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Abstract

Variational autoencoder (VAE) is a very successful gen-
erative model whose key element is the so-called amor-
tized inference network, which can perform test time in-
ference using a single feed forward pass. Unfortunately,
this comes at the cost of degraded accuracy in posterior ap-
proximation, often underperforming the instance-wise vari-
ational optimization. Although the latest semi-amortized
approaches mitigate the issue by performing a few varia-
tional optimization updates starting from the VAE’s amor-
tized inference output, they inherently suffer from compu-
tational overhead for inference at test time. In this paper,
we address the problem in a completely different way by
considering a random inference model, where we model the
mean and variance functions of the variational posterior as
random Gaussian processes (GP). The motivation is that
the deviation of the VAE’s amortized posterior distribution
from the true posterior can be regarded as random noise,
which allows us to view the approximation error as uncer-
tainty in posterior approximation that can be dealt with in a
principled GP manner. In particular, our model can quan-
tify the difficulty in posterior approximation by a Gaussian
variational density. Inference in our GP model is done by a
single feed forward pass through the network, significantly
faster than semi-amortized methods. We show that our ap-
proach attains higher test data likelihood than the state-of-
the-arts on several benchmark datasets.

1. Introduction

Variational Autoencoder (VAE) [14, 31] is a very suc-
cessful generative model where a highly complex deep non-
linear generative process can be easily incorporated. A key
element of the VAE, the deep inference (a.k.a. encoder)
network, can perform the test time inference using a sin-
gle feed forward pass through the network, bringing sig-
nificant computational speed-up. This feature, known as
amortized inference, allows the VAE to circumvent other-

wise time-consuming steps of solving the variational opti-
mization problem for each individual instance at test time,
required in the standard variational inference techniques,
such as the stochastic variational inference (SVI) [9].

As suggested by the recent study [2], however, the amor-
tized inference can also be a drawback of the VAE, specifi-
cally the accuracy of posterior approximation by the amor-
tized inference network is often lower than the accuracy of
the SVI’s full variational optimization. There are two gen-
eral approaches to reduce this amortization error. The first
is to increase the network capacity of the inference model
(e.g., flow-based models [13,37]). The other direction is the
so-called semi-amortized approach [12, 15, 24, 27], where
the key idea is to use the VAE’s amortized inference net-
work to produce a good initial distribution, from which a
few SVI steps are performed at test time to further reduce
the amortization error, quite similar in nature to the test time
model adaptation of the MAML [6] in multi-task (meta)
learning. Although these models often lead to improved
posterior approximation, they raise several issues: Train-
ing the models for the former family of approaches is usu-
ally difficult because of the increased model complexity; the
latter approaches inadvertently suffer from computational
overhead of additional SVI gradient steps at test time.

In this paper, we propose a novel approach to address
these drawbacks. We retain the amortized inference frame-
work similar to the standard VAE for its computational ben-
efits, but consider a random inference model. Specifically,
the mean and the variance functions of the variational pos-
terior distribution are a priori assumed to be Gaussian pro-
cess (GP) distributed. There are two main motivations for
this idea. The first one stems from the suboptimality of the
VAE, where the estimated amortized inference network suf-
fers from deviation from the true posteriors. This inaccu-
racy can be viewed and modeled as uncertainty in the poste-
rior approximation of the deterministic amortized inference
network, suggesting the need for a principled Bayesian un-
certainty treatment. The second intuition is that the devia-
tion of the VAE’s variational posterior distributions from the
true posteriors can be naturally regarded as random noise.
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Whereas the semi-amortized approaches perform extra SVI
gradient updates at test time to account for this noise, we
model the discrepancy using a Bayesian neural network
(GP), resulting in a faster and more accurate amortized
model via principled uncertainty marginalization. Another
benefit of the Bayesian treatment is that we can quantify the
discrepancy in approximation, which can serve as indica-
tors for goodness of posterior approximations. The infer-
ence in our model is significantly faster than that of semi-
amortized methods, accomplished by a single feed forward
pass through the GP posterior marginalized inference net-
work. We show that our approach attains higher test data
likelihood scores than the state-of-the-art semi-amortized
approaches and even the high-capacity flow-based encoder
models on several benchmark datasets.

2. Background
Let x ∈ X be an input data point and z ∈ Rd be the

latent vector. We consider the VAE model1:

p(z) = N (z;0, I), pθ(x|z) = N (x;gθ(z), σ
2
xI), (1)

where gθ : Rd → X is a (deep) neural network with the
weight parameters denoted by θ, and σ2

x is the variance2 of
the white noise. For the given data D = {xi}Ni=1, we maxi-
mize the data log-likelihood,

∑N
i=1 log pθ(x

i), with respect
to θ where pθ(x) = Ep(z)[pθ(x|z)]. Due to the infeasibil-
ity of the marginal log-likelihood, the variational inference
exploits the following inequality,

log pθ(x) ≥ Eq(z|x)
[
log pθ(x, z)− log q(z|x)

]
, (2)

which holds for any density q(z|x). The inequality becomes
tighter as q(z|x) becomes closer to the true posterior, as the
gap equals KL(q(z|x)||pθ(z|x)). Then we adopt a tractable
density family (e.g., Gaussian) qλ(z|x) parametrized by λ,
and maximize the lower bound in (2) with respect to λ.
Since our goal is maximizing the log-marginal, log pθ(x),
we also need to optimize the lower bound with respect to
θ together with λ, either concurrently or in an alternating
fashion.

Note that at current θ, the lower bound optimization with
respect to λ needs to be specific to each input x, and hence
the optimal solution is dependent on x. Formally, we can
denote the optimum by λ∗(x). The stochastic variational
inference (SVI) [9] faithfully implements this idea, and the
approximate posterior inference for a new input point x in
SVI amounts to solving the ELBO optimization on the fly
by gradient ascent. Although this can yield very accurate

1Although there can be possible variations (e.g., heteroscedastic vari-
ance for pθ(x|z)), we assume a homoscedastic model for simplicity, and
our approach is easily extendable to the variants.

2For simplicity we regard σ2
x as a fixed constant although it can be

subsumed in θ and trained.

posterior approximation, it incurs computational overhead
since we have to perform full variational optimization for
each and every input x. The VAE [14] addresses this prob-
lem by introducing a deep neural network λ(x;ϕ) with the
weight parameters ϕ as a universal function approximator
of the optimum λ∗(x), and optimize the lower bound with
respect to ϕ. This approach is called the amortized varia-
tional inference (AVI). Thus the main benefit of the VAE is
computational speed-up as one can simply do feed forward
pass through the inference network λ(x;ϕ) to perform pos-
terior inference for each x.

The recent study in [2] raised the issue of the amortized
inference in the VAE, where the quality of data fitting is de-
graded due to the approximation error between λ∗(x) and
λ(x;ϕ), dubbed the amortization error. To retain the AVI’s
computational advantage and reduce the amortization error,
there were attempts to take the benefits of SVI and AVI,
which are referred to as semi-amortized variational infer-
ence (SAVI) [12, 15, 24]. The key idea is to learn the amor-
tized inference network to produce a reasonably good ini-
tial iterate for the follow-up SVI optimization, perhaps just
a few steps. This warm-start SVI gradient ascent would be
faster than full SVI optimization, and could reduce the ap-
proximation error of the AVI. Although the inference in the
SAVI is faster than SVI, it still requires gradient ascent opti-
mization at test time, which might be the main drawback. In
the next section we propose a novel approach that is much
faster than the SAVI, avoiding gradient updates at test time
and requiring only feed forward pass through a single net-
work, and at the same time can yield more accurate poste-
rior approximation.

3. Gaussian Process Inference Network

We start from the variational density of the VAE, but with
slightly different notation, as follows:

q(z|x, f ,h) = N
(
z; f(x),Diag(h(x))2

)
, (3)

where f ,h : X → Rd are the mean and standard devia-
tion functions of the variational posterior distribution. Note
that if we model f and h as deterministic functions (neu-
ral networks) and optimize their weight parameters (i.e.,
point estimation), then it reduces to the standard VAE for
which f and h constitute λ(x;ϕ). However, such point es-
timates may be inaccurate, and we consider random func-
tions following the Bayesian treatment. Specifically we let
f = [f1(·), ..., fd(·)]⊤ and h = [h1(·), ..., hd(·)]⊤ be inde-
pendent random GP distributed functions a priori [30],

f(·) ∼
d∏

j=1

GP(bj(·), km(·, ·)), h(·) ∼
d∏

j=1

GP(cj(·), ks(·, ·)).

(4)
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Here b(·) = [b1(·), ..., bd(·)]⊤, c(·) = [c1(·), ..., cd(·)]⊤
are the GP mean functions which can be modeled by deep
neural networks, and the GP covariance functions of f and h
are denoted by km and ks, respectively, where we share the
same covariance function across dimensions for simplicity.

Relation to SAVI. Note that the GP-priored variational
density model in (3–4) can be written as:

q(z|x, f ,h) = N
(
b(x)+ f(x),Diag(c(x)+h(x))2

)
, (5)

where f and h now follow zero-mean Gaussian processes.
If we view the VAE’s point estimate inference model as:
q(z|x) = N

(
b(x),Diag(c(x))2

)
, then (5) effectively mod-

els the discrepancy between the VAE’s q(z|x) and the true
posterior pθ(z|x) via stochastic noise models. Recall that
in order to reduce this discrepancy, the semi-amortized ap-
proaches perform extra SVI gradient updates starting from
b(x) and c(x) at test time on the fly. Instead, we aim to
learn the discrepancy using Bayesian neural networks f and
h (GP as a special case; see Sec. 3.1), resulting in a faster
and more accurate amortized inference model by taking into
account uncertainty (stochastic noise) in a principled man-
ner.

For instance, the GP posterior p(f ,h|D) can predict the
above-mentioned discrepancy accurately, while their vari-
ances (e.g., V(f(x)|D)) can serve as gauge that quantifies
the degree of (instance-wise) uncertainty/difficulty in pos-
terior approximation via the amortized inference network.
To this end, we describe a reasonable likelihood model to
establish a GP framework, and derive an efficient GP poste-
rior inference algorithm in what follows.

3.1. Likelihood Model and GP Posterior Inference

To establish a valid Bayesian framework, we define a
likelihood model, that is, the compatibility score of how
each individual instance x ∼ D is likely to be generated
under the given functions f and h. A reasonable choice is
the variational lower bound (2), which we denote as:

Lθ(f ,h;x) := Eq(z|x,f ,h)
[
log pθ(x, z)− log q(z|x, f ,h)

]
.

(6)
Clearly log pθ(x) ≥ Lθ(f ,h;x), and (6) can serve as sur-
rogate3 for the log-likelihood function log p(x|f ,h). Given
the data D = {xi}Ni=1, combining the GP priors and the
likelihood model leads to the GP posterior,

p(f ,h|D) ∝ p(f) p(h)
∏
x∈D

exp
(
Lθ(f ,h;x)

)
. (7)

However, solving (7) requires time and memory cubic in
the number of data points N , which is prohibitive for large-

3Technically, eL may not be a valid density (integration not equal to 1),
and one has to deal with the difficult normalizing partition function in prin-
ciple. For simplicity, we do not consider it and regard L as unnormalized
log-likelihood function.

scale data. Although there exist efficient scalable approxi-
mate inference techniques in the GP literature [5, 8, 28, 32,
35], here we adopt the linear deep kernel trick [10, 39],
which we briefly summarize below.

Linear deep kernel trick for approximating GP. A
random (scalar) function f(x) that follows the 0-mean GP
with covariance (kernel) k, namely f(·) ∼ GP(0, k(·, ·)),
can be represented as a linear form with an explicit fea-
ture space mapping. Consider a feature mapping ψ :
X → Rp such that the covariance function is approx-
imated as inner product in the feature space (of dimen-
sion p), namely k(x,x′) ≈ ψ(x)⊤ψ(x′). Now, introduc-
ing the p-variate random vector w ∼ N (0, I), allows us
to write the GP function as f(x) = w⊤ψ(x). It is be-
cause Cov(f(x), f(x′)) = Cov(w⊤ψ(x),w⊤ψ(x′)) =
ψ(x)⊤ψ(x′) ≈ k(x,x′). A main advantage of this rep-
resentation is that we can turn the non-parametric GP into
a parametric Bayesian model, where the posterior inference
can be done on the finite dimensional random vector w in-
stead. The feature mapping ψ(·) can be modeled as a deep
neural network, and its weight parameters constitute the co-
variance (kernel) parameters of the GP. This way, we can
(approximately) view GP as a special case of Bayesian neu-
ral networks where we treat the final fully connected layer
w as random [4, 7, 20, 25]. Note that although this is rather
a simplified form of the deep kernel [39] by applying the
linear kernel on the outputs of ψ(·), it has been widely used
with great success [10, 36].

Returning to our GP posterior inference (7), the two GP-
priored functions can be written as: fj(x) = w⊤

j ψ
m(x)

and hj(x) = u⊤
j ψ

s(x) for j = 1, . . . , d, where wj’s
and uj’s are mutually independent p-variate random vec-
tors from N (0, I). The feature functions ψm,ψs : X →
Rp are deep neural networks that define the covariance
functions: km(x,x′) = ψm(x)⊤ψm(x′), ks(x,x′) =
ψs(x)⊤ψs(x′). By letting W = [w1, . . . ,wd]

⊤ and U =
[u1, . . . ,ud]

⊤ be the (d× p) matrices with the random vec-
tors in the rows, we have f(x) = [f1(x), ..., fd(x)]

⊤ =
Wψm(x), h(x) = [h1(·), ..., hd(·)]⊤ = Uψs(x). The in-
ference in (5) can be written as q(z|x,W,U) where

q(z|x,W,U) = N
(
b(x)+Wψm(x),Diag(c(x)+Uψs(x))2

)
(8)

while (7) becomes:

p(W,U|D) ∝ N (W;0, I)N (U;0, I)
∏
x∈D

eLθ(W,U;x),

where Lθ(W,U;x) := Eq

[
log

pθ(x, z)

q(z|x,W,U)

]
. (9)

We approximate (9) by q(W,U) defined as:

q(W,U;Λ) =

d∏
j=1

N (wj ;µj ,Σj) N (uj ;ηj ,Γj) (10)
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where Λ := {µj ,Σj ,ηj ,Γj}dj=1 constitutes the GP varia-
tional parameters.

3.2. GP Posterior Marginalized Encoder

Before we proceed to GP inference and learning
(Sec. 3.3), we derive the posterior averaged encoder,

q(z|x) =
∫∫

q(W,U)q(z|x,W,U)dWdU. (11)

Note that (11) can be seen as the final latent inference model
of our GP VAE model, where the uncertainty captured in
the GP posterior q(W,U) is all marginalized out. For
instance, the test log-likelihood score log p(x) under our
model can be estimated by the importance weighted sam-
pling method [1] as the proposal distribution. As it also
appears in the GP learning in the next section, we provide
the derivation for q(z|x) here.

Although the two terms in the integrand of (11) are
both Gaussians, it is infeasible to have close-form for-
mula due to the dependency of the covariance of (8) on
U. Instead, we view (11) as (a limit of) a mixture of
Gaussians,

∑
i αiN (z;mi,Vi) where αi corresponds to

q(W,U) with index i mapped to (W,U), and mi,Vi

denote the mean and covariance of q(z|x,W,U) in (8).
Since a Gaussian mixture can be approximated by a single
Gaussian by the second-order moment matching4, namely∑

i αiN (mi,Vi) ≈ N (m,V) where m =
∑

i αimi and
V =

∑
i αi(mim

⊤
i + Vi) − mm⊤, applying it to (11)

yields: q(z|x) ≈ N (z;m(x),Diag(v(x))), where

mj(x) = bj(x) + µ
⊤
j ψ

m(x),

vj(x) = cj(x)
2 + 2η⊤

j ψ
s(x)cj(x) +ψ

m(x)⊤Σjψ
m(x)

+ψs(x)⊤
(
ηjη

⊤
j + Γj

)
ψs(x), (12)

for j = 1, . . . , d.
Note from (12) that as a special case, q(z|x) becomes the

standard VAE’s encoder distribution with means bj(x) and
variances cj(x)

2 if the GP posterior is ignored (i.e., Λ =
{µj ,Σj ,ηj ,Γj} = 0 to lead to the deterministic zero noise
model). And our learned GP posterior (non-zero Λ) informs
us how the deviation from the true posterior pθ(z|x) can be
determined and compensated by (12).

3.3. GP Inference and Learning

Now we describe how the variational GP inference (i.e.,
optimizing Λ in q(W,U;Λ)) can be done. Similar to other
GP variational learning, the objective function that we will
derive establishes a lower bound of the model’s data likeli-
hood, and hence we can learn the model parameters as well
by maximizing the lower bound (empirical Bayes). The
model parameters consist of the parameters in the GP mean

4Equivalent to min{m,V} KL
(∑

i αiN (mi,Vi) || N (m,V)
)
.

and covariance functions (i.e., the weight parameters of the
deep networks b(x), c(x), ψm(x), and ψs(x)), and those
in the likelihood model (i.e., θ in the decoder pθ(x|z)).

To approximate q(W,U) ≈ p(W,U|D), we aim to
minimize KL

(
q(W,U)||p(W,U|D)

)
, and it can be shown

that the KL can be written as follows (Supplement for de-
tails):

KL(q||p) = log p̂θ(D)−
∑
x∈D

ELBO(θ,Λ;x), (13)

where p̂θ(D) = EW,U∼N (0,I)

[∏
x e

Lθ(W,U;x)
]

is the
marginal data likelihood using our surrogate L in (9), and

ELBO := −Eq(W,U)[KL(q(z|x,W,U)||p(z))] + (14)

Eq(z|x)
[
log pθ(x|z)

]
− 1

N
KL(q(W,U)||N (0, I)).

We now discuss how individual terms in the ELBO (14)
can be derived. The last term of (14) is the KL divergence
between Gaussian densities, and admits a close form. The
second term is the expected log-likelihood with respect to
the GP posterior marginalized encoder q(z|x), (12), and we
can do this by Monte Carlo estimation with the well-known
reparametrization trick [14]. Finally, the first term in (14) is
the Gaussian averaged KL divergence between Gaussians,
and thus it admits a closed form:

1

2

d∑
j=1

(
vj(x) +

(
bj(x) + µ

⊤
j ψ

m(x)
)2 − 1 − (15)

EN (uj ;ηj ,Γj)

[
log

(
cj(x) + u⊤

j ψ
s(x)

)2])
.

The last term in (15) is essentially a Gaussian expected
squared log function, which can be written as a closed form,
albeit complicated, using the confluent hyper-geometric
function [22]. However, for simplicity we estimate it using
the reparametrized Monte-Carlo method.

Summary. The overall learning steps are as follows:
1. Initialize the variational parameters Λ and the model

parameters θ, b(x), c(x), ψm(x), and ψs(x).
2. Repeat until convergence:

(a) Estimate the marginalized q(z|x) using (12).
(b) Optimize the ELBO (14) wrt all parameters.

3. (At test time) The GP marginalized encoder q(z|x)
can be used to perform reconstruction, and evaluate
the test likelihood pθ(x), e.g., using the importance
weighted sampling method (IWAE) [1]5. The uncer-
tainty (variance) of the posterior noise TrV(f(x)|D)
(similarly for h) can be approximately estimated as
ψm(x)⊤

(∑d
j=1 Σj

)
ψm(x).

5IWAE is not used during training since it usually takes too many step-
s/samples (e.g., K=100) for training.

247



4. Related Work

As enumerating all related literature in this section can
be infeasible, we briefly review some of the recent works
that are highly related with ours. The issue of amortization
error in VAE was raised in [2], after which several semi-
amortized methods were attempted [12, 15, 24] that essen-
tially follow a few SVI gradient steps at test time. An alter-
native line of research approaches the problem by enlarg-
ing the representational capacity of the encoder network,
including the flow-based models that apply nonlinear invert-
ible transformations to VAE’s variational posterior [13,37].
Recently [11] proposed a greedy recursive mixture estima-
tion method for the encoder in VAE, where the idea is to it-
eratively augment the current mixture with new components
to maximally reduce the divergence between the variational
and the true posteriors. There were also previous attempts to
incorporate additional random variables into inference net-
works [23]. Although they introduced latent random vari-
ables in both encoder and decoder models, their motivation
is quite different from our random noise view in the pos-
terior approximation, and they mainly aim at endowing a
richer density family and functional capacity.

In parallel, there have been previous attempts to apply
the Bayesian approach to the VAE modeling. However,
they are in nature different from our random function mod-
eling of the encoder uncertainty. The Bayesian Variational
VAE [3] rather focused on modeling uncertainty in the de-
coder model, and their main focus is how to deal with out-
of-distribution samples in the test set, hence more aligned
with transfer learning. The Compound VAE [33] also tack-
led the similar problem of reducing the amortization gap
of the VAE, however, their variational density modeling is
less intuitive, inferring the latent vector z and the encoder
weights W from each data instance. Note that we have
more intuitive Bayesian inference for the encoder param-
eters, q(W|D) given the entire training data D. Their treat-
ment is deemed to augment the latent z with the weights W
in the conventional VAE. The Variational GP [38], although
looking similar to ours, is not specifically aimed for VAE or
amortized inference, but for general Bayesian inference. In
turn, they built the posterior model using a GP function de-
fined on the Gaussian distributed latent input space, instead
of defining GP on the input data as we did.

5. Evaluations

We evaluate our Gaussian process VAE model on several
benchmarks to show its improved performance over the ex-
isting state-of-the-arts. Our focus is two-fold: i) improved
test likelihood scores, and ii) faster test time inference than
semi-amortized methods. We also contrast with the flow-
based models that employ high capacity encoder networks.
The competing approaches are as follows. 1) VAE: The

standard VAE model with amortized inference [14, 31]. 2)
SA: The semi-amortized VAE [12]. We fix the SVI gra-
dient step size as 10−3, but vary the number of SVI steps
from {1, 2, 4, 8}. 3) IAF: The autoregressive-based flow
model for the encoder q(z|x) [13], which has richer ex-
pressive capability than the VAE’s post-Gaussian encoder.
The number of flows is chosen from {1, 2, 4, 8}. 4) HF:
The Householder flow encoder model that represents the
full covariance using the Householder transformation [37].
The number of flows is chosen from {1, 2, 4, 8}. 5) ME:
To enlarge the representational capacity of the encoder net-
work, another possible baseline is a mixture model. More
specifically, the inference model is defined as: q(z|x) =∑M

m=1 α(m|x)qm(z|x), where qm(z|x) are amortized in-
ference models (e.g., having the same network architectures
as the VAE’s encoder network), and α(m|x) are mixing
proportions, dependent on the input x, which can be mod-
eled by a single neural network. The mixture encoder (ME)
model is trained by gradient ascent to maximize the lower
bound of log p(x) similarly as the VAE. The number of mix-
ture components M is chosen from {1, 2, 4, 8}. 6) RME:
The recursive mixture estimation method for the encoder in
VAE [11], which showed superiority to ME’s blind mixture
estimation. 7) GPVAE: Our proposed GP encoder model.
The GP means and feature functions have the same network
architectures as the VAE’s encoder.

Datasets. We use the following five benchmark datasets:
MNIST [19], OMNIGLOT [18], CIFAR106 [16],
SVHN [26], and CelebA [21]. For CelebA, we use tightly
cropped face images of size (64 × 64 × 3), and randomly
split the data into 80%/10%/10% train/validation/test sets.
For the others, we follow the splits provided in the data,
with 10% of the training sets held out for validation.

Network architectures. We adopt the convolutional
neural networks for both encoder and decoder models for all
competing approaches. The main reason is that the convolu-
tional networks are believed to outperform fully connected
networks for many tasks on the image domain7 [17,29,34].
For the encoder architecture, we first apply L convolutional
layers with (4 × 4)-pixels kernels, followed by two fully-
connected layers with hidden layers dimension h. For the
decoder, the input images first go through two fully con-
nected layers, followed by L transposed convolutional lay-
ers with (4 × 4)-pixels filters. Here, L = 3 for all datasets
except CelebA (L = 4), and h = 256 for the MNIST/OM-
NIGLOT and h = 512 for the others. The deep kernel fea-
ture functions ψm,s(x) in our GPVAE model have exactly
the same architecture as the encoder network except that the
last fully connected layer is removed. This ensures that the
GP functions f(x) and h(x) have equal functional capac-
ity to the base encoder network since they are defined to be

6Results on CIFAR10 can be found in the Supplement.
7We empirically compared the two networks in the Supplement.
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Table 1. (MNIST & OMNIGLOT) Test log-likelihood scores (unit in nat). The figures in the parentheses next to model names indicate: the
number of SVI steps in SA, the number of flows in IAF and HF, and the number of mixture components in ME and RME. The superscripts
are the standard deviations. The best (on average) results are boldfaced in red. In each column, we perform the two-sided t-test to measure
the statistical significance of the difference between the best model (red) and each competing method. We depict those with p-values greater
than 0.01 as boldfaced blue (little evidence of difference). So, anything plain non-colored indicates p ≤ 0.01 (significantly different).

MNIST OMNIGLOT
DIM(z) = 10 DIM(z) = 20 DIM(z) = 50 DIM(z) = 10 DIM(z) = 20 DIM(z) = 50

VAE 685.11.8 930.73.9 1185.73.9 347.01.7 501.61.6 801.64.0

SA(1) 688.12.7 921.22.3 1172.11.8 344.11.4 499.32.5 792.77.9

SA(2) 682.21.5 932.02.4 1176.33.4 349.51.4 501.02.7 793.14.8

SA(4) 683.51.5 925.52.6 1171.33.5 342.11.0 488.21.8 794.41.9

SA(8) 684.61.5 928.13.9 1183.23.4 344.81.1 490.32.8 799.42.7

IAF(1) 687.31.1 934.03.3 1180.62.7 347.81.6 489.91.9 788.84.1

IAF(2) 677.71.6 931.43.7 1190.11.9 344.21.6 494.91.4 795.72.7

IAF(4) 685.01.5 926.32.6 1178.11.6 347.91.9 496.02.0 775.12.2

IAF(8) 689.71.4 934.12.4 1150.02.2 343.91.4 498.82.3 774.72.9

HF(1) 682.51.4 917.22.6 1204.34.0 335.51.2 488.62.0 795.93.3

HF(2) 677.62.2 923.93.1 1191.510.8 340.61.3 495.91.8 784.54.8

HF(4) 683.32.6 927.32.8 1197.21.5 343.31.2 487.02.7 799.73.2

HF(8) 679.61.5 928.53.1 1184.11.8 343.31.3 488.32.4 794.64.0

ME(2) 685.71.2 926.73.0 1152.81.7 344.21.5 491.71.4 793.43.8

ME(3) 678.52.5 933.14.1 1162.84.7 350.31.8 491.22.1 807.54.9

ME(4) 680.00.9 914.72.3 1205.12.3 337.71.1 491.31.8 732.03.1

ME(5) 682.01.7 920.61.9 1198.53.5 343.01.4 478.02.8 805.73.8

RME(2) 697.21.1 943.91.6 1201.70.9 349.31.5 508.21.2 821.03.1

RME(3) 698.21.1 945.11.6 1202.41.0 349.91.6 507.51.1 820.40.9

RME(4) 699.01.0 945.21.6 1203.11.0 350.71.7 509.01.2 819.90.9

RME(5) 699.42.1 945.01.7 1203.71.0 351.11.7 509.11.4 819.90.9

GPVAE 696.51.5 944.32.8 1212.93.2 354.81.5 516.32.1 821.84.4

products of the features and the Gaussian random weights
W and U. And, accordingly the feature dimension p is set
equal to h. The full covariance matrices of the variational
density q(W,U) are represented by Cholesky parametriza-
tion to ensure positive definiteness (e.g., Σ = LL⊤ where
L is a lower triangle matrix with strictly positive diagonals).

Experimental setup. The latent dimension is chosen
from {10, 20, 50}. To report the test log-likelihood scores,
we use the importance weighted estimation (IWAE)8 [1]
with 100 samples. For each model/dataset, we perform
10 runs with different random train/validation splits, where
each run consists of three trainings by starting with different
random model parameters, among which only one model
with the best validation result is chosen.

5.1. Results

The test log-likelihood scores are summarized in Table 1
(MNIST and OMNIGLOT), Table 2 (SVHN and CelebA).
Our GPVAE overall outperforms the competing approaches
consistently for all datasets. The performance of the semi-
amortized approach (SA) is mixed, sometimes achieving
improvement over VAE, but not consistently. SA’s perfor-
mance is very sensitive to the number of SVI gradient up-

8The details can be also found in the Supplement.

date steps, another drawback of the SA where the gradient-
based adaption has to be performed at test time. Although
one could adjust the gradient step size (currently we are us-
ing a fixed gradient step size) to improve the performance,
as far as we know, there is little principled way to tune
the step size at test time that can attain optimal accuracy
and inference time trade off. The flow-based models (IAF
and HF) adopt nonlinear invertible transformations to en-
rich the representational capacity of the variational poste-
rior. In principle, they are capable of representing highly
nonlinear non-Gaussian conditional densities, perhaps sub-
suming the true posteriors, via autoregressive flows (IAF)
and the Householder transformed full covariance matrices
(HF). However, their improvement in accuracy over the
VAE trails that of our GPVAE; they often perform only as
well as the VAE. The failure of the flow-based models might
be due to the difficulty in optimizing complex encoder mod-
els where similar observations were made in related previ-
ous work [11, 27]. This result suggests that sophisticated
and incremental learning criteria are critical, beyond just en-
larging the structural capacity of the neural networks. Our
GPVAE’s explicit modeling of the deviation of the base en-
coder density from the true posterior via GP noise processes
accomplishes this goal.

Similarly, despite its increased functional capacity, the
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Table 2. (SVHN & CelebA) Test log-likelihood scores. The same interpretation as Table 1.

SVHN CELEBA
DIM(z) = 10 DIM(z) = 20 DIM(z) = 50 DIM(z) = 10 DIM(z) = 20 DIM(z) = 50

VAE 3360.29.1 4054.514.3 5363.721.4 9767.736.0 12116.425.3 15251.939.7

SA(1) 3358.78.9 4031.519.0 5362.135.7 9735.221.4 12091.121.6 15285.829.4

SA(2) 3356.08.8 4041.515.5 5377.023.2 9754.220.4 12087.121.5 15252.729.0

SA(4) 3327.88.2 4051.922.2 5391.720.4 9769.120.6 12116.320.5 15187.327.9

SA(8) 3352.811.5 4041.69.5 5370.818.5 9744.819.4 12100.622.8 15096.527.2

IAF(1) 3377.18.4 4050.09.4 5368.311.5 9750.327.4 12098.020.6 15271.228.6

IAF(2) 3362.38.9 4054.610.5 5360.010.0 9794.423.3 12104.521.8 15262.227.8

IAF(4) 3346.18.7 4048.68.7 5338.110.2 9764.729.5 12094.622.6 15261.028.1

IAF(8) 3372.68.3 4042.09.6 5341.810.1 9764.021.6 12109.322.0 15241.527.9

HF(1) 3381.48.9 4028.89.7 5372.010.1 9748.329.5 12077.231.4 15240.527.6

HF(2) 3342.48.3 4030.79.9 5376.610.2 9765.825.6 12093.025.6 15258.230.3

HF(4) 3370.08.2 4038.49.7 5371.89.8 9754.323.8 12082.027.0 15266.529.5

HF(8) 3343.88.2 4035.98.9 5351.111.1 9737.524.5 12087.325.5 15248.729.7

ME(2) 3352.39.9 4037.211.0 5343.213.1 9825.320.7 12072.723.3 15290.529.3

ME(3) 3335.210.9 4053.816.1 5367.715.8 9797.622.3 12100.321.7 15294.628.3

ME(4) 3358.214.9 4061.312.0 5191.918.5 9834.925.4 12092.222.6 15270.720.6

ME(5) 3360.67.8 4057.512.2 5209.212.8 9717.023.2 12095.325.1 15268.827.5

RME(2) 3390.08.1 4085.39.7 5403.210.2 9837.924.6 12193.123.5 15363.031.7

RME(3) 3392.012.6 4085.99.8 5405.110.4 9838.525.0 12192.323.5 15365.631.4

RME(4) 3388.68.3 4080.79.9 5403.810.2 9849.512.1 12192.623.4 15364.331.5

RME(5) 3391.98.2 4086.910.9 5405.58.5 9843.525.0 12194.211.5 15366.212.7

GPVAE 3417.611.8 4133.213.3 5410.019.5 9843.423.8 12184.022.7 15370.927.6

mixture encoder (ME) also has difficulty in learning a good
model, being quite sensitive to the initial parameters. Ex-
cept for one case on CelebA with dim(z) = 10, it consis-
tently underperforms our GPVAE. The blind mixture esti-
mation can potentially suffer from collapsed mixture com-
ponents and dominant single component issues. The fact
that even the baseline VAE often performs comparably to
the ME with different mixture orders supports this obser-
vation. This, again, signifies the importance of employing
more incremental learning criteria, as done by our GPVAE’s
explicit modeling of the posterior deviation. The RME, by
following this direction of adopting an incremental learning
objective, performs equally well with our GPVAE on many
cases, but slightly underperforms ours on the others.

Inference time. Compared to semi-amortized methods,
our GP encoder is much faster as inference is accomplished
by a single feed forward pass through the encoder network.
Unlike the semi-amortized approaches where one has to
perform the SVI gradient adaptation at test time, in our GP-
VAE model, after the training stage, the posterior model is
fixed, with no further adaptation required. To verify compu-
tational speed-up over the semi-amortized approaches and
others, we measure the inference. The per-batch inference
times (batch size 128) on all benchmark datasets are shown
in Table 3. To report the results, for each method and each
dataset, we run inference over the entire test set batches,
measure the running time, then take the per-batch average.
We repeat the procedure five times and report the average.
All models are run on the same machine with a single GPU

Table 3. (Per-batch) Test inference time (unit in milliseconds) with
batch size 128. The latent dimension dim(z) = 50.

MNIST OMNIG. CIFAR10 SVHN CELEBA

VAE 3.6 4.8 3.7 2.2 2.7
SA(1) 9.7 11.6 9.8 7.0 8.4
SA(2) 18.1 19.2 16.8 15.5 13.8
SA(4) 32.2 34.4 27.9 30.1 27.1
SA(8) 60.8 65.7 60.5 60.3 53.8
IAF(1) 4.8 5.7 5.1 3.4 4.4
IAF(2) 5.9 6.4 5.6 3.7 5.1
IAF(4) 6.2 7.0 6.3 4.7 5.7
IAF(8) 7.7 8.2 7.6 5.7 7.7
GPVAE 9.9 10.2 9.3 8.0 9.2

(RTX 2080 Ti), Core i7 3.50GHz CPU, and 128 GB RAM.

Note that we only report test times for the latent dimen-
sion dim(z) = 50 since the impact of the latent dimension
appears to be less significant for all models except for our
GPVAE. In the GPVAE, the latent dimension can consider-
ably affect the inference time because of the matrix oper-
ations performed per latent dimension (c.f., (12)). Hence,
we consider the most complex (worst) case for our GPVAE
model, dim(z) = 50, the highest dimension in our exper-
imental setup. Most notably yet as expected, the semi-
amortized approach (SA) suffers from the computational
overhead of test time gradient updates, with the inference
time significantly growing as a function of the number of
increasing updates. Our GPVAE is significantly faster than
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Figure 1. Uncertainty vs. posterior approximation difficulty. After the GPVAE model is trained on MNIST with 2D latent space, we
evaluate the uncertainty TrV(f(x)|D) + TrV(h(x)|D), and depict six different instances x in the order of increasing uncertainty values.
Top panel shows the true posterior pθ(z|x) (contour plots) and the base encoder N (b(x), c(x)2) (red dots) superimposed (in log scale).
Bottom panel contains the original inputs x (left) and reconstructed images (right). For the cases with lower uncertainty, the true posteriors
are more Gaussian-like. On the other hand, the higher uncertainty cases have highly non-Gaussian true posteriors with multiple modes.

Table 4. Test data log-likelihood scores on Binary MNIST with “CNN” and “FC” networks.

VAE SA(1) SA(4) IAF(1) IAF(4) HF(1) HF(4) ME(2) ME(4) VLAE(2) VLAE(4) RME(2) RME(4) GPVAE

CNN -84.49 -83.64 -83.85 -83.37 -83.08 -83.82 -83.87 -83.77 -83.83 - - -83.14 -83.09 -83.18

FC -85.38 -85.20 -85.43 -84.26 -84.03 -85.27 -85.22 - - -83.72 -83.73 - - -

the SA with more than one SVI step, albeit on par or slower
than the flow-based IAF. We believe that the inference time
of the GPVAE can be further improved by more effective
implementations of the dimension-wise matrix operations9.

Uncertainty vs. posterior approximation difficulty.
Another important benefit of our Bayesian treatment is that
we can quantify the uncertainty in posterior approxima-
tion. Recall that our GP posterior p(f ,h|D) captures the
discrepancy between the base encoder N (b(x), c(x)2) and
the true posterior pθ(x) via the GP noise processes f(x)
and h(x). In particular, the variance V(f(x)|D)) (sim-
ilarly for h) at given input x, can serve as an indicator
that gauges the goodness of posterior approximation via
a single Gaussian. For instance, the large posterior vari-
ance (high uncertainty) implies that the posterior approxi-
mation is difficult, suggesting the true posterior is distinct
from a Gaussian (e.g., having multiple modes). On the
other hand, if the variance is small (low uncertainty), one
can anticipate that the true posterior might be close to a
Gaussian. Table 1 illustrates this intuition on the MNIST
with 2D latent space, where the uncertainty measured
by TrV(f(x)|D) + TrV(h(x)|D) accurately aligns with

Figure 2. True p(z|x) (contour) and
two approximates (blue/red).

non-Gaussianity of
the true posterior,
closely related
to the quality of
reconstruction.
For verification, in
Fig. 2 we visually

9Our current implementation uses for loop to iterate matrix operations
over latent dimensions, but can be potentially converted to block operations
without a loop, possibly with parallelization.

contrast the marginalized q(z|x) (blue) and the base en-
coder N (b(x), c(x)2) (red) on the 2D latent MNIST case.
Although they look similar, the marginalized one (blue)
has a better corrected covariance toward the true posterior
in case (b), which helps reducing the approximation error
further.

Results on Binary MNIST. Performance on binarized
input images is shown in Table 4. Our GPVAE performs
well compared to IAF and RME although the differences
among the competing approaches are not very pronounced
compared to real-valued image cases.

6. Conclusions
We proposed a novel Gaussian process encoder model to

significantly reduce the posterior approximation error of the
amortized inference in VAE, while being computationally
efficient. Our Bayesian treatment that regards the discrep-
ancy in posterior approximation as a random noise process,
leads to improvements in the accuracy of inference within
the fast amortized inference framework. It also offers the
ability to quantify the uncertainty (variance of stochastic
noise) in variational inference, intuitively interpreted as in-
herent difficulty in posterior approximation. There could be
more extensive experimental setups to be carried out, e.g.,
deeper network architectures, hierarchical models, or larg-
er/structured latent spaces. In this work we aimed to focus
on proving our concept mainly, and this was done with pop-
ular network architectures on benchmark datasets that we
used. We leave this extensive empirical study as our future
work. Another important future study not included in this
paper is the rigorous analysis of the impact of the series of
approximations that we used in our model.
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