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Abstract

We present a novel Transformer-based network architec-
ture for instance-aware image-to-image translation, dubbed
InstaFormer, to effectively integrate global- and instance-
level information. By considering extracted content fea-
tures from an image as tokens, our networks discover global
consensus of content features by considering context infor-
mation through a self-attention module in Transformers.
By augmenting such tokens with an instance-level feature
extracted from the content feature with respect to bound-
ing box information, our framework is capable of learn-
ing an interaction between object instances and the global
image, thus boosting the instance-awareness. We replace
layer normalization (LayerNorm) in standard Transformers
with adaptive instance normalization (AdaIN) to enable a
multi-modal translation with style codes. In addition, to
improve the instance-awareness and translation quality at
object regions, we present an instance-level content con-
trastive loss defined between input and translated image.
We conduct experiments to demonstrate the effectiveness of
our InstaFormer over the latest methods and provide exten-
sive ablation studies.

1. Introduction

For a decade, image-to-image translation (I2I), aiming at
translating an image in one domain (i.e., source) to another
domain (i.e., target), has been popularly studied, to the point
of being deployed in numerous applications, such as style
transfer [14, 21], super-resolution [11, 30], inpainting [24,
44], or colorization [62, 63].

In particular, most recent works have focused on de-
signing better disentangled representation to learn a multi-
modal translation from unpaired training data [22, 33, 43].
While they have demonstrated promising results, most of
these methods only consider the translation on an whole im-
age, and do not account for the fact that an image often con-
tain many object instances of various sizes, thus showing
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Figure 1. Results of InstaFormer for instance-aware image-to-
image translation. Our InstaFormer effectively considers global-
and instance-level information with Transformers, which enables
high quality instance-level translation.

the limited performance at content-rich scene translation,
e.g., driving scene, which is critical for some downstream
tasks, such as domain adaptive object detection [3], that re-
quire well-translated object instances.

To address the aforementioned issues, some methods [3,
27, 49] seek to explicitly consider an object instance in an
image within deep convolutional neural networks (CNNs).
This trend was initiated by instance-aware I2I (INIT) [49],
which treats the object instance and global image sepa-
rately. Following this [49], some variants were proposed,
e.g., jointly learning translation networks and object de-
tection networks, called detection-based unsupervised I2I
(DUNIT) [3], or using an external memory module, called
memory-guided unsupervised I2I (MGUIT) [27]. While
these methods improve an instance-awareness to some ex-
tent, they inherit limitation of CNN-based architectures [3,
27,49], e.g., local receptive fields or limited encoding of re-
lationships or interactions between pixels or patches within
an image which are critical in differentiating an object in-
stance from an whole image and boosting its translation.

To tackle these limitations, for the first time, we present
to utilize Transformer [53] architecture within I2I networks
that effectively integrates global- and instance-level infor-
mation present in an image, dubbed InstaFormer. We follow
common disentangled representation approaches [22, 33]
to extract both content and style vectors. By consider-
ing extracted content features from an image as tokens,
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our Transformer-based aggregator mixes them to discover
global consensus by considering global context information
through a self-attention module, thus boosting the instance-
awareness during translation. In addition, by augmenting
such tokens by an instance-level feature extracted from the
global content feature with respect to bounding box infor-
mation, our framework is able to learn an interaction be-
tween not only object instance and global image, but also
different instances, followed by a position embedding tech-
nique to consider both global- and instance-level patches at
once, which helps the networks to better focus on the object
instance regions. We also replace layer normalization (Lay-
erNorm) [1] in Transformers with adaptive instance nor-
malization (AdaIN) [21] to facilitate a multi-modal trans-
lation with extracted or random style vectors. Since aggre-
gating raw content and style vectors directly with Trans-
formers requires extremely large computation [12, 29], we
further propose to apply a convolutional patch embedding
and deconvolutional module at the beginning and end of
our Transformer-based aggregator. In addition, to improve
the instance-awareness and quality of translation images at
object regions, we present an instance-level content con-
trastive loss defined between input and translated images.

In experiments, we demonstrate our framework on sev-
eral benchmarks [8,15,49] that contain content-rich scenes.
Experimental results on various benchmarks prove the ef-
fectiveness of the proposed model over the latest methods
for instance-aware I2I. We also provide an ablation study to
validate and analyze components in our model.

2. Related Work

Image-to-Image Translation. While early efforts for I2I
are based on supervised learning [26], most recent state-of-
the-arts focus on unpaired settings [2,13,37,61,65,67]. Cy-
cleGAN [68] attempts this by proposing a cycle-consistency
loss which has been one of standard losses for unpaired I2I.
Inspired by CycleGAN, numerous methods utilize cycle-
consistency [7, 20, 22, 31, 33, 59], and they can be largely
divided into uni-modal models [36,59,61] and multi-modal
models [7, 22, 33] methods. Specifically, MUNIT [22] as-
sumes that an image representation can be disentangled into
a domain-specific style and a domain-invariant content rep-
resentation and uses these disentangled latent features with
cycle-consistency to generate the translations. However,
the content in translated image can be easily distorted, and
cycle mapping requires multiple generators and discrim-
inators. To address these, CUT [43]and F-LSeSim [65]
propose novel losses inspired by infoNCE [42] to directly
compute distance between input and translated images in
an one-side framework without cycle-consistency. How-
ever, they still have shown limited performance to encode
an object-awareness at the translated image.

Instance-Aware Image-to-Image Translation. Some
methods attempted to address the aforementioned issues [3,
27,41,49]. INIT [49] attempted to translate the whole image
and object instances independently. DUNIT [3] proposed
to further train detection module and adopted instance-
consistency loss for object-awareness. MGUIT [27] utilizes
bounding box to read and write class-wise memory mod-
ule, and has access to class-aware features on memory at
test-time. The aforementioned methods inherit limitation of
CNN-based architecture, e.g., local receptive fields or lim-
ited encoding of relationships or interactions within an im-
age [22, 33, 68].

Vision Transformers and Image Generation Recently,
Vision Transformers (ViT) have shown to attain highly
competitive performance for a wide range of vision appli-
cations, such as image classification [10, 12, 52, 55], object
detection [5, 9, 69], and semantic segmentation [58, 66]. In-
spired by ViT [12], some improvements are made to im-
prove the computational complexity [29, 38, 54, 55]. For
example, Swin Transformer [38] proposes relative posi-
tion biases, and restricts self-attentioncomputation within
shifted windows. MLP-Mixer [50] suggests to replace self-
attention with an MLP, achieving memory efficiency and
competitive performance [35, 39, 51]. In this paper, we in-
troduce ViT-based aggregator to further enhance to learn
instance-awareness by aggregating information from local
region as well as global image.

On the other hands, there exist several efforts to adapt Vi-
sion Transformers to image generation tasks [6, 23, 28, 34,
64]. As seminal work, TransGAN [28] first presents a GAN
structure using pure Transformer, but has only validated on
low-resolution images. [64] has achieved success on gener-
ating high-resolution images. [23] leverages Transformers
to build the bipartite structure to allow long-range interac-
tions. To our best knowledge, our work is the first attempt
to adopt Transformers in instance-aware image translation.

3. Methodology
3.1. Overview

Our approach aims to learn a multi-modal mapping be-
tween two domains X ⊂ RH×W×3 and Y ⊂ RH×W×3

without paired training data, but with a dataset of unpaired
instances X = {x ∈ X} and Y = {y ∈ Y}. Especially, we
wish to model such a mapping function to have an ability
that jointly accounts for whole image and object instances.
Unlike conventional I2I methods [3, 16, 22, 27, 33, 49] that
were formulated in a two-sided framework to exploit a
cycle-consistency constraint, which often generates some
distortions on the translated images and requires auxiliary
networks for inverse mapping [68], we formulate our ap-
proach in an one-sided framework [43].

In specific, as illustrated in Fig. 2, our framework,
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Figure 2. Network configuration: (a) overall architecture for image-to-image translation, (b) ViT encoder block in details. Our networks
consist of content encoder, Transformer encoder, and generator. The gray background represents the test phase, where we have no access
on object instance bounding box (Best viewed in color).

dubbed InstaFormer, consists of content encoder E and gen-
erator G, similar to [43, 65], and additional encoder T with
Transformers [53] to improve the instance-awareness by
considering global consensus between whole image and ob-
ject instances. To translate an image x in domain X to do-
main Y , our framework first extracts a content feature map
c = E(x) ∈ Rh×w×lc from x, with height h, width w,
and lc channels, and randomly draws a style latent code
s ∈ R1×1×ls from the prior distribution q(s) ∼ N (0, I)
to achieve a multi-modal translation. Instead of directly
feeding c and s to the generator G, as done in the litera-
ture [22, 33], we aggregate information in the content c to
discover global consensus between the global image and
object instances in a manner that we first extract an ob-
ject instance content vector cinsi for i-th object bounding
box with parameters Bi = [xi, yi, hi, wi], where (xi, yi)
represent a center point, and hi and wi represent height
and width of the box and i ∈ 1, ..., N where N is the
number of instance, and then mix {c, {cinsi }i, s} through
the proposed Transformer module T to extract global em-
bedding u and instance embedding uins

i , which are inde-
pendently used to generate global-level translated image
ŷ = G(u) ∈ Rh×w×3 and instance-level translated images
ŷins
i = G(uins

i ) ∈ Rhi×wi×3. In our framework, during
training, we have access to the ground-truth object bound-
ing boxes, while we do not access them at test-time.

To train our networks, we first use an adversarial loss de-
fined between a translated image ŷ and a real image y from
Y with discriminators, and a global content contrastive loss
defined between x and ŷ to preserve the global content. To
improve the disentanglement ability for content and style,

following [22], we also use both image reconstruction loss
and style reconstruction loss by leveraging an additional
style encoder for Y . To improve the instance-awareness and
the quality of translation images at object instance regions,
we newly present an instance-level content contrastive loss
between x and ŷ.

3.2. Content and Style Mixing with Transformers

Most existing I2I methods [3,22,27,33,43,49] attempted
to aggregate a content feature map with deep CNNs with
residual connections, which are often called residual blocks,
often inserted between encoder and generator networks.
They are thus limited in the sense that they inherit limita-
tion of CNN-based architecture, e.g., local receptive fields
or limited encoding of relationships or interactions between
pixels and patches within an image [22,33,49]. In instance-
aware I2I task, enlarging the receptive fields and encoding
an interaction between objects and global image may be of
prime importance. For instance, if an image contains a car
object on the road, using the context information of not only
global background, e.g., road, but also other instances, e.g.,
other cars or person, would definitely help to translate the
image more focusing on the instance, but existing CNN-
based methods [22, 33, 43] would limitedly handle this.

To overcome this, we present to utilize Transformer ar-
chitecture [53] to enlarge the receptive fields and encode the
interaction between features for instance-aware I2I. To this
end, extracted content vector c ∈ Rh×w×lc from x can be
flattened as a sequence c′ = Reshpae(c) with the number
of tokens hw and channel lc, which can be directly used as
input for Transformers. However, this requires extremely
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Figure 3. Visualization of learned self-attention. For (a) content image containing instances A and B, our networks generate (b) translated
image, considering attention maps (c,d) without Lins

NCE and (e,f) with Lins
NCE for instance A, B, respectively.

high computational complexity due to the huge number of
tokens hw, e.g., full HD translation.

Patch Embedding and Expanding. To address this is-
sue, inspired by a patch embedding in ViT [12], we first
apply sequential convolutional blocks to reduce the spa-
tial resolutions. Instead of applying a single convolution
in ViT [12] for extracting non-overlapping patches, we use
sequential overlapped convolutional blocks to improve the
stability of training while reducing the number of parame-
ters involved [57]. We define this process as follows:

  \mathbf {p} = \mathrm {Conv}(\mathbf {c}) \in {\mathbb {R}} ^ {(h/k) \times (w/k) \times {l'_{c}}},      (1)

where k × k is the stride size of convolutions, and l′c is a
projected channel size. After feed-forwarding Transformer
blocks such that z = T (p) ∈ R(h/k)×(w/k)×l′c , downsam-
pled feature map z should be upsampled again with addi-
tional deconvolutional blocks, which are symmetric archi-
tectures to the convolutions, defined as follows:

  \mathbf {u} = \mathrm {DeConv}(\mathbf {z}) \in \mathbb {R}^\mathnormal {h \times w \times {l_{c}}}.      (2)

In addition, for a multi-modal translation, we leverage
a style code vector s ∈ R1×1×ls , and thus this should be
considered during mixing with Transformers [53]. Conven-
tional methods [21, 22, 33] attempted to mix content and
style vectors using either concatenation [33] or AdaIN [21].
In our framework, by slightly changing the normalization
module in Transformers, we are capable of simultaneously
mixing content and style vectors such that T (p, s).

Any forms of Transformers [12, 38, 50, 55, 60] can be
considered as a candidate in our framework, and in experi-
ments, ViT-like [12] architecture is considered for T . In the
following, we explain the details of Transformer modules.

Transformer Aggregator. In order to utilize Transformer
to process content patch embeddings p, our work is built
upon the ViT encoder, which is composed of an multi-head
self-attention (MSA) layer and a feed-forward MLP with
GELU [53], where normalization layers are applied before
both parts. Especially, for I2I, we adopt AdaIN instead of
LayerNorm [1] to control the style of the output with the
affine parameters from style vector s and to enable mul-
timodal outputs. In specific, content patch embedding p is
first reshaped, and position embedding is achieved such that

  \mathbf {z}_0 = \mathrm {Reshape}({\mathbf {p}})+ {\mathbf {E} \in {\mathbb {R}}^ {(h/k \cdot w/k) \times l_{c}'}},        (3)

where E represents a position embedding [53], which will
be discussed in the following.

These embedded tokens z0 are further processed by the
sequential Transformer encoder blocks as follows:

  \begin {split} &\mathbf {z}'_{t} = \mathrm {MSA}\left ( {\mathrm {AdaIN}\left ({\mathbf {z}}_{t-1}, \mathbf {s}' \right )} \right ) + {\mathbf {z}}_{t-1},\\ &{\mathbf {z}}_t = \mathrm {MLP}\left ( {\mathrm {AdaIN}\left (\mathbf {z}'_{t}, \mathbf {s}' \right )} \right ) + \mathbf {z}'_{t}, \end {split}    
 

    
 

(4)

where z′t and zt denote the output of MSA and MLP mod-
ules for t-th block respectively and t ∈ 1, ..., T , respec-
tively, s′ indicates AdaIN parameters extracted from S. Af-
ter L Transformer modules, followed by reshaping to origi-
nal resolution, we finally achieve the output of Transformer
block T such that zT = T (p, s′). As exemplified in Fig.
3, our learned self-attention well considers the interaction
between object instances and global image.

3.3. Instance-Aware Content and Style Mixing

So far we discussed a method for content and style mix-
ing with Transformers [12]. This framework can improve
the translation quality especially at instance regions to some
extent, but the nature of irregular shape of object instances
may hinder the performance boosting of our framework. In
particular, global-level aggregation itself is limited to cap-
ture details of a tiny object and it is not always guaranteed
that an object is located in a single regular patch. To over-
come this, we present a novel technique to aggregate in-
stance-level content features and global-level content fea-
tures simultaneously, which enables the model to pay more
attention to the relationships between global scenes and ob-
ject instances.

In specific, given ground-truth bounding boxes with pa-
rameters Bi, we extract instance-level content feature maps
through through ROI Align [18] module defined as follows:

  {\mathbf {c}}^\mathrm {ins}_{i} = \mathrm {RoIAlign}({\mathbf {c}}; {B}_{i}) \in {\mathbb {R}}^{k \times k \times {l_{c}}},       (5)

where k×k is a fixed spatial resolution. This can be further
processed with the convolutional blocks as proposed above
such that

  {\mathbf {p}}^\mathrm {ins}_{i} = \mathrm {Conv}({\mathbf {c}}^\mathrm {ins}_{i}) \in {\mathbb {R}}^{1 \times 1 \times {l'_{c}}}. 
       (6)

In our framework, by concatenating p and pins
i , we build

a new input for Transformer ẑ0 such that

  \hat {\mathbf {z}}_0 = \mathrm {Reshape}(\mathrm {Cat}({\mathbf {p}},\{{\bf {p}}^\mathrm {ins}_{i}\}_{i}))+ \hat {\mathbf {E}} \in {\mathbb {R}}^ {(h/k \cdot w/k+N) \times {l'_{c}}},   
     

(7)

18324



Instance Patch

𝛾(𝑥!) 𝛾(𝑦! ) 𝛾(𝑤! ) 𝛾(ℎ!)

Regular Patch𝑥"

𝑦"

ℎ!

𝑤!

ℎ"

𝑤"

𝛾(𝑥") 𝛾(𝑦" ) 𝛾(𝑤" ) 𝛾(ℎ" )

𝑥!

𝑦!

Figure 4. Illustration of building position embedding for regu-
lar patches and instance-level patches.

where Cat(·, ·) denotes a concatenation operator and Ê is
a corresponding positional embedding. Transformer blocks
are then used to process ẑ0 similarly to above to achieve ẑT ,
which is decomposed into zT and zinsT,i.

3.4. Instance-Aware Position Embedding

Since Transformer [53] block itself does not contain po-
sitional information, we add positional embedding E as de-
scribed above. To this end, our framework basically uti-
lizes existing technique [12], but the main difference is that
our proposed strategy enables simultaneously considering
regularly-partitioned patches p and instance patches pins

i in
terms of their spatial relationships.

The deep networks are often biased towards learning
lower frequency functions [45], so we use high fre-
quency functions to alleviate such bias. We denote γ(·)
as a sinusoidal mapping into R2K such that γ(a) =
(sin(20πa), cos(20πa), ..., sin(2K−1πa), cos(2K−1πa))
for a scalar a.

In specific, as a global feature map is divided into regular
girds, each regular patch can be represented to have center
coordinates (xg, yg) with patch width wg and height hg of
regular size for g-th patch p(g). After embedding for each
information through γ(·) and concatenating along the chan-
nel axis, it is further added to the patch embedded tokens.

  \mathbf {E} = \mathrm {Cat}(\gamma (x_g),\gamma (y_g),\gamma (w_g),\gamma (h_g))      (8)

Unlike regular patches, which have the same size of width
and height for each, instance patches contain positional in-
formation of corresponding bounding boxes, which contain
the centerpoint coordinates (xi, yi) and width and height
(wi, hi). Instance-wise E is denoted as:

  \mathbf {E}^\mathrm {ins} = \mathrm {Cat}(\gamma (x_i),\gamma (y_i),\gamma (w_i),\gamma (h_i)).       (9)

Then Ê = Cat(E,Eins). Fig. 4 illustrates the difference in
how regular patch and instance patch are handled.

3.5. Loss Functions

Adversarial Loss. Adversarial loss aims to minimize the
distribution discrepancy between two different features [17,

Global-level

Instance-level

Content image Translated image

Figure 5. Illustration of global content loss and instance-level
content loss. Blue box indicates a positive sample, while yellow
box means a negative sample (Best viewed in color).

40]. We adopt this to learn the translated image ŷ to be
similar to an image y from Y defined such that

  \begin {split} \mathcal {L}_\mathrm {GAN} = &\mathbb {E}_{\mathbf {x}\sim \mathcal {X}}[\mathrm {log}(1-\mathcal {D}(\hat {\mathbf {y}}))]+ \mathbb {E}_{\mathbf {y} \sim \mathcal {Y}}[\mathrm {log}\, \mathcal {D}(\mathbf {y})], \end {split}       (10)

where D(·) is the discriminator.

Global Content Loss. To define the content loss between
x and ŷ, we exploit infoNCE loss [42], defined as

  \begin {split} &\ell (\hat {\mathbf {v}}, \mathbf {v}^{+}, \mathbf {v}^{-}) =\\ &\mathrm {-log}\left [\mathrm {exp}(\hat {\mathbf {v}}\cdot \mathbf {v}^{+}/\tau )\over \mathrm {exp}(\hat {\mathbf {v}}\cdot \mathbf {v}^{+}/\tau ) + \sum _{\mathrm n=1}^{\mathrm N}\mathrm {exp}(\hat {\mathbf {v}}\cdot \mathbf {v}^{-}_{\mathrm n}/\tau )\right ], \end {split} 




 

  


  





(11)

where τ is the temperature parameter, and v+ and v− rep-
resent positive and negative for v̂.

We set pseudo positive samples between input image x
and translated image ŷ. For the content feature from trans-
lated image ĉ(s) = E(ŷ), we set positive patches c(s), and
negative patches c(S \ s) from x, where S \ s represents
indexes except for s, following [43,65]. Global content loss
function is then defined as

  \begin {split} \mathcal {L}_\mathrm {NCE}^{\mathrm {global}} = \mathbb {E}_{\mathbf {x}\sim \mathcal {X}}\sum _{l}\sum _{s}\ell (\hat {\mathbf {c}}_{l}(s),{\mathbf {c}}_{l}(s) , {\mathbf {c}}_{l}({S\setminus s})), \end {split} 
 







     (12)

where cl is feature at l-th level, s ∈ {1, 2, ..., Sl} and Sl is
the number of patches in each l-th layer.

Instance-level Content Loss. To improve the instance-
awareness and the quality of translation images at object
regions, we newly present an instance-level content con-
trastive loss. Our instance-level content loss is then defined
such that

  \begin {split} \mathcal {L}_\mathrm {NCE}^\mathrm {ins}=\mathbb {E}_{\mathbf {x}\sim \mathcal {X}}\sum _{i}\sum _{m}\ell (\hat {\mathbf {c}}_{i}^{\mathrm {ins}}(m),{\mathbf {c}}_{i}^{\mathrm {ins}}(m) , {\mathbf {c}}_{i}^{\mathrm {ins}}({M\setminus m})), \end {split} 
 







     

(13)

where m ∈ {1, 2, ...,Mi} and Mi is the number of patches
at each instance. Fig. 5 illustrates how our suggested con-
tent losses work, with the procedure to define positive and
negative samples.
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CycleGAN [68] UNIT [36] MUNIT [22] DRIT [33] INIT [49] DUNIT [3] MGUIT [27] InstaFormer
CIS IS CIS IS CIS IS CIS IS CIS IS CIS IS CIS IS CIS IS

sunny→night 0.014 1.026 0.082 1.030 1.159 1.278 1.058 1.224 1.060 1.118 1.166 1.259 1.176 1.271 1.200 1.404
night→sunny 0.012 1.023 0.027 1.024 1.036 1.051 1.024 1.099 1.045 1.080 1.083 1.108 1.115 1.130 1.115 1.127
sunny→rainy 0.011 1.073 0.097 1.075 1.012 1.146 1.007 1.207 1.036 1.152 1.029 1.225 1.092 1.213 1.158 1.394
sunny→cloudy 0.014 1.097 0.081 1.134 1.008 1.095 1.025 1.104 1.040 1.142 1.033 1.149 1.052 1.218 1.130 1.257
cloudy→sunny 0.090 1.033 0.219 1.046 1.026 1.321 1.046 1.249 1.016 1.460 1.077 1.472 1.136 1.489 1.141 1.585
Average 0.025 1.057 0.087 1.055 1.032 1.166 1.031 1.164 1.043 1.179 1.079 1.223 1.112 1.254 1.149 1.353

Table 1. Quantitative evaluation on INIT dataset [49]. For evaluation, we perform bidirectional translation for each domain pair. We
measure CIS [22] and IS [48](higher is better). Our results shows the best results in terms of CIS and IS.

Image Reconstruction Loss. We additionally make use
of image reconstruction loss to help disentanglement be-
tween content and style. For regularization, we use a recon-
struction loss to ensure that our G can reconstruct an image
for domain Y . To be specific, y is fed into E and style en-
coder S to obtain a content feature map cY = E(y) and a
style code sY = S(y). We then compare the reconstructed
image G(T (cY , sY)) for domain Y with y as follows:

  \mathcal {L}_\mathrm {recon}^\mathrm {img} = \, \mathbb {E}_{\mathbf {y} \sim \mathcal {Y}}[\|{\mathcal {G}(\mathcal {T}(\mathbf {c^{\mathcal {Y}}},\mathbf {s^\mathcal {Y}})) -\,\mathbf {y}}\|_{1}].\vspace {-10pt} 
        (14)

Style Reconstruction Loss. In order to better learn disen-
tangled representation, we compute L1 loss between style
code from the translated image and randomly generated
style code in order to enable mapping generated style fea-
tures to Gaussian distribution such that

  \begin {split} \mathcal {L}_\mathrm {recon}^\mathrm {style} = \mathbb {E}_{\mathbf {x}\sim \mathcal {X} ,\mathbf {y}\sim \mathcal {Y}}[\|{\mathcal {S}(\hat {\mathbf {y}}) -\,{\mathbf {s}}}\|_{1}].\vspace {-10pt} \end {split} 
      (15)

Total Loss. The total loss function is as follows:

  \begin {split} \min \limits _{{\mathcal {E}},\mathcal {G},\mathcal {S}} \max \limits _\mathcal {D}\mathcal {L}(\mathcal {E},\mathcal {G},\mathcal {D}) = &\mathcal {L}_{\mathrm {GAN}} +\lambda ^{\mathrm {glob}}\mathcal {L}_\mathrm {NCE}^{\mathrm {global}} +\lambda ^\mathrm {ins}\mathcal {L}_\mathrm {NCE}^{\mathrm {ins}} \\&+\lambda ^\mathrm {style}\mathcal {L}_\mathrm {recon}^\mathrm {style} +\lambda ^\mathrm {img} \mathcal {L}_\mathrm {recon}^\mathrm {img}, \end {split} 





   
 




 



(16)

where λglob, λins, λstyle, and λimg are weights that control
the importance of each loss.

4. Experiments
4.1. Implementation Details

We first summarize implementation details in our frame-
work. We conduct experiments using a single 24GB RTX
3090 GPU. Training datasets are resized to the size of
352×352. We employ an Adam optimizer for 200 epochs
using a step decay learning rate scheduler. A batch size
of 8, an initial learning rate of 2e-4. The number of NCE
layers L is 3. For the loss weights, we set as λglob = 1,
λins = 1, λstyle = 10, and λimg = 5. As described above,
we implement our framework with the most representative
vision Transformer-based, i.e., ViT [12], but we will show
our framework works with MLP-Mixer [50] in the follow-
ing. We will make our code publicly available.

4.2. Experimental Setup

We conduct experiments on two standard datasets for
instance-aware I2I, INIT dataset [49] and KITTI-Cityscapes
dataset [8, 15]. INIT dataset [49] provides street scene im-
ages including 4 domain categories (sunny, night, rainy,
cloudy) with object bounding box annotations for car,
person, and traffic sign. We conduct translation ex-
periments for sunny→night, night→sunny, sunny→rainy,
sunny→cloudy, and cloudy→sunny. KITTI object de-
tection benchmark [15] and Cityscapes [8] dataset are
used to evaluate domain adaptation for object detection
on KITTI→Cityscapes. KITTI contains 7,481 images for
training and 7,518 images for testing with the bounding box
annotations for 6 object classes. Cityscapes dataset consists
of 5,000 images with pixel-level annotations for 30 classes.

In this section, we compared our InstaFormer with re-
cent state-of-the-art instance-aware I2I methods: INIT [49],
DUNIT [3], MGUIT [27], and several unsupervised image-
to-image translation methods: CycleGAN [68], UNIT [36],
CUT [43], MUNIT [22], and DRIT [33].

4.3. Experimental Results

Qualitative Evaluation. We first conduct qualita-
tive comparisons of our method to CycleGAN [68],
UNIT [36], MUNIT [22], DRIT [33], and MGUIT [27]
on sunny→night, night→sunny, sunny→cloudy, and
sunny→rainy tasks in INIT dataset [49]. As shown in Fig.
6, our model generates higher quality translated results,
particularly at object instance regions. Especially, as
exemplified in the highlighted regions in Fig. 7, our
model is good at capturing local regions within multiple
instances thanks to Transformer-based architecture that
simultaneously consider object instances and global image,
and proposed instance-level contrastive learning. Note
that our attention map visualization also proves this, well
illustrated in Fig. 3. Note that MGUIT [27] has access on
their trained memory module during test-time, which is
additional burden.

Quantitative Evaluation. Following the common prac-
tice [3, 27, 49], we evaluate our InstaFormer with inception
score (IS) [48] and conditional inception score (CIS) [22].
Since the metrics above are related to diversity of translated
images, we also evaluate our methods with fréchet incep-
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(a) Input (b) CycleGAN [68] (c) UNIT [36] (d) MUNIT [22] (e) DRIT [33] (f) MGUIT [27] (g) InstaFormer

Figure 6. Qualitative comparison on INIT dataset [49]: (top to bottom) sunny→night, night→sunny, and cloudy→sunny results. Among
the methods, ours preserves object details well and show realistic results.

(a)

(b)(c)

(c)

Figure 7. Visual comparison with MGUIT [27]: (a) input,
(b) MGUIT [27], and (c) InstaFormer. We show the results for
sunny→rainy (left) and sunny→cloudy (right).

tion score (FID) [19] and structural similarity index mea-
sure (SSIM) [56] in terms of quality of translated images.
Note that we evaluate the results under the same settings for
all the methods. We adopt FID to measure the distance be-
tween distributions of real images and synthesized images
in a deep feature domain. In addition, since SSIM index
is an error measurement which is computed between the
original content images and synthesized images, we apply
to measure instance-wise structural consistency. It should
be noted that for image translation tasks, there often exists
some discrepancy between quantitative evaluations and hu-
man perceptions [4], thus the user study in the following
would be a better precise metric.

As shown in Table 1, our InstaFormer outperforms
the current state-of-the-art methods in terms of diversity
(CIS, IS). Furthermore, in terms of global distribution, or
instance-level similarity as shown in Table 2, FID and SSIM

0% 20% 40% 60% 80% 100%

         Style
Relevance

    Content
Relevance

       Most
preferred

CUT MUNIT DRIT MGUIT Ours

Figure 8. User study results on INIT dataset [49]. Our method is
most preferred for overall quality, semantic consistency and style
relevance, compared to CUT [43], MUNIT [22], DRIT [33], and
MGUIT [27].

score show our InstaFormer tends to outperform prior meth-
ods in almost all the comparisons. In particular, results on
SSIM demonstrate that our network is faithfully designed
to encode an instance-awareness. Our method improves the
FID score by a large margin compared to previous leading
methods MGUIT [27] on INIT dataset [49].

User Study. We also conducted a user study on 110 par-
ticipants to evaluate the quality of synthesized images in the
experiments with the following questions: “Which do you
think has better image quality in overall/ similar content to
content image / represent style similar to target domain?”
on INIT dataset, summarized in Fig. 8. Our method ranks
the first in every case, especially on content relevance and
overall preference. Note that no standard evaluation met-
ric has been emerged yet, human evaluation has an effect as
evaluation metrics in image translation tasks.

4.4. Ablation Study

In order to validate the effectiveness of each component
in our method, we conduct a comprehensive ablation study.
In particular, we analyze the effectiveness of instance-level
loss (Lins

NCE), Transformer encoder (T ), and AdaIN, shown
in Fig. 9. It should be noted that CUT [43] can be regarded
as the setting without Lins

NCE, T , AdaIN from InstaFormer.
Without Lins

NCE, our self-attention module has limited capa-
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(a) Content image (b) InstaFormer (c) MLP-Mixer [50] (d) w/o Lins
NCE (e) w/o Lins

NCE, T (f) CUT [43] (g) w/o AdaIN

Figure 9. Ablation study on different settings: instance-level loss (Lins
NCE), Transformer encoder (T ), normalization, and another back-

bone (MLP-Mixer). Note that CUT equals to the setting w/o Lins
NCE, T , and AdaIN.

Methods sunny→night night→sunny Average
FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑

CUT [43] 75.28 0.698 80.72 0.634 78.00 0.666
MUNIT [22] 100.32 0.703 98.04 0.631 99.18 0.680
DRIT [33] 79.59 0.312 99.33 0.266 89.46 0.289
MGUIT [27] 98.03 0.836 82.17 0.848 90.10 0.842
InstaFormer 84.72 0.872 71.65 0.818 79.05 0.845

Table 2. Quantitative evaluation with FID [19] metric for data
distribution and SSIM [56] index measured at each instance.

0% 20% 40% 60% 80% 100%

        Style 
Relevance

     Content  
Relevance

   Image  
Quality

MLP-Mixer w/o w/o CUT w/o AdaIN InstaFormer

Figure 10. User study results on ablation study.

bility to focus on objects, thus generating images containing
blurred objects, as evaluated in Fig. 3 as well. To validate
the effect of T in our model, we conduct ablation experi-
ments by replacing it with Resblocks (without Lins

NCE, T ).
Without Transformers, it fails to capture global relationship
between features. It is obvious that CUT [43] shows limited
results containing artifacts, while InstaFormer dramatically
improves object-awareness and quality of the generated im-
age thanks to our architecture. Since AdaIN helps to un-
derstand global style by leveraging affine parameters, the
result without AdaIN, which is replaced with LayerNorm,
shows limited preservation on style with a single-modal out-
put. We also validate our ablation study results on human
evaluation. 110 participants are asked to consider three as-
pects: overall quality, semantic consistency and style con-
sistency, summarized in Fig. 10, where we also validate the
superiority of each proposed component.

In addition, we conduct experiments using MLP-
Mixer [50]-based aggregator that replaces T consisted of
ViT [12] blocks to justify robustness of our framework.
Fig. 9(c) shows result examples by MLP-Mixer [50]-based
aggregator. Although ViT-based model is slightly better
on MLP-Mixer [50]-based model in overall quality in Fig.
9(b), the object instance and style representation are faith-
fully preserved, which indicates that our method can be
adopted in another Transformer backbone.

Method Pers Car Truc. Bic mAP
DT [25] 28.5 40.7 25.9 29.7 31.2
DAF [22] 39.2 40.2 25.7 48.9 38.5
DARL [32] 46.4 58.7 27.0 49.1 45.3
DAOD [47] 47.3 59.1 28.3 49.6 46.1
DUNIT [3] 60.7 65.1 32.7 57.7 54.1
MGUIT [27] 58.3 68.2 33.4 58.4 54.6
InstaFormer 61.8 69.5 35.3 55.3 55.5

Table 3. Results for domain adaptive detection. We compare
the per-class Average Precision for KITTI → CityScape.

4.5. Domain Adaptive Object Detection

Additionally, we evaluate our method on the task of
unsupervised domain adaptation for object detection. We
follow the experimental setup in DUNIT [3]. We used
Faster-RCNN [46] as baseline detector. In Table 3,
we report the per-class average precisions (AP) for the
KITTI→Cityscapes case [8, 15]. Compared to DUNIT [3]
and MGUIT [27], our model shows impressive results. It
should be noted that we do not access any information about
bounding box information on test-time, while DUNIT con-
tains object detection network and MGUIT has access to
trained external memory by reading class-aware features. In
particular, our model significantly outperforms other meth-
ods in almost all classes, which indicates that our suggested
instance loss has strength on instance-awareness.

5. Conclusion

In this paper, we have presented Transformer-based net-
works, dubbed InstaFormer, for instance-aware image-to-
image translation, which enables boosting the translation of
object instances as well as global image. By simultane-
ously considering instance-level features and global-level
features with Transformers, we learned an interaction be-
tween not only object instance and global image, but also
different instances. To improve the instance-awareness dur-
ing translation, we proposed an instance-level content con-
trastive loss. Experiments on various datasets with evalu-
ation metrics have shown that our framework outperforms
the existing solutions for instance-aware I2I.
Acknowledgements. This research was supported by the
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