-
ent vantage point. We categorize the works as follows:

Perturbation/Removal The objective of these works is
to evaluate whether features identified as salient by attri-
bution methods are indeed contributing to the output. The
intuition behind them is that if the identified features are im-
portant, perturbing (removing) them changes the output rel-
atively more. Sensitivity-N [2] and [25] use various pertur-
bation schemes on the input and observe the output change.
Remove-and-Retrain [11] perturbs the input, then retrains
the model and measures the accuracy drop.

Ground Truth These works compare the explanations
with a ground truth of features that are important. Pointing
game [38] and classic localization-based metrics [27] use
annotations on natural images done by humans. However,
here there is an underlying assumption that the model is us-
ing the same features as humans, which is a crude assump-
tion. To solve this issue, CLEVR XAI [3] proposes gener-
ating a synthetic dataset using CLEVR [12]. The model is
then trained on the generated dataset, and then explanations
are compared with the ground truth. The approach adds par-
tial control. However, there is no guarantee that the model
picks up the intended features in the generated dataset. In
our framework we can control what features contribute or
do not contribute to the model’s output.

Axiomatic Axiomatic approaches check whether the
model complies with particularly desirable properties.
Evaluation can be either theoretical, where the method
is proven to satisfy an axiom (or a desirable property),
[16, 31, 34, 35], or experimental. Sanity checks [1] ex-
perimentally check whether randomizing network param-
eters change the explanation. Another desirable property
is class sensitivity, i.e., the explanation should not be the
same for different outputs (classes) if their contributing fea-
tures differ. [14] provides a reasoning on why several meth-
ods are insensitive to parameter randomization and differ-
ent classes. [21, 24] propose experiments to evaluate class-
sensitivity on natural image datasets. However, on natural
images, there is no guarantee that the model uses different
features for different classes. Our framework provides a
controlled setup as features are generated.

3. Methodology

The objective is to have a controlled experimental en-
vironment in which we control what features contribute or
do not contribute to the output of the neural network func-
tion. In this environment, we can devise scenarios to test
the explanations against axioms. To this end, we leverage
the model itself and run an optimization on the input, thus
controlling how features contribute to the output.

Importance or contribution is understood only with re-
spect to a reference/baseline state (”removal” is setting fea-
ture values to a reference value). In our setup, we com-
pute the contribution of a feature with respect to a reference
of normal random noise. X denotes the reference input.
We refer to a group of pixels and their specific values as
a ”feature”. In this work, we select a patch of pixels to
form the feature. We denote the patch/feature by f and a
baseline input that has a feature f added to it by X{f} and
the neural network function for a target output t by �t(.).
To generate the feature f that corresponds to a target t we
generate a patch on the baseline input X that activates the
target t. Since the added feature changes the output value
(by design), according to sensitivity axiom [35] it is guar-
anteed that it contributes to the output. The optimization
is performed only on patch f (not on other areas of input
X). The optimization loss for generating feature f corre-
sponding to target t is denoted by Lt

f . Depending on the
scenario, Lt

f can be associated with either of the following.
We can either generate a patch that maximizes the target
value, minf ��t(X{f}) or generate a patch that achieves
a constant target value c, minf LCE(�t(X{f}), c) where
LCE denotes cross-entropy loss.

3.1. Null Feature

The objective in this section is to devise a setup for test-
ing the null feature axiom. A null feature is one that does
not contribute to the output score. If a feature is a null
feature, it is a desirable property for the explanation not
to assign any contribution to that feature. based on co-
operative game theory and attribution literature, null fea-
ture can be formally defined as follows. Having a group
of features (players), a feature is a null feature if its ab-
sence does not affect the output score function in all possi-
ble coalitions of features. I.e. if we have a set of n fea-
tures {f1, ..., fn}, a feature fi is null for output �t(.) if
�t(X{fi[S}) = �t(X{S}), where S denotes all subsets of
features excluding fi, i.e. S ⇢ {f1, ..., fn} \ {fi}. Note
that are 2N�1 possible coalitions.

In our experimental setup, we add two features to the
baseline input X (one can add more features and devise
more complex or creative experiments). We add feature fa
that corresponds to output �a(.) and add another feature
fnull that corresponds to an output �b(.) but is a null feature
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for output �a(.). In order for the fnull to be a null feature,
its absence in all possible coalitions with fa should have
no effect on output �a(.). The are two possible coalitions,
which are the subsets of fa, namely fa and . Therefore,
the output �a(.) must stay constant when fnull is removed
when fa exists in baseline input X . The output �a(.) must
also stay constant when fnull is added to the baseline X .
Therefore, the optimization problem is defined as the fol-
lowing two concurrent optimizations,

min
fa

La
fa (1)

min
fnull

Lb
fnull

+ (�a(X{fa,fnull})� �a(X{fa}))
2

+(�a(X{fnull})� �a(X{}))
2

(2)

where La
fa

generates feature fa corresponding to output
�a(.). In Eq. (2) Lb

fnull
generates a feature fnull corre-

sponding to output �b(.). The second and third term in
Eq. (2) try to make fnull be a null feature for �a(.) by re-
moving it in possible coalitions with fa. The result of the
optimization is X{fa,fnull}, which is a baseline noise image
X that contains patches/features fa and fnull. In this setup,
we aim to test whether an explanation method attributes the
output �a(X{fa,fnull}) to the null feature. The proposed
metric for evaluation is provided in Sec. 3.4

3.2. Class Sensitivity

Another property that is expected from an explanation
method is class sensitivity, i.e. output sensitivity. Consid-
ering two outputs �a(.) and �b(.) of a neural network, if
the contributing input features to the these outputs differ,
the explanations for the outputs should also be different. To
test such property we devise two scenarios:

3.2.1 Single Feature Scenario

In our first proposed setup, we only add one feature fa to
the reference input X . The feature is generated such that
it corresponds to the output �a(.) but is a null feature for
another output �a(.). Therefore,

min
fa

La
fa + (�b(X{fa})� �b(X{}))

2 (3)

where the first term La
fa

generates the patch fa on reference
input X , and the second term makes sure it is a null feature
for output �b(.). I.e. the removal of feature fa should not
affect the output �b(.).

In this setup, the explanations for the two outputs �a(.)
and �b(.) are compared. It is expected that the first explana-
tion (for �a(.)) attributes the output (partly) to fa. Whereas,
the second expalanation (for �b(.)) should not attribute the
prediction of �b(.) to the the feature fa. Our proposed met-
ric for evaluating this effect is provided in Sec. 3.4.

3.2.2 Double Feature Scenario

In this setup we add two features fa and fb to the reference
input X , each corresponding to the different outputs �a(.)
and �b(.) respectively. In this setup the dominantly con-
tributing feature to �a(.) is feature fa and the dominantly
contributing feature to �b(.) is fb. Therefore we perform
two concurrent optimizations. The first one,

min
fa

La
fa + (�b(X{fa,fb})� �b(X{fb}))

2 (4)

generates fa which contributes to output �a(.) but its re-
moval in the presence of feature fb does not affect output
�b(.). The second optimization,

min
fb

Lb
fb + (�a(X{fa,fb})� �a(X{fa}))

2 (5)

generates fb which contributes to output �b(.) but its re-
moval in the presence of feature fa does not affect output
�a(.). Thus the dominantly contributing feature for �a(.)
is fa and for �b(.) is fb.

In this scenario we expect the explanations to switch
from feature fa to fb when the output to be explained is
changed from �a(.) to �b(.). Our proposed metric for cap-
turing this metric is provided in section Sec. 3.4.

3.3. Feature Saturation

In this section, we devise a scenario where features satu-
rate the output. Such that the features fa1 and fa2 together
(i.e. X{fa1,fa2}) result in the same output value as when
the features are added to reference input X individually. To
achieve this, we solve two optimizations concurrently,

min
fa1

La
fa1

+ (�a(X{fa1,fa2})� �a(X{fa2}))
2 (6)

where the first term generates fa1 such that the output is
equal to a constant value c. The second term makes sure
that feature fa1 removal from input does not affect the out-
put when fa2 is present. The second optimization does this
procedure on the second feature fa2,

min
fa2

La
fa2

+ (�a(X{fa1,fa2})� �a(X{fa1}))
2 (7)

In this setup, the existence of one of the features is sufficient
for the prediction. As they contribute equally to the output,
an explanation solution is expected to attribute the output
equally to both features. Our proposed metric for evaluating
this property is provided in Sec. 3.4.

3.4. Metrics

In this section, we introduce our metrics for evaluating
the properties in each of the generated setups. We denote
an explanation generated for target output �t(.) by St.
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Null Feature Metric Defined as contributions assigned to
null feature relative to total assigned contributions:

P
fa

SaP
Sa

Sa
(8)

The sum operator
P

f St runs over all corresponding pixels
in St that are in patch f .

Class Sensitivity Metric In the Double Feature Scenario,
we measure the class sensitivity by:

P
fa[fb

min(Sa, Sb)P
fa

Sa +
P

fb
Sb

(9)

where the min(Sa, Sb) is the pixel-wise minimum of Sa

and Sb. In an extreme case, for the explanation method
being indifferent towards the target class, the min(Sa, Sb)
would be equal to Sa and Sb. Therefore, the metric eval-
uates to one. In the other extreme, where attributions shift
from fa to fb, the min(Sa, Sb) and the metric is zero.

For the Single Feature Scenario, the class sensitivity is:

corr(
Sa � Sa\fa

Sa\fa
,
Sb � Sb\fa

Sb\fa
) (10)

The term St�St\f
St\f

determines the average amount of contri-
bution score inside patch f , devided by the average outside
the patch. The higher correlation implies the method is at-
tributing to the same feature for both outputs �a and �b.

Feature Saturation Metric To evaluate how the attribu-
tion is distributed between the features, we evaluate the cor-
relation between attributions assigned to feature fa1 and fa1

corr(
X

fa1

Sa,
X

fa2

Sa) (11)

A method that assigns the attribution to only one feature
receives a lower score.

3.5. Implementation Details

Reference/Baseline Input: Importance is understood
with respect to a reference state. The reference is chosen
such that it represents the missingness of features. In the
vision domain, it is customary to use zero value [29, 35], or
noise [26]. In any case, our framework is not dependent on
the reference. We do not make any assumptions about what
features are in the reference. We ensure that a feature is null
with respect to the reference, and our metric only considers
the generated features and not the background (we use attri-
butions in background only for scaling).
Deep Prior Network: If we perform the optimization on

the patches without any regularization, it is easy to get
trapped in local solutions. In this case, we may not achieve a
satisfactory optimization solution for Eq. 1-7. In our work,
we leverage ”deep image prior” [36] to limit the space of
solutions and avoid trivial local solutions. Using deep im-
age prior methodology, we add a decoder network with ran-
dom weights and a random seed input behind the gener-
ated patch. In other words, the patch is parameterized by
the prior network. The optimizations are thus done on the
parameters of the prior network instead of the patch. In
[36] it is also demonstrated that the untrained network does
capture some of the low-level statistics of natural images.
Therefore the generated patches also look interpretable to
us. Visual interpretability is not required within this frame-
work, though it can make the experiments more intuitive.
The Model: The choice of the model does not affect the
framework as long as the optimizations are solvable. The
network is pre-trained on ImageNet [6]. However, the pro-
posed framework does not depend on the network being
trained. For a random network the generated features would
not ”look” interpretable.
Optimization During optimization steps, we place the
patch in different locations to ensure that the results do not
depend on the patch’s location. Moreover, in order to bal-
ance the terms in Eq. 1-7 we use focal loss [10] (appendix).

4. Results and Discussion

The objective of our proposed framework is to reveal
insights and shortcomings regarding explanation methods.
We evaluate various explanation methods from different
categories. DeepSHAP and IntegratedGradient are theo-
retically axiomatic methods. GradCAM and GradCAM++
are two popular methods that leverage network attention.
We also evaluate the recently introduced FullGrad from this
family. In addition, we evaluate two recent promising solu-
tions, IBA and Extremal Perturbations.

4.1. Null Feature

The null feature experiment checks whether an explana-
tion attributes the output to a null feature. I.e., it checks
whether the explanation method identifies the null feature
as important. The framework guarantees that the null fea-
ture is not contributing. Using the framework, we generate
1000 inputs. For each input sample, the feature is generated
for a random output. We then proceed and compute the null
feature metric on each generated inputs and report the aver-
age in Tab. 1. An example generated input is in Fig. 1.

FullGrad, DeepSHAP, Gradient, and GuidedBackProp
perform the worst in this experiment. This performance
may point to the fact that these methods identify all features
within the input as important. It is previously shown [21]
that GuidedBackProp reconstructs image features rather
than explaining the prediction, and our results are aligned
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Image GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
Integrated
Gradients DeepSHAP IBA

Extermal
Perturbation

Figure 1. Null Feature Experiment: The image on the left represents the generated features on the reference (noise) input. The features
are generated using the model itself. Within the image, the lower feature (patch) is generated such that it is a null feature for the output.
The rest of the images represent different explanations. As the second feature is a null feature, an explanation method should not assign
importance to it. We observe that GradCAM, IBA, and Extremal Perturbation perform best in avoiding the null feature.

Class Sensitivity

Method Null Double Feature Single Feature Feature
Feature Scenario Scenario Saturation

GradCAM 0.135 0.176 0.050 0.243
GradCAM++ 0.452 0.469 0.845 -0.571

Gradient 0.835 0.469 0.684 0.310
FullGrad 1.00 0.931 0.951 -0.130

GuidedBackProp 0.704 0.555 0.979 0.703
IntegretedGradient 0.534 0.344 0.759 0.212

DeepSHAP 1.03 0.507 0.934 0.221
IBA 0.211 0.191 0.295 -0.223

ExtermalPerturbation 0.047 0.039 0.759 -0.680

Table 1. Evaluation of Explanations with the Framework: 1) Null Feature: Null feature experiment evaluates the extent to which each
explanation attributes the output to a null feature. In this metric, the less the value, the better. Extremal Perturbation [], GradCAM, and
IBA are the favorable methods from this null feature perspective. 2) Class Sensitivity: For both experiments, the lower the value, the better
1) Double Feature Scenario: In the case where two features corresponding to two different classes are present, Extremal Perturbation,
IBA, and GradCAM attribute to the correct feature when applied to the two outputs. 2) Single Feature Scenario: In the case where only
feature is present, explanations for two different outputs are similar to all methods except GradCAM and, to some extent, IBA. 3) Feature

Saturation: the experiment evaluates how explanations distribute the importance between saturated features. In this metric, the higher the
value, the better. The notable observation is Extremal Perturbation, as it identifies only one of the features as important.

with the finding. It can also be inferred that gradient is also
sensitive to all features in the input. DeepSHAP is widely
known as a solid method as it involves SHAP. However, it
also has a backpropagation mechanism (as it is engineered
on DeepLift). It seems the backpropagation is the culprit, as
other gradient methods also fail this experiment. FullGrad
does a weighted sum of gradients and biases of all layers.
The gradients in the early layers can be the culprit in this
case. We observe that GradCAM rarely assigns attribution
to the null feature. And the assigned values may be due to
CAM’s low resolution. IBA and extremal perturbation are
both grounded on the removal of features. We see that they
also avoid attributing to the null feature.

We also evaluate IBA and GradCAM++ on different lay-
ers of a ResNet network. Among the advantages of these
methods is that they can be applied to early layers to pro-
duce higher resolution maps. However, we observe in Fig. 2
and Tab. 2 that as we move towards early layers, the meth-
ods attribute to the null feature.

4.2. Class Sensitivity

Double Feature Scenario The objective is to observe
how the explanations for two different outputs differ when
both outputs have corresponding features present. The met-
ric results are presented in Tab. 1, and visual examples are
presented in Fig. 3. We observe that GradCAM, IBA, and
Extremal Perturbation attribute the corresponding features
when explaining the different outputs. FullGrad produces
the same explanation when applied to the two outputs. We
observe that Gradient, GuidedBackProp, DeepSHAP, and
IntegratedGradient slightly switch explanations. We also
perform layerwise experiments for IBA and GradCAM++.
We observe that the explanations become less class sensi-
tive in earlier layers.

Single Feature Scenario In this setting, we evaluate class
sensitivity in the case where only one contributing feature
is available. Suppose the explanation for the output of the
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IBA GradCAM++

Metric layer 1 layer 2 layer 3 layer 4 layer 1 layer 2 layer 3 layer 4

Null Feature 0.315 0.311 0.201 0.211 0.827 0.906 0.815 0.453
Double Feature Scenario 0.327 0.337 0.207 0.191 0.977 0.948 0.899 0.469
Single Feature Scenario 0.219 0.237 0.158 0.295 0.979 0.823 0.761 0.845

Table 2. Evaluations of IBA and GradCAM++ explanations for various layers of ResNet: IBA and GradCAM++ are applicable to different
layers of convolutional networks. However, we observe that as we move towards earlier layers (toward the input), more attribution is
assigned to the null feature. We also observe the same trend with class sensitivity. The results significantly deteriorate for GradCAM++ (in
both experiments, the lower the value, the better). It is thus advisable to apply these explanations to deep layers.

GradCAM++

layer 1 layer 2 layer 3 layer 4
IBA

layer 1 layer 2 layer 3 layer 4

Figure 2. Null Feature Experiment for IBA and GradCAM++ on
different layers of a network. The second (lower) feature is a null
feature. We observe that as we move toward earlier layers, the
explanations attribute to the null feature for both methods.

corresponding feature is similar to the explanation for an
output to which the feature does not contribute. In that case,
the explanation is not sensitive to the output. A visual ex-
ample for this case is provided in Fig. 4. The results for
the associated metric are provided in Tab. 1. In this sce-
nario, more explanation methods are prone to attribute the
output to the single feature within the image. Interestingly
the only method that is sensitive to output, in this case, is
GradCAM. Even IBA and Extremal perturbation that per-
formed well in double feature scenario identify the same
feature for the two outputs. This might be the property for
all perturbation/removal-based methods, that they converge
to the only predictive feature within the input, even if the
feature is predictive for another class.

4.3. Feature Saturation

This experiment aims to check how an attribution
method behaves in case there are saturated features present
in the input. The desirable property, in this case, is to at-
tribute to both features. The results of the metric are pro-
vided in Tab. 1. A visual example is presented in the ap-

pendix (Fig. 5). The two features (patches) in the input
contribute equally to the output, and the presence of only
one is enough for the exact output prediction. We expect
to observe that a method such as Extremal Perturbation at-
tributing to only one of the features. The method searches
for the smallest region that keeping it would keep the output
prediction. In the case of saturated features, this translates
to keeping only one feature. The metric in Tab. 1 shows
that statistically, the method converges to one of the fea-
tures. The other methods are mostly attributing to both fea-
tures, but considering the results from the Null player ex-
periment and the Class Sensitivity experiment, the obser-
vation better be interpreted with caution. Several methods
might be attributing to both features because they attribute
to all features for other reasons. For instance, we observed
with GuidedBackprop that the method is attributing to null
feature and is attributing to both features when explaining
different outputs. A method that is attributing to both fea-
tures, but does that in null feature case as well, is not doing
the attribution for fair distribution, but for other reasons.

4.4. Discussion on the Framework

Is the optimization feasible? To practically guarantee
that the setups (Eq. 1-7) are realized, we set stopping cri-
teria and continue the optimization until the desired setup
is achieved. The stopping criteria checks if the properties
(e.g., one feature being null) are satisfied within a certain
threshold. The setups are variations of removing patches;
we thus check the effect of removing patches on output in
all setups after each epoch. We report the output change ra-
tio (output-change / output) when removing patches in dif-
ferent setups (null, class-sensitivity, saturation) for an aver-
age of 1K samples. For the Null Feature, Feature Satura-
tion, and Class-Sensitivity (double), the ratio is 0.0712. For
Class-sensitivity (single) ratio is 0.0649.

Is the framework sensitive to how the samples are

generated? By definition, given a function, for any in-
put/output, the attribution method ought to identify the con-
tribution of features to the output. The definition is for any

input and is regardless of the generated input’s properties
(e.g. being out of distribution). The framework makes sure
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Image

GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
Integrated
Gradients DeepSHAP IBA

Extremal
Perturbation

Figure 3. Class Sensitivity - Double Feature Scenario: The image on the left represents the generated features on the reference input.
The features are generated such that each corresponds to a different output. The lower feature (patch) corresponds to the first output (first
row), and the other patch corresponds to the second output (second row). It is expected that explanations for the two outputs differ and
attribute to the corresponding feature of each output. GradCAM, IBA, and Extremal Perturbation manifest this property.

Image

GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
Integrated
Gradients DeepSHAP IBA

Extremal
Perturbation

Figure 4. Class Sensitivity - Single Feature Scenario: The feature is generated such that it contributes to one output and is null for
another output. The first output is presented in the first row. The output to which the feature is null is presented below. The explanations
are presented for both outputs. It is expected that the explanations for the two outputs differ. Moreover, the explanations should not attribute
to the feature for the null output (second row.). The only method that attributes correctly, in this case, is GradCAM.

that the feature has a specific behavior, e.g., having zero
contribution to the output.

Novel insights from the framework in a nutshell: We
reveal FullGrad, GradCAM++, Integrated Gradients and
Gradient are attributing to null feature. We practically af-
firm DeepSHAP breaks axioms (theory in [34]). We show
CAM, Extremal Perturbations (Exp), and IBA as trustwor-
thy in terms of null and class-sensitivity axiom (though
when only one feature is present, only CAM prevails). We
reveal saturation properties within ExP and IBA. We reveal
GradCAM++, FullGrad, Gradient, IG, DeepSHAP can be
class-insensitive. We show (Tab. 2) IBA and GradCAM++
break axioms in early layers (though they were proposed to
work on other layers than the deepest).

5. Conclusion

This work proposes an experimental framework for
axiomatic evaluation of explanation methods using the
model. Within the framework, the explanations are checked
whether they comply with an axiom or satisfy a property.
The experimental setup is realized through generating fea-
tures using the model. Through feature generation, several

scenarios for evaluating axioms are introduced. The frame-
work reveals that many explanation methods identify a null
feature as salient, even though the framework guarantees
the feature to have no contribution. Moreover, the frame-
work shows many explanations are not class sensitive and
generate roughly equivalent explanations for different out-
puts. The only methods that do not attribute to null features
and are class sensitive are GradCAM, IBA, and Extremal
Perturbations. We further analyze IBA and GradCAM++
on various layers of a neural network and reveal that the ax-
ioms are complied with only if they are applied to the final
layer. Our proposed framework can be used to evaluate up-
coming explanation methods. Furthermore, researchers can
add more creative experiments to the proposed framework
to assess explanations from other perspectives.
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