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Figure 1. Qualitative comparison of InfoNeRF (ours) with other NeRF-based models [11,20,37] on the Lego, Materials, and Ficus scenes
of Realistic Synthetic 360◦ dataset in 4-view settings. Existing works often suffer from noise (b), color distortion (c), or blur effect (d),
while InfoNeRF (ours) achieves outstanding quality of rendered images with only a few input views. The last column (f) visualizes depth
maps estimated by InfoNeRF (ours), which provide clear boundaries and fine details of the objects.

Abstract

We present an information-theoretic regularization tech-
nique for few-shot novel view synthesis based on neural im-
plicit representation. The proposed approach minimizes po-
tential reconstruction inconsistency that happens due to in-
sufficient viewpoints by imposing the entropy constraint of
the density in each ray. In addition, to alleviate the poten-
tial degenerate issue when all training images are acquired
from almost redundant viewpoints, we further incorporate
the spatial smoothness constraint into the estimated images
by restricting information gains from additional rays with
slightly different viewpoints. The main idea of our algo-
rithm is to make reconstructed scenes compact along indi-
vidual rays and consistent across rays in the neighborhood.

The proposed regularizers can be plugged into most of exist-
ing neural volume rendering techniques based on NeRF in a
straightforward way. Despite its simplicity, we achieve con-
sistently improved performance compared to existing neural
view synthesis methods by large margins on multiple stan-
dard benchmarks. Our codes and models are available in
the project website1.

1. Introduction
Understanding 3D structure of a natural scene is a criti-

cal step for various high-level computer vision applications
including object recognition, photorealistic rendering, au-

1http://cvlab.snu.ac.kr/research/InfoNeRF
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tonomous driving, virtual reality, and many others. Recent
advance of deep learning capacitates high-fidelity 3D recon-
struction and recognition, but learning with 3D data is inher-
ently more difficult than its counterpart based on 2D images
due to unstructured nature of data format, high memory
requirement, and lack of principled architectures. Hence,
many researchers investigate the standard models with ap-
propriate training algorithms and the methods for reducing
their computational costs, and attempt to solve various chal-
lenging tasks.

Novel view synthesis based on neural implicit represen-
tations is one of the 3D learning tasks that draws a lot of at-
tention these days since Neural Radiance Field (NeRF) [20]
has been introduced. NeRF delivers accurate 3D recon-
struction results without explicit modeling of 3D scene
structures, but the requirement of many images captured
from multiple calibrated cameras hampers the applicabil-
ity of the method. Therefore, several recent approaches aim
to reduce the high computational cost and alleviate the con-
straints related to datasets [7, 11, 37].

In this line of research, we explore the few-shot prior-
free novel view synthesis task, where only a limited num-
ber of training images are accessible and other prior infor-
mation, such as object categories and semantic structures
of target scenes, are unavailable. There exist several prior
works for this task, but they either work barely with few ex-
amples [11] or require narrow baseline assumption to find
correspondences using an external module [7]. Other ap-
proaches rely on prior knowledge of scenes such as object
classes or features. For example, PixelNeRF [37] takes
advantage of the features extracted from seen images to
compensate for missing information in unseen views while
[14, 23] focus on a particular object class, e.g., human, in
novel view synthesis.

We address the fundamental drawbacks of existing few-
shot novel view synthesis methods: inconsistent reconstruc-
tion, which generates noise, blur, or artifacts in rendered
images, and overfitting to seen views, which leads to degen-
erate or trivial solutions. The proposed approach, referred
to as InfoNeRF, alleviates the reconstruction inconsistency
by imposing the sparsity on the estimated scene, which is
achieved by entropy minimization in each ray. The overfit-
ting issues are handled by enforcing the smoothness of the
reconstruction with respect to viewpoint changes, which is
controlled by minimizing information gains from a pair of
slightly different viewpoints. Figure 1 illustrates the out-
standing quality of rendered images and depth maps esti-
mated by our model, which delineates clear object bound-
aries and fine structures using only 4 input views with wide
baselines.

Overall, the main contributions and benefits of our algo-
rithm are summarized as follows:

• We propose a novel information-theoretic approach,

InfoNeRF, for the regularization of the neural implicit
representations for volume rendering. Our method
points out key drawbacks of the existing few-shot
novel view synthesis techniques, and introduces two
effective regularization schemes, ray entropy mini-
mization and ray information gain reduction.

• Since InfoNeRF is a generic regularization technique
and does not require any other external data structures,
e.g., voxels or meshes, or additional learnable parame-
ters, it can be applied to various neural volume render-
ing algorithms with and without scene prior.

• The proposed regularization technique turns out to
be effective to alleviate reconstruction inconsistency
across multiple views and prevent degenerate solutions
by overfitting despite its simplicity. We demonstrate
outstanding performance of InfoNeRF on several stan-
dard benchmarks for few-shot novel view synthesis.

• To our knowledge, InfoNeRF is the first NeRF variant
that performs few-shot novel view synthesis on wide-
baseline image datasets without prior information.

2. Related Work
2.1. Novel View Synthesis

Novel view synthesis aims to render realistic images via
geometric and photometric understanding of a 3D scene
given a set of training images. To address this problem,
light fields [15, 29, 35] or image-based rendering [3–6, 27]
approaches have been employed traditionally, and the ap-
proaches based on deep learning [8, 9, 39, 40] have re-
cently received growing attention. In particular, NeRF [20]
achieves photo-realistic rendering results by applying multi-
layer perceptrons to differentiable volume rendering suc-
cessfully. The following works attempt to extend NeRF in
various aspects, such as dynamic view synthesis [16], self-
calibrated view synthesis [33], real-time rendering [21, 34,
36], relighting [28], and anti-aliasing [1]. Although NeRF-
based models have achieved impressive performance, they
have a common drawback; they require dense scene sam-
pling, making them difficult to be applied in real-world sce-
narios. We address the few-shot volume rendering task to
improve applicability by reducing the need for many im-
ages captured by calibrated cameras.

2.2. Few-shot Novel View Synthesis

To synthesize novel views of a scene given sparse ob-
servations, some algorithms estimate depth maps from im-
ages since depth is valuable source for view synthesis and
3D reconstruction. Depth information plays a crucial role
in depth-guided image interpolation [9,24], multi-plane im-
age prediction [31], and learned geometry regularization in
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complicated scenes [7] for few-shot view synthesis. How-
ever, these methods require training images with depth su-
pervision or external depth estimation modules, e.g., multi-
view stereo or COLMAP SfM [25], and are susceptible to
large projection errors due to incorrect depth predictions.

To overcome the limitation, several approaches exploit
multi-view feature semantics by introducing an image en-
coder for NeRF to estimate color and opacity [14, 23, 37]
or achieve semantic consistency between seen images and
rendered novel views [11]. These strategies facilitate learn-
ing the semantic prior, and allow us to synthesize novel
views with only few-shot images. Unlike the aforemen-
tioned works, the proposed algorithm does not rely on any
prior information or additional pretrained encoders. Our
regularization technique is orthogonal to the other methods
discussed above and can be integrated into existing few-shot
volume rendering approaches straightforwardly.

Some explicit representation methods [17, 36] incorpo-
rate sparsity constraints for neural volume rendering, which
may also be useful for few-shot novel-view synthesis, al-
though they do not directly address the task. Yu et al. [36]
adopt a variation of the octree structure with a sparsity prior
loss to remove a subset of nodes in the tree corresponding to
unobserved regions. On the other hand, Lombardi et al. [17]
conduct ray marching through voxel grids for volume ren-
dering and regularize the total variation of voxel opacities
by enforcing sparse spatial gradient. Our method also em-
ploy sparsity via entropy constraints, but is more generic
than the explicit methods because our algorithm does not
require external data structures and suffer from memory
bound to store explicit representations.

3. Preliminaries: NeRF

Neural Radiance Fields (NeRF) [20] is a novel frame-
work to represent a 3D scene with a neural implicit function,
where a neural network f(·, ·), typically given by an MLP,
maps a 3D point x = (x, y, z) and a unit viewing direction
d = (θ, ϕ) to a volume density σ as well as an emitted RGB
color c = (r, g, b). Following the classical volume render-
ing theory [19], the rendered RGB color of a target pixel
is obtained by integrating colors and densities along a ray.
In practice, since the output value (c, σ) of all continuous
points on a ray is not observable, a subset of points are sam-
pled and the rendered color of the ray is approximated by
using the quadrature rule as follows:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (1)

where r denotes a ray, N is the number of samples, and δi
is the distance between the ith point and its adjacent sample.
Note that Ti indicates the accumulated transmittance along

the ray until the ith point, which is given by

Ti =

i−1∑
j=1

σjδj (2)

The points on the ray are sampled in a two-stage hierar-
chical manner to increase rendering efficiency. In the first
stage, the points are sampled uniformly while, in the sec-
ond stage, the importance sampling is performed based on
the density estimated in the first stage. Since all processes
are fully differentiable, the neural networks encoding radi-
ance fields are optimized with the following objective:

LRGB =
1

|R|
∑
r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥2
2

(3)

where R denotes a set of rays. Note that the positional en-
coding is also employed before the MLP to map an input
coordinate (x,d) onto a higher dimensional space, which is
helpful to represent high-frequency scenes.

Although NeRF [20] achieves outstanding photorealistic
view synthesis results, it requires a lot of images densely
captured by calibrated cameras in general. To alleviate this
data acquisition issue, we propose a simple yet effective
few-shot novel view synthesis approach.

4. Proposed Method
Our approach learns a robust neural volume rendering

model based only on a few input images without any prior
knowledge about a scene. We focus on how to alleviate the
reconstruction inconsistency given by lack of input views
and the degeneracy induced by overfitting. This section dis-
cusses the proposed information-theoretic regularizations
imposed on NeRF-based models to achieve our goals.

4.1. Motivation

Due to the small number of views available, few-shot 3D
reconstruction and volume rendering are inherently prone
to result in noisy estimations and degenerate solutions. For
example, Figure 2a shows that NeRF fails to reconstruct the
3D scene accurately, mainly due to insufficient viewpoints.
In addition, the learned model is severely overfit to seen
images and converges to a degenerate solution, especially
when the viewpoints of training images are similar to each
other. Consequently, the rendering fails with only a slight
change of view as illustrated in Figure 2b.

4.2. Regularization by Ray Entropy Minimization

To alleviate the reconstruction inconsistency, we impose
the sparsity constraint on the reconstructed scene, which
is achieved by minimizing the entropy of each ray density
function using additional regularization terms. This con-
straint is reasonable because only a small subset of sampled
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(a) Rendered RGB and depth images estimated by NeRF [20] on
the Realistic Synthetic 360◦ dataset in a 4-view setting.

(b) Rendered RGB images for two slightly different viewpoints (left: seen, right: un-
seen) estimated by NeRF [20] on the DTU dataset in a 3-view setting.

Figure 2. Typical drawbacks of NeRF in the few-shot volume rendering. We are motivated by the following two observations and alleviate
the limitations by adding two regularizers in this work. (a) Few-shot NeRF suffers from significant noise in 3D depth estimation, which
leads to noisy rendering. (b) Few-shot NeRF provides completely different rendering results between slightly different viewpoints because
it extremely overfits to seen input views.

points along a ray hit objects or background in a scene and
the rest of points are likely to observe noise.

Ray density Before discussing the ray entropy, we first
define the normalized ray density denoted by p(r) as fol-
lows:

p(ri) =
αi∑
j αj

=
1− exp (−σiδi)∑
j 1− exp (−σjδj)

, (4)

where ri (i = 1, . . . , N ) is a sampled point in a ray, σi is
the observed density at ri, δi is a sampling interval around
ri, and αi ≡ 1 − exp(−σiδi) is the opacity at ri. The
points on the ray are sampled in a two-stage manner, which
are drawn from the uniform distribution followed by from
the distribution of opacity as in [20]. Note that we actually
utilize the opacity αi to compute p(ri) in (4), instead of the
density σi, to consider the irregular sampling interval δi.

Ray entropy Following Shannon Entropy [26], we define
the entropy of a discrete ray density function given by

H(r) = −
N∑
i=1

p(ri) log p(ri). (5)

Because σ and δ values are already calculated to conduct
volume rendering procedure in (1), the computation of ray
entropy incurs only negligible additional cost.

Disregarding non-hitting rays One issue in ray entropy
minimization is that some rays are enforced to have low en-
tropy though they do not hit any objects in the scene. To
prevent the potential artifacts induced by this issue, we sim-
ply disregard the rays with low density for the entropy mini-
mization. Formally, we employ a mask variable M(·) to in-
dicate the rays that have sufficient observations of the scene,

which is based on the opacity as follows:

M(r) =

{
1 if Q(r) > ϵ

0 otherwise
, (6)

where

Q(r) =

N∑
i=1

1− exp (−σiδi) (7)

denotes the cumulative ray density.

Ray entropy loss Based on the ray entropy computed in
(5), our ray entropy minimization loss is defined as follows:

Lentropy =
1

|Rs|+ |Ru|
∑

r∈Rs∪Ru

M(r)⊙H(r), (8)

where Rs denotes a set of rays from training images, Ru

denotes a set of rays from randomly sampled unseen im-
ages, and ⊙ indicates element-wise multiplication. Note
that, NeRF-based models are unavailable to use rays from
the unseen images due to the lack of their ground-truths of
pixel colors, while our model can utilize them since entropy
regularization does not require the ground-truths. We ob-
serve that it is beneficial to utilize the rays even from the
unobserved viewpoint for better scene reconstruction.

Comparison with existing methods There exist only a
few prior works that impose constraints on scene represen-
tations or models, but their objectives are different from
ours [17, 36], e.g., focusing on improving reconstruction
quality and/or achieving real-time processing without con-
sidering few-shot training scenarios. In addition, since they
rely on 3D volume entropy based on voxel representations,
they have to draw a large number of samples to estimate
3D density or occupancy map, resulting in heavy compu-
tational cost in terms of both space and time complexities.
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On the other hand, InfoNeRF employs the entropy mini-
mization along a ray via 1D sampling and consequently, it
runs very efficiently compared to the methods based on 3D
volume entropy.

4.3. Regularization by Information Gain Reduction

According to our observations, when the training images
have sufficiently diverse viewpoints, the proposed entropy
regularization is very helpful to improve the quality of both
rendered images and 3D depth estimation in the few-shot
setting. However, if all the training images have similar
viewpoints to each other, the models are prone to overfit to
seen images and fail to generalize to unseen views. This
is probably because the lack of diverse observations makes
the trained models find degenerate and trivial solutions.

To alleviate the aforementioned limitations, we intro-
duce an additional regularization term to assure the consis-
tent density distribution across rays in the neighborhood.
Given an observed ray r, we sample another ray with a
slightly different viewpoint, denoted by r̃, and minimize
the KL-divergence between the density functions of the two
rays. The motivation of this objective is to make the ob-
servations from two similar viewpoints sufficiently consis-
tent so that the model is generalized to a nearby viewpoint,
which is achieved by enforcing smoothness to reconstruc-
tion results over spatial view perturbations.

The regularization loss for information gain reduction is
given by

LKL = DKL

(
P (r)||P (r̃)

)
=

N∑
i=1

p(ri) log
p(ri)

p(r̃i)
, (9)

where r̃i is a sampled point for observation in ray r̃. In our
implementation, we obtain r̃ by slightly rotating the camera
pose of r in the range from −5◦ to 5◦.

4.4. Overall Objective

The total loss function to train a neural implicit model
for few-shot neural volume rendering is given by

Ltotal = LRGB + λ1Lentropy + λ2LKL, (10)

where λ1 and λ2 are balancing terms for our regularization
terms. As mentioned in (3), the reconstruction loss, denoted
by LRGB, is given by

LRGB =
1

|Rs|
∑
r∈Rs

∥∥∥C(r)− Ĉ(r)
∥∥∥2
2
, (11)

which uses only a set of rays from training images with
pixel-level ground-truth, unlike Lentropy and LKL which uti-
lize the rays even from unobserved viewpoints.

5. Experiments
We demonstrate the effectiveness of the proposed ap-

proach, referred to as InfoNeRF, on the standard bench-
marks. This section also discusses the characteristics of our
algorithm based on the experiment results.

5.1. Datasets

We describe the details of three benchmarks employed
to evaluate our algorithm, which include the Realistic Syn-
thetic 360◦ [20], ZJU-MoCap [23], and DTU [12] datasets.

Realistic Synthetic 360◦ This benchmark is common for
neural volume rendering, which contains 8 synthetic scenes
with view-dependent light transport effects. Each scene
has an object at the center and 400 rendered images from
inward-facing virtual cameras with different viewpoints.
For few-shot training, we randomly sample 4 viewpoints
out of 100 training images in each scene, and use the 200
testing images for evaluation.

ZJU-MoCap This dataset consists of multi-view videos
capturing human motion from 23 calibrated cameras. Fol-
lowing [23], we sample 4 uniformly distributed viewpoints
to construct a training set and use the remaining images for
testing.

DTU MVS Dataset (DTU) The images in this dataset
contain complex and real-world scenes captured by the cal-
ibrated cameras in controlled environments. All the col-
lected images have similar viewpoints and face only one
side of a scene. We conduct experiments on 15 scenes,
where we optimize the model with 3 images out of 49 views
while testing with the remaining 46 views.

5.2. Implementation and Evaluation

Implementation details Our implementation is based on
PyTorch [22]. We use Adam optimizer [13] with the initial
learning rate of 5× 10−4, which decays exponentially by a
factor of 10 at every 250,000 iterations. The balancing term
for LKL is decayed by a factor of 2 at every 5,000 iterations.
We set the number of rays from seen and unobserved views,
denoted respectively by |Rs| and |Ru|, identically to 1024,
and our experiments are conducted with a single NVIDIA
Titan XP GPU.

Metrics We evaluate the novel view rendering quality
based on the standard image quality metrics, peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [32].
We also use perceptual metrics, learned perceptual image
patch similarity (LPIPS) [38], Frèchet inception distance
(FID) [10], and kernel inception distance (KID) [2]. LPIPS
estimates normalized features distance between image pair
while FID and KID compute the distance in Inception rep-
resentations [30] between two sets of images.

12916



Table 1. Experimental results of few-shot novel view synthesis on the Realistic Synthetic 360◦ dataset in the 4-view setting. Our approach
outperforms all other existing methods by significant margins in all image quality metrics. The asterisk (∗) denotes that the model is
pretrained on an external training dataset with dense input views and finet-uned on this dataset with 4 input views. We run all experimental
five times with different viewpoint samples and the same hyperparameters, and compute the average scores and their standard deviations.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
NeRF, 100 views 31.01 0.947 0.081 42.83 0.002
PixelNeRF∗ [37] 16.09±0.78 0.738±0.012 0.390±0.030 265.25±6.73 0.127±0.006

NeRF [20] 15.93±1.06 0.780±0.014 0.320±0.049 215.16±2.32 0.074±0.012
DietNeRF [11] 16.06±1.13 0.793±0.019 0.306±0.050 197.02±12.87 0.065±0.004

InfoNeRF (ours) 18.65±0.18 0.811±0.008 0.230±0.008 181.47±4.97 0.062±0.004

Table 2. Average PSNRs and standard deviations of individual scenes on the Realistic Synthetic 360◦ dataset in the 4-view setting.

Method Lego Chair Drums Ficus Hotdog Materials Mic Ship Avg.
NeRF, 100 views 32.54 33.00 25.01 30.13 36.18 29.62 32.91 28.65 31.01
PixelNeRF∗ [37] 15.14±0.75 18.87±1.38 15.10±0.63 16.60±0.70 19.37±1.78 12.31±1.02 16.35±0.97 14.96±0.75 16.09±0.78

NeRF [20] 15.61±4.53 18.57±1.64 12.50±0.98 16.37±2.24 19.64±2.26 15.65±4.16 14.78±2.37 14.30±4.04 15.93±1.06
DietNeRF [11] 17.13±4.77 19.37±3.12 13.74±1.55 15.76±3.56 18.24±5.28 15.00±5.18 17.71±1.55 11.51±4.27 16.06±1.13

InfoNeRF (ours) 18.92±0.51 20.06±1.11 14.33±0.62 19.41±0.07 21.30±2.31 18.34±0.88 18.55±1.71 18.27±0.71 18.65±0.18

5.3. Results

5.3.1 Realistic Synthetic 360◦

We compare our approach with NeRF [20], DietNeRF [11],
and PixelNeRF [37] on Realistic Synthetic 360◦ dataset.
NeRF, DietNeRF, and InfoNeRF (ours) are trained with ran-
domly sampled 4 views from scratch. Unlike others, Pixel-
NeRF is pretrained on the DTU [12] dataset with dense in-
put views, and we fine-tune the model with 4 sampled views
to handle the domain shift issue between the two datasets.

Table 1 presents overall quantitative results, where In-
foNeRF consistently outperforms the baseline algorithms in
terms of all metrics with considerable margins while having
lower standard deviations. Table 2 breaks down the PSNU
scores into 8 individual scenes, where InfoNeRF obviously
achieves significant gains for all scenes. Refer to our sup-
plementary document for the results of SSIM and LPIPS,
which have the same tendencies.

Figure 1 demonstrates the qualitative results on the novel
viewpoints, where InfoNeRF shows outstanding quality in
the rendered images compared to all the compared methods.
As illustrated in Figure 1(f), the quality of the depth maps
estimated by InfoNeRF looks impressive while we notice
that all the compared algorithms often fail to reconstruct
3D structures accurately and DietNeRF even has color dis-
tortion due to its high-level semantic consistency loss.

5.3.2 ZJU-MoCap

For the ZJU-MoCap dataset, InfoNeRF is evaluated in com-
parison with NeRF [20], Neural Volume (NV) [17], and
Neural Body (NB) [23], where all algorithms are trained
with 4 images. Note that, since NB employs a pretrained

Table 3. Quantitative comparison on the ZJU-MoCap dataset in
the 4-view setting. NB [23] has the geometric prior by exploiting
the pretrained human body model (SMPL).

Method Prior PSNR ↑ SSIM ↑ LPIPS ↓
NB [23] ✓ 24.18 0.888 0.182

NeRF [20] 20.19 0.794 0.309
NV [17] 21.74 0.827 0.253

InfoNeRF (ours) 22.88 0.838 0.242

human body model denoted by SMPL [18] as its prior, the
performance of NB can be regarded as the upper-bound of
all other methods.

Table 3 summarizes the experimental results on the ZJU-
MoCap dataset, where InfoNeRF achieves the best perfor-
mance among the methods without using the prior in terms
of all the tested metrics. Figure 3 demonstrates the quali-
tative results of all the compared methods, and the recon-
struction result given by InfoNeRF is particularly accurate.

5.3.3 DTU MVS Dataset (DTU)

Contrary to the other two datasets, DTU has substantially
different characteristics because the images in each scene
have similar viewpoints. PixelNeRF takes advantage of this
property and learns the scene-agnostic model successfully
while the original NeRF exhibits poor generalization per-
formance in this dataset with few-shot learning.

We compare our algorithms with NeRF and PixelNeRF
in this dataset. We train InfoNeRF and NeRF from scratch
without exploiting any scene prior, so it is not possible to re-
construct invisible parts of the scene. Therefore, the naı̈ve
evaluation of the algorithms without scene prior is not de-
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(a) Ground-truth (b) NeRF [20] (c) NV [17] (d) InfoNeRF (ours) (e) NB [23]

Figure 3. Qualitative comparison on the ZJU-MoCap dataset in 4-view setting. We visualize the rendering results of prior-free algorithms
(b-d) including ours, and prior-based algorithm (e). While existing prior-free algorithms (b-c) often suffer from inconsistent reconstruction
and missing parts of the human body, InfoNeRF manages to render most of the human body comparable to prior-based algorithm (e).

Table 4. Quantitative comparison on the DTU dataset in 3-view
setting. PixelNeRF [37] has the dataset prior by pretraining on
other scenes of DTU with dense input views.

Method Prior PSNR ↑ SSIM ↑ LPIPS ↓
PixelNeRF [37] ✓ 19.55 0.724 0.286

NeRF [20] 8.50 0.426 0.611
InfoNeRF (ours) 11.23 0.445 0.543

sirable and we use the mask corresponding to the visible
parts of each scene for the evaluation performance. Table 4
presents the experimental results on the DTU dataset, where
our algorithm achieves outstanding performance compared
to NeRF. Note that PixelNeRF achieves the highest perfor-
mance because it exploits the dataset prior by pretraining on
the training split of DTU with dense input views.

5.4. Analysis

Effect of unseen view sampling To verify the effective-
ness of sampling from unseen viewpoints for entropy mini-
mization, we run our algorithm by varying the number of
rays from unseen views on the Chair scene of Realistic
Synthetic 360◦ with the images reduced to half. Table 5
presents that increasing the number of rays from the unseen
views achieves gradual improvement by alleviating the re-
construction inconsistency but its benefit is saturated when
the number of rays is larger than 1,024. Figure 4 visualizes
the benefit of sampling additional rays for unseen views; the
use of the rays is helpful for noise reduction in this example.

Benefit of regularization We analyze the impact of the
proposed regularization schemes, ray entropy minimization
loss, Lentropy, and ray information gain reduction loss, LKL.
Table 6 shows the ablative results of InfoNeRF on the DTU
dataset. The entropy minimization loss successfully im-
proves PSNR, but the SSIM value gets worse on this dataset.
This is because the models are prone to overfit to the seen
images when all the training images have similar viewpoints
to each other. However, thanks to our information gain re-

Table 5. Impact of the number of rays sampled from unseen view-
points on the Chair scene of Realistic Synthetic 360◦ in a 4-view
setting. We fix the number of rays for seen views to 1,024 and vary
the number of rays for unseen views. Bold and underline indicate
the first and second place among the results, respectively.

# of seen rays # of unseen rays PSNR ↑ SSIM ↑ LPIPS ↓

1024

0 20.14 0.834 0.225
256 20.97 0.844 0.197
512 21.11 0.851 0.188

1024 21.37 0.853 0.185
2048 21.33 0.855 0.167

(a) seen view (b) seen view + unseen view

Figure 4. Benefit of sampling rays for unseen viewpoints. We
visualize the rendered images on the Chair scene of Realistic Syn-
thetic 360◦ dataset, where the noise in the background area is re-
moved completely after adding the rays from unseen viewpoints.

duction loss that enforces smoothness to reconstruction re-
sults over spatial view perturbations, our full model helps
alleviate the overfitting issue and prevent degenerate solu-
tions. Note that, in the other two datasets with substantial
viewpoint variations, the entropy minimization loss works
well while the information gain reduction loss makes minor
contribution in general. Figure 5 visualizes the rendering
quality of InfoNeRF in comparison to its ablative models
on the DTU dataset. Although InfoNeRF without the infor-
mation gain reduction loss tends to generate crisp images,
there exists a lot of noise in the outputs and inconsistency
in the depth maps. On the other hand, our full algorithm
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(a) Ground-truth (b) NeRF [20] (c) InfoNeRF w/o LKL (d) InfoNeRF

Figure 5. Qualitative comparisons of our method with its ablative models on the DTU dataset in the 3-view setting. We visualize the
image synthesis (left) and the depth estimation (right) results for each algorithm. While NeRF suffers from noises, blurs, and artifacts to
reconstruct 3D structure, our two loss terms, Lentropy and LKL, contribute to outstanding rendering quality and fine depth estimation results.

Table 6. Ablative results of our regularization schemes on the DTU
dataset in a 3-view setting.

Method Lentropy LKL PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 8.50 0.426 0.611

InfoNeRF w/o Lentropy ✓ 8.91 0.439 0.581
InfoNeRF w/o LKL ✓ 10.54 0.418 0.561

InfoNeRF ✓ ✓ 11.23 0.445 0.543

2 4 6 8 10 12 14 16
The number of training views

10

15

20

25
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NR

 (d
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Figure 6. PSNR with respect to the number of views for training
on the Realistic Synthetic 360◦ dataset.

manages to reconstruct the overall shape and geometry of
the scene more accurately. Refer to Table C of the supple-
mentary document for more detailed ablation results on the
Realistic Synthetic 360◦ dataset.

Robustness to the number of views Figure 6 illustrates
performance of InfoNeRF by varying the number of views
for training on the Realistic Synthetic 360◦. Compared to
NeRF, InfoNeRF illustrates improved results in terms of all
metrics until 8 views, but its merit is saturated as the number
of views increases. This is partly because the uncertainty of
the reconstructed scene decreases as the number of training
views increases, weakening the importance of entropy regu-
larization. See Table D of our supplementary document for
SSIM and LPIPS results.

Integration into PixelNeRF To demonstrate the general-
ity of our method, we incorporate the proposed regulariza-
tion method to PixelNeRF [37], and refer to this version of
our model as InfoPixelNeRF. Figure 7 illustrates qualitative

Figure 7. Qualitative comparison on the Drums scene in the Re-
alistic Synthetic 360◦ dataset. InfoPixelNeRF (right) reduces blur
significantly compared to PixelNeRF (left), which demonstrates
the effectiveness of our regularization schemes.

comparisons between both models, where InfoPixelNeRF
reduces blur in the rendered image significantly. Table E of
our supplementary file presents detailed comparisons.

6. Conclusion
We proposed an information-theoretic regularization

technique for few-shot novel view synthesis. Existing few-
shot view synthesis methods suffer from inconsistent recon-
struction, which often generates noise, blur, or artifacts in
rendered images, and overfitting to seen views, which leads
to degenerate solutions. To address these issues, we in-
troduced two effective regularization schemes, ray entropy
minimization and ray information gain reduction. Despite
its simplicity, the proposed method turns out to be effec-
tive to alleviate reconstruction inconsistency across views.
We demonstrated outstanding performance of our method
on multiple standard benchmarks, and also conducted a de-
tailed analysis of our approach via extensive analysis.
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