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Abstract

Group activity recognition is the task of understanding
the activity conducted by a group of people as a whole in a
multi-person video. Existing models for this task are often
impractical in that they demand ground-truth bounding box
labels of actors even in testing or rely on off-the-shelf object
detectors. Motivated by this, we propose a novel model for
group activity recognition that depends neither on bound-
ing box labels nor on object detector. Our model based
on Transformer localizes and encodes partial contexts of a
group activity by leveraging the attention mechanism, and
represents a video clip as a set of partial context embed-
dings. The embedding vectors are then aggregated to form a
single group representation that reflects the entire context of
an activity while capturing temporal evolution of each par-
tial context. Our method achieves outstanding performance
on two benchmarks, Volleyball and NBA datasets, surpass-
ing not only the state of the art trained with the same level
of supervision, but also some of existing models relying on
stronger supervision.

1. Introduction
Group activity recognition (GAR) is the task of classify-

ing the activity that a group of people are doing as a whole
in a given video clip. It has attracted increasing attention
due to a variety of its applications including sports video
analysis, video surveillance, and social scene understand-
ing. Unlike the conventional action recognition that focuses
on understanding individual actions [9,16,18,26,31,35,44,
46, 50, 52], GAR demands comprehensive and precise un-
derstanding of interactions between multiple actors, which
introduces inherent challenges such as localization of actors
and modeling their spatio-temporal relations.

Due to the difficulty of the task, most of existing meth-
ods for GAR [15,17,21,23,29,36,53,55,57] require ground-
truth bounding boxes of individual actors for both training
and testing, and their action class labels for training. In par-
ticular, the bounding box labels are used to extract features
of individual actors (e.g., RoIPool [39] and RoIAlign [19])
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Figure 1. Visualization of partial contexts captured by a token
across time. The token in this example focuses on how players
behave after they conceded a goal. (a) Right after the event 3p-
succ, the timer has been reset to 24 secs and a defender stares at
the ball. (b) Players prepare for the next attack, while a referee and
a cameraman point at who takes the ball. (c) A player initiates the
next attack. With such tokens each representing different pieces
of the whole group activity, our model acquires the encapsulated
semantics of the target activity.

and discover their spatio-temporal relations precisely; such
actor features are aggregated while considering the relations
between actors to form a group-level video representation,
which is in turn fed to a group activity classifier. Though
these methods have demonstrated impressive performance
on the challenging task, their dependence on the heavy an-
notations, especially bounding boxes at inference, is im-
practical and in consequence restricts their applicability sig-
nificantly.

One way to resolve this issue is to jointly learn group ac-
tivity recognition and person detection using bounding box
labels [6, 60] to estimate bounding boxes of actors at in-
ference. This approach however still requires ground-truth
bounding boxes of individual actors for training videos. To
further reduce the annotation cost, Yan et al. [56] introduced
weakly supervised GAR (WSGAR) that does not demand
actor-level labels at both training and inference. They ad-
dress the lack of bounding box labels by generating actor
box proposals through a detector pretrained on an external
dataset and learning to prune irrelevant proposals.

The detector-based WSGAR however has several draw-
backs as follows. First of all, a detector often suffers
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from occlusion and background clutter, and thus frequently
causes missing and false detections that degrade GAR accu-
racy. Second, the detector-based approach loses contextual
information that are useful for GAR since it concentrates
only on people; in sports video analysis, for example, enti-
ties other than people, such as a ball and a scoreboard, may
provide crucial information for the task. Third, object de-
tection is costly to itself and imposes additional overheads
in both computation and memory.

In this paper, we propose a detector-free model for WS-
GAR that depends neither on ground-truth bounding boxes
nor on object detector. It bypasses explicit object detection
by drawing attention on entities involved in a group activ-
ity through a Transformer encoder [48] placed on top of
a convolutional neural network (CNN) backbone. Specif-
ically, we define learnable tokens as input to the encoder
so that each of them learns to localize partial contexts of a
group activity through the attention mechanism of the en-
coder; the tokens capture not only key actors but also other
useful clues as shown in Fig. 1. Since a set of learnable
tokens are shared for all frames, a predefined number of
token embeddings are computed by the encoder for every
frame. A video clip is then represented as a bag of token
embeddings, which are aggregated into a group representa-
tion in two steps: Those computed from the same token at
different frames are first aggregated to capture the temporal
evolution of each token, then the results are fused to form a
single feature vector for group activity classification.

In addition, for further performance improvement, the
backbone of our model is designed to compute motion-
augmented features. Unlike previous work on GAR [4, 17,
29, 36], it does not rely on off-the-shelf optical flow that is
prohibitively expensive and thus has been a computational
bottleneck. Instead, inspired by recent video representation
architectures [16, 26, 27, 35, 49], it learns to capture motion
information in feature levels by embedding local correlation
between the feature maps of two adjacent frames.

We evaluate the proposed framework on two datasets,
Volleyball [23] and NBA [56]. Our framework achieves the
state-of-the-art performance on the two benchmarks in the
weakly supervised learning setting, and is as competitive
as existing methods relying on stronger supervision such
as ground-truth bounding boxes and individual action class
labels. The contribution of this paper is three-fold:

• We present the first detector-free method dedicated to
WSGAR, which demands neither ground-truth bound-
ing box labels nor object detector.

• We propose a novel Transformer-based model that cap-
tures key actors and objects involved in a group activity
through the attention mechanism. Moreover, our model
is carefully designed to capture their temporal dynamics
to produce a rich group-level video feature.

• On the two benchmarks, the proposed method largely

outperforms existing WSGAR models. Also, it even
beats early GAR models that depend on stronger super-
vision than ours.

2. Related work

2.1. Group activity recognition

On account of its various applications in the real world,
group activity recognition (GAR) has been studied exten-
sively. Earlier attempts employ hand-crafted features with
probabilistic graphical models [1, 10, 11, 28, 40] or AND-
OR graphs [2,3,43] based on inherent relationship between
individual actions and group activities. RNN-based meth-
ods [6, 12, 22, 23, 30, 38, 42, 51, 54] have shown the effec-
tiveness of hierarchical temporal modeling. LSTM archi-
tecture is often structured in hierarchical ways [23, 42, 51]
to model individual action dynamics and aggregate individ-
ual features to infer group activity. Moreover, graphically
constructed RNN models [12,38] are proposed to utilize re-
lationship among the individual features.

Recent approaches show more tendency towards adopt-
ing relational modeling [4, 15, 21, 53, 55, 58]. Graph-
based approaches have been widely used to model spatio-
temporal relationship between actors [15, 21, 53, 55, 58];
they first extract features from bounding boxes, and then
place features as nodes and defining their relations as edges.
These approaches subsequently employ their own way of
evolving relation graphs, such as graph convolutional net-
works (GCN) [53] or graph attention networks (GAT) [15].
More complicated ways to develop relation graphs, for
instance, constructing cross inference module to embed
spatio-temporal features [55] or utilizing dynamic relation
and dynamic walk offsets to build person-specific interac-
tion graph [58], have also been introduced. On the other
hand, Azar et al. [4] introduce the notion of activity map to
encode spatial relations between individuals.

Transformer-based methods [17, 29, 36, 37, 57] model
the relationship between features of group activities, and
show significant improvements in GAR. They place a
Transformer on top of the actor features to embed spatio-
temporal relational contexts with conditional random fields
(CRF) [36] or joint spatio-temporal contexts regarding
intra- and inter-group relations [29]. The most related study
by Yuan et al. [57] encodes person-specific scene context
per individual feature. However, it still relies on person
detector and only captures person-specific context. On the
other hand, our method further considers multiple people
and does not depend on any off-the-shelf detector, and thus
enables the model to be trained effectively with less super-
vision. Moreover, ours utilizes learnable tokens to form par-
tial context shared by different group activities.
Weakly supervised group activity recognition. GAR has
many obstacles to overcome in order to be applicable in
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Figure 2. Overall architecture of our model. A CNN incorporating motion feature computation modules extracts a motion-augmented
feature map per frame. At each frame, a set of learnable tokens (unpainted pieces of Jigsaw puzzles) are embedded to localize clues useful
for group activity recognition through the attention mechanism of the Transformer encoder. The token embeddings (painted pieces of
Jigsaw puzzles) are then fused to form a group representation in two steps: First aggregate embeddings of the same token (pieces with the
same shape) across time, and then aggregate the results of different tokens (pieces with different shapes and colors). Finally, the group
representation is fed into the classifier which predicts group activity class scores.

real life. In particular, heavy annotations such as bound-
ing boxes and individual actions are rarely provided. Thus,
several methods have addressed GAR with weaker super-
vision such as utilizing bounding boxes only to train their
built-in detector [6, 60] or activity map [4]. Accordingly,
Yan et al. [56] propose WSGAR, the task where bounding
box annotations are not used in both training and inference.
They address the absence of the bounding boxes by placing
an off-the-shelf object detector inside the model. To prune
off noisy outputs of the object detector, a relation graph is
constructed regarding the relatedness of detected bounding
boxes. Zhang et al. [61] propose a method using activity-
specific features for multi-label activity recognition, which
also shows an improvement in WSGAR. However, it is not
designed for GAR and the performance gap from base-
line is subtle in the WSGAR setting. Unlike the previous
work [56,61], we propose a detector-free method dedicated
to WSGAR, which is not only free from actor-level annota-
tion but also from object detector.

2.2. Transformer

Transformer [48] is originally devised to solve sequence-
to-sequence task such as machine translation. It introduces
self-attention mechanism with the aim of capturing global
dependencies of the input elements. Recently, Transformer
is widely adopted in many vision tasks either with a CNN
feature extractor [8, 18, 24, 33, 62] or as a pure transformer
architecture [13]. Detection Transformer (DETR) [8], a

Transformer model for object detection, is presented and
utilized in detection-based tasks such as human-object in-
teraction detection [24, 62] and object tracking [33]. More-
over, several attempts apply self-attention mechanism to
process videos [7, 18, 41, 52]. Girdhar et al. [18] utilize
spatio-temporal context around the person to localize and
recognize human actions simultaneously. Ryoo et al. [41]
propose TokenLearner, which efficiently learns to convey
meaningful features of an input.

3. Proposed method
Our goal is to recognize a group activity in a multi-

person video without using ground-truth bounding boxes or
object detector. We achieve this goal by leveraging the at-
tention mechanism to localize and encode partial contexts
of a group activity, and then aggregating them into a group-
level video representation while capturing their temporal
dynamics. Our model is divided into three parts: motion-
augmented feature extraction, partial context embedding,
and partial context aggregation. Its overall architecture is
illustrated in Fig. 2, and the remainder of this section elab-
orates on each of the three parts.

3.1. Motion-augmented feature extraction

Given a video clip of T frames Xvideo ∈ RT×H0×W 0×3

as input, an ImageNet pretrained ResNet [20] backbone ex-
tracts features Fvideo ∈ RT×H×W×C in a frame-wise man-
ner. To incorporate motion information into the features
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Figure 3. Detailed architectures of the partial context embedding and partial context aggregation modules.

without using computationally heavy 3D CNNs [9, 46] or
optical flows [45, 59], our model computes local correla-
tion between two adjacent intermediate feature maps, F(t)

and F(t+1), and encodes the correlations into frame-wise
motion features, similar to recent motion feature learning
methods [26, 49].
Motion feature computation. Given two feature maps of
adjacent frames, we first reduce their channel dimension to
C ′ by 1×1 convolution. Then, the local correlation function
s is defined as follows:

s : (F(t),F(t+1)) 7−→ S(t) ∈ RH×W×P×P

where

(S(t))(x,p) = ⟨(F(t))(x), (F(t+1))(x+p)⟩, (1)

x ∈ [0, H − 1] × [0,W − 1], and p ∈ [−l, l]2. An element
(S(t))(x,p) of the local correlation tensor S(t) is calculated
by the dot product similarity of displaced vectors between
adjacent frames F(t) and F(t+1). By restricting the maxi-
mum displacement to l, the correlation scores of spatial po-
sition x are computed only in its local neighborhood of size
P = 2l + 1. Note that each feature map is zero-padded
with the size of l. Hence, S(t) reveals the motion at each
location of F(t) in the form of P ×P local correlation map.
In the case of the T -th frame, S(T ) is computed by the self-
correlation s(F(T ),F(T )). To integrate the local correlation
tensor into the backbone, 1 × 1 convolution transforms the
local correlation tensor S(t) ∈ RH×W×P 2

into motion fea-
tures M(t) ∈ RH×W×C . Then the motion features are in-
serted into the backbone using a residual connection, i.e.,
F′(t) = F(t) + M(t); this operation endows the output fea-
tures with the sense of motion. In our model, two motion
feature computation modules are inserted after the last two
residual blocks of ResNet. Following [26], we adopt the lo-
cal correlation computation implemented in FlowNet [14].

3.2. Partial context embedding (PCE)

Given the motion-augmented feature F′ ∈ RT×H×W×C

for T frames, a set of K learnable tokens Z = {zi}Ki=1,
where zi ∈ RD for all i, is trained to encode partial con-
texts of a group activity through the Transformer encoder in
a frame-wise manner. For each frame, K tokens are trans-
formed into token embeddings W(t) of the same size using
the mechanism of the encoder, that is, the set of learnable to-
kens Z is shared by every frame to capture temporal dynam-
ics of each token embeddings across time. To this end, we
adopt a Transformer architecture [48] composed of multi-
head cross-attention layer, multi-head self-attention layer,
and feed forward network (FFN). The tokens are embedded
while considering the relations with other tokens through
the self-attention, and capture the partial contexts from the
motion-augmented features through the cross-attention. We
call this process partial context embedding, and its imple-
mentation follows the decoder of DETR [8]. Note that
the weights of the Transformer encoder are shared across
T frames. For clarity, we describe the detailed process
of partial context embedding for a frame t given motion-
augmented feature F′(t) ∈ RH×W×C and a set of learnable
tokens Z (Fig. 3a).

First, a point-wise convolution operation is applied to
the feature map to reduce the channel dimension C to D.
Then the spatial dimension of the feature map is flattened
to convert its overall shape to HW × D. For the multi-
head cross-attention layer, the Query is the sum of two el-
ements: (1) the learnable tokens Z, and (2) the output of
the multi-head self-attention applied to the learnable token
Z and the output token embeddings of the previous encoder
layer. The Key and Value come from the flattened feature
map, and the spatial positional encoding is added to the Key.
To be specific, the spatial coordinates of the input feature
map F′(t) are transformed into the spatial positional encod-
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ing using the sinusoidal function [48]; each half of D chan-
nels are encoded with width and height coordinates, respec-
tively. Through the attention mechanism, each token learns
to localize and encode partial contexts including key actors
and entities from the given feature maps. For T frames, the
output token embeddings W(t) = {w(t)

i }Ki=1 are stacked to
form W = [W(1),W(2), . . . ,W(T )] ∈ RT×K×D, a bag of
T × K token embeddings of dimension D. Note that w(t)

i

denotes the i-th token embedding for a frame t.

3.3. Partial context aggregation (PCA)

The partial context aggregation module takes the output
token embeddings W ∈ RT×K×D and aggregates them to
the final group representation g ∈ RD. This process is di-
vided into two steps. The first step aggregates embeddings
of the same token across time and the second step assem-
bles the results from the first step to build a single video
representation. The overall process is illustrated in Fig. 3b,
and discussed in detail below.

In the first step, the output token embeddings Wi =

{w(t)
i }Tt=1 ∈ RT×D from the i-th token at different frames

are fused to form an i-th aggregated token feature w̃i ∈ RD

for all i. After reshaping the output token embedding W
to K × T × D tensor, a stack of 1D convolutional layers,
each followed by ReLU [34], is applied along T dimension.
The output is then fed to AvgPool operation. This temporal
convolution block f(·) gradually aggregates the token em-
bedding along the time dimension, i.e., f : RK×T×D →
RK×D. It achieves robustness to a temporal shift of ac-
tivity in the video via parameter sharing in time while ef-
fectively capturing the temporal dynamics of token embed-
dings via stacked layers. In the second step, K aggregated
token features W̃ = {w̃i}Ki=1 ∈ RK×D are fused to form
the group representation g. Specifically, layer normaliza-
tion [5] is first applied to W̃, and then a single layer multi-
head self-attention is adopted to capture the dynamic rela-
tions between the K aggregated token embeddings. Finally,
the group representation g is obtained by applying AvgPool
operation over K dimension.

3.4. Training objective

After obtaining the group representation, a classifier is
applied to predict group activity class scores. Our model
is trained with the standard cross-entropy loss in an end-to-
end manner.

4. Experiments
We evaluate the proposed detector-free model for WS-

GAR on two datasets, Volleyball [23] and NBA [56], where
our model is compared with the state-of-the-art WSGAR
and GAR methods. We also validate the effectiveness of the
model by extensive ablation studies and qualitative analysis.

4.1. Datasets

Volleyball dataset. This dataset consists of 55 videos,
which are further divided into 4830 clips. 3494 clips among
them are used for training and 1337 clips are kept for test-
ing. The center frame of each clip is labeled with (i) one
of 8 group activity labels, (ii) one of 9 action labels per
player, and (iii) a bounding box per player. Bounding box
tracklets of players along the 10 frames before and after the
center frame are also provided by Bagautdinov et al. [6],
and serve as the ground-truth bounding box labels of these
frames. However, in the WSGAR setting, models includ-
ing ours utilize the group activity labels only and disuse the
stronger and fine-grained annotations. We adopt Multi-class
Classification Accuracy (MCA) and Merged MCA for eval-
uation throughout our experiments. In particular, for com-
puting Merged MCA, we merge the classes right set and
right pass into right pass-set, and left set and left pass into
left pass-set as in SAM [56] for a fair comparison.
NBA dataset. This dataset consists of 7624 clips for train-
ing and 1548 clips for testing. Currently, it is the only
dataset proposed for WSGAR, which only provides one of 9
group activity labels for each clip. Thanks to its low annota-
tion cost, it is currently the largest group activity recognition
dataset. Since each video clip is 6-second long and usually
exhibits a nontrivial temporal structure, the dataset requires
a model that captures long-term temporal dynamics com-
pared with other GAR benchmarks. Also, it is a challeng-
ing benchmark due to fast movement, camera view change,
and a varying number of people in each frame. For evalua-
tion, we adopt Multi-class Classification Accuracy (MCA)
and Mean Per Class Accuracy (MPCA) metrics; MPCA is
adopted due to the class imbalance issue of the dataset.

4.2. Implementation details

Sampling strategy. For both datasets, T frames are sam-
pled using the segment-based sampling [50] and each frame
is resized to 720 × 1280. Note that T = 18 for the NBA
dataset and T = 5 for the Volleyball dataset.
Hyperparameters. We adopt an ImageNet pretrained
ResNet-18 [20] as the backbone. For motion-augmented
feature extraction, a 1 × 1 convolution operation reduces
the channel dimension to C ′ = 64 and local neighbor-
hood size is set to P = 11. We stack 6 Transformer en-
coder layers with 4 attention heads and 256 channels for the
NBA dataset, and 2 Transformer encoder layers with 2 at-
tention heads and 256 channels for the Volleyball dataset.
We test different numbers of learnable tokens including
K = 1, 2, 4, 8, 12, 16, and use 12 for both datasets. For
partial context aggregation module, three 1D convolutional
layers with kernel size of 5 without padding are used for
NBA and two 1D convolutional layers with kernel size of 3
with zero-padding are used for Volleyball. In the multi-head
self-attention (MHSA) aggregation, a single layer MHSA
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with 256 channels is used for both datasets and the number
of heads is 4 for NBA and 2 for Volleyball.
Training. On both datasets, our model is optimized by
ADAM [25] with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8
for 30 epochs. Weight decay is set to 1e−4 for the NBA
dataset and 1e−3 for the Volleyball dataset. Learning rate
is initially set to 1e−6 with linear warmup to 1e−4 for 5
epochs, and linearly decayed after the 6th epoch. We use a
mini-batch of size 4 on NBA and 8 on Volleyball.

4.3. Comparison with the state-of-the-art methods

NBA dataset. For the NBA dataset, we compare our
method with the state of the art in GAR and WSGAR,
which use bounding box proposals provided by SAM [56],
and also with recent video backbones in the weakly super-
vised learning setting. For a fair comparison, we set their
backbones to ResNet-18 except for VideoSwin [32] and use
only RGB frames as input for all the methods. Table 1
summarizes the results. Note that the scores of reproduced
SAM [56] are higher than those reported in its original pa-
per. The proposed method beats all the GAR and WSGAR
methods by a large margin: 14.2%p of MCA and 14.4%p
of MPCA. Regarding complexity, our method demands less
parameters and slightly more FLOPs than other GAR meth-
ods although we do not count the computational complex-
ity of their object detectors. Our method is also compared
with recent video backbones, ResNet-18 TSM [31] and
VideoSwin-T [32], used in conventional action recognition.
Although these powerful backbones perform well in WS-
GAR, ours achieves the best. We also show the result of
our method without the motion feature module, which still
outperforms all the other methods.
Volleyball dataset. For the Volleyball dataset, we com-
pare our method with the state-of-the-art GAR and WS-
GAR methods in two settings: fully supervised setting and
weakly supervised setting. The difference of two settings is
the use of actor-level labels including ground-truth bound-
ing boxes and individual action class labels, in both training
and inference. For a fair comparison, we report the results
of previous methods [4, 6, 29, 38, 55, 57] using only RGB
inputs, and the reproduced results [17, 36, 53, 54, 58] using
the ResNet-18 backbone. Note that the former is brought
from the original papers and the latter is the MCA values
from [58]. For the weakly supervised setting, we replace
the ground-truth bounding boxes with an object detector
pretrained on an external dataset and remove the individual
action classification head. Table 2 summarizes the results.
The first and second section show the results of previous
methods in fully supervised setting and weakly supervised
setting, respectively. Our method outperforms all the GAR
and WSGAR models in weakly supervised setting by a sub-
stantial margin: 3.1%p of MCA and 1.3%p of Merged MCA
when compared to the models using ResNet-18 backbone.

Method # Params FLOPs MCA MPCA
Video backbone
TSM [31] 11.2M 303G 66.6 60.3
VideoSwin [32] 27.9M 478G 64.3 60.6
GAR model
ARG [53] 49.5M 307G 59.0 56.8
AT [17] 29.6M 305G 47.1 41.5
SACRF [36] 53.7M 339G 56.3 52.8
DIN [58] 26.0M 304G 61.6 56.0
†SAM [56] - - 49.1 47.5
SAM [56] 25.5M 304G 54.3 51.5
Ours w/o motion 17.3M 311G 73.6 69.0
Ours 17.5M 313G 75.8 71.2

Table 1. Comparison with the state-of-the-art GAR models
and video backbones on the NBA dataset. All models except
VideoSwin adopt ResNet-18 backbone. Numbers in bold indicate
the best performance and underlined ones are the second best. ‘†’
indicates that the result is copied directly from SAM [56]. All the
other results are reproduced by us.

Method Backbone MCA Merged
MCA

Fully supervised

SSU [6] Inception-v3 89.9 -
PCTDM [54] ResNet-18 90.3 94.3
StagNet [38] VGG-16 89.3 -
ARG [53] ResNet-18 91.1 95.1
CRM [4] I3D 92.1 -
HiGCIN [55] ResNet-18 91.4 -
AT [17] ResNet-18 90.0 94.0
SACRF [36] ResNet-18 90.7 92.7
DIN [58] ResNet-18 93.1 95.6
TCE+STBiP [57] VGG-16 94.1 -
GroupFormer [29] Inception-v3 94.1 -

Weakly supervised

PCTDM [54] ResNet-18 80.5 90.0
ARG [53] ResNet-18 87.4 92.9
AT [17] ResBet-18 84.3 89.6
SACRF [36] ResNet-18 83.3 86.1
DIN [58] ResNet-18 86.5 93.1
SAM [56] ResNet-18 86.3 93.1
†SAM [56] Inception-v3 - 94.0
Ours w/o motion ResNet-18 88.1 94.0
Ours ResNet-18 90.5 94.4

Table 2. Comparison with the state-of-the-art methods on the Vol-
leyball dataset. ‘-’ indicates that the result is not provided, and ‘†’
indicates that the result is copied directly from SAM [56].

It also beats the current state of the art based on Inception-
v3. We state the results without motion feature module to
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show its competitiveness. Compared to the GAR methods
in the fully supervised settings, our method surpasses the
recent GAR methods [6,17,36,38,54], using stronger actor-
level supervision.

4.4. Ablation studies

We also demonstrate the effectiveness of our method by
ablation studies and analysis on the NBA dataset.
Effects of the proposed modules. Table 3 summarizes the
effects of each module. Base model consists of a backbone,
a global average pooling layer, and a group activity clas-
sifier. Without the partial context aggregation (PCA), all
token embeddings are averaged to form a group represen-
tation. Unless the motion feature module is inserted, the
original backbone is utilized. All training setups except
the model architecture are same. From the result, all three
components consistently enhance the model in terms of two
metrics. Partial context embedding (PCE) module improves
MCA from 58.4% to 64.1% and MPCA from 51.7% to
58.5%. Regarding that the base model predicts a group ac-
tivity using a global scene feature, it emphasizes the impor-
tance of capturing partial contexts for recognizing a group
activity. PCA module further increases MCA from 64.1%
to 73.6% and MPCA from 58.5% to 69.0%. This also shows
the effectiveness of our aggregation method versus naive av-
erage pooling aggregation. The detailed analysis of the to-
ken aggregation methods will be discussed later (Table 4).
Motion feature module gives an additional gain regardless
of other components, which implies that the sense of motion
helps to understand group activities.
Effects of the token aggregation methods. For this ab-
lation, we do not adopt motion feature module, and plain
ResNet-18 backbone is used as a feature extractor. Table 4
shows the performance of various token aggregation meth-
ods. The first and second section of the table contains the
results of one-stage aggregation and two-stage aggregation
method, respectively. Given a bag of token embeddings,
the two-stage aggregation method separates the aggregation
across different frames and the aggregation across different
tokens, whereas the one-stage aggregation methods fuse all
tokens at once. MLP aggregation concatenates token em-
beddings and project them using a linear layer, and it is
regarded as a baseline for aggregating vectors along cer-
tain axis. Multi-head self-attention (MHSA) aggregation is
composed of a single layer MHSA and an average pooling
layer. From the result, the two-stage aggregation methods
exceed the one-stage methods in most cases. Compared to
the two-stage MLP aggregation, our method, 1D convolu-
tion across frames followed by MHSA across tokens, per-
forms better. This shows the effectiveness of temporal con-
volution and MHSA aggregation, which are robust to a tem-
poral shift in the video and able to capture dynamic relation
between partial contexts. In addition, the order of aggre-

Model MCA MPCA
Base model 58.4 51.7
Base model + Motion 62.7 55.1
PCE 64.1 58.5
PCE + Motion 65.1 59.1
PCE + PCA 73.6 69.0
PCE + PCA + Motion 75.8 71.2

Table 3. Contributions of the proposed modules. PCE and PCA
denote partial context embedding and partial context aggregation
modules, respectively.

Aggregation method MCA MPCA
Average pooling 64.1 58.5
Max pooling 61.3 55.1
MLP (both T , K- dim) 62.8 56.4
MHSA (both T , K- dim) 68.7 64.7
MLP (T - dim) - MLP (K- dim) 68.9 63.1
MHSA (K- dim) - 1D conv (T - dim) 72.4 67.0
Ours (1D conv - MHSA) 73.6 69.0

Table 4. Ablation on the token aggregation methods. T -dim and
K-dim imply aggregation with the same token at different frames
and aggregation with different tokens at the same frame, respec-
tively. MHSA stands for multi-head self-attention.

# token MCA MPCA
1 72.7 66.6
2 73.1 67.2
4 72.6 67.7
8 74.0 69.7
12 73.6 69.0
16 74.3 68.8

Table 5. Ablation on
the number of tokens per
frame.

Model MCA MPCA
Base 73.6 69.0
res2 72.2 68.3
res3 74.2 70.2
res4 74.8 69.4
res5 74.0 70.5
res3,4 74.2 69.0
res4,5 75.8 71.2
res3,4,5 73.1 68.1

Table 6. Ablation on the posi-
tion of the motion feature mod-
ule. Base represents the model
without the module.

gation demonstrates notable difference: Assembling with
respect to temporal axis first and then to token axis brings a
gain of 1.2%p of MCA and 2.0%p of MPCA.
Effects of the number of tokens. Table 5 summarizes the
performance of different number of tokens. Note that the
ablation is conducted without the motion feature module.
When the number of learnable tokens is set to 1, a single
token embedding extracts context information as a global
scene feature. The performance tends to increase with the
number of tokens in general, and the optimal result is gained
when the number is in the range of 8 to 16. These results
indicate that it is more effective to divide the scene context
into several pieces in order to encapsulate enriched group
representation.
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Figure 4. Visualization of the Transformer encoder attention maps on the NBA dataset.

Base model PCE PCE + PCA PCE + PCA + Motion

Figure 5. t-SNE [47] visualization of feature embedding learned by different model variants on the NBA dataset.

Effects of the position of the motion feature module. We
investigate the efficacy of inserting the motion feature mod-
ule at different positions. The motion feature is placed af-
ter a residual block and it is denoted as resi if the motion
feature module is inserted after the i-th residual block. As
shown in Table 6, the motion feature module is effective in
most cases except the case where it is inserted after the 2nd
residual block, which is considered too early to compute the
local correlation. Putting multiple motion feature modules
is also tested, and inserting motion feature modules after 4th
and 5th block performs the best.

4.5. Qualitative analysis

In Fig. 4, we illustrate the attention visualizations ob-
tained from the final Transformer encoder layer on the
NBA dataset. The results imply that token embeddings are
learned to attend key concepts and follow the activity occurs
in a given video clip. Fig. 5 displays the t-SNE [47] visu-
alization results of our model and its variants. Final group
representation of each model on NBA is visualized in two-
dimensional space. We can find that each proposed modules
contribute to a clear separation of each class.

5. Conclusion

We have presented a detector-free method for weakly su-
pervised group activity recognition, which first embeds the
partial contexts of an activity through the attention mecha-
nism, then aggregates them while capturing their temporal
evolution. We achieve the state of the art on two bench-
marks in weakly supervised learning setting, and even out-
perform several GAR models that rely on stronger supervi-
sion. These results suggest that partial contexts captured by
our method could be more effective than the human prior
given in the form of person bounding boxes. Albeit with
such benefits, our model has difficulties generating suffi-
ciently diverse token embeddings due to the absence of di-
rect supervision. Further improvement could be achieved
by increasing their diversity without capturing irrelevant
contexts.
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