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Abstract

Weakly supervised multi-label classification (WSML)
task, which is to learn a multi-label classification using par-
tially observed labels per image, is becoming increasingly
important due to its huge annotation cost. In this work, we
first regard unobserved labels as negative labels, casting
the WSML task into noisy multi-label classification. From
this point of view, we empirically observe that memoriza-
tion effect, which was first discovered in a noisy multi-class
setting, also occurs in a multi-label setting. That is, the
model first learns the representation of clean labels, and
then starts memorizing noisy labels. Based on this finding,
we propose novel methods for WSML which reject or cor-
rect the large loss samples to prevent model from memo-
rizing the noisy label. Without heavy and complex compo-
nents, our proposed methods outperform previous state-of-
the-art WSML methods on several partial label settings in-
cluding Pascal VOC 2012, MS COCO, NUSWIDE, CUB,
and OpenImages V3 datasets. Various analysis also show
that our methodology actually works well, validating that
treating large loss properly matters in a weakly supervised
multi-label classification. Our code is available at https:
//github.com/snucml/LargeLossMatters.

1. Introduction

Multi-label classification aims to find all existing objects
or attributes in a single image. It is gaining attention since
the real world is made up of a scene with multiple objects in
it [28,35]. Moreover, some of the single-label datasets, also
called multi-class datasets, actually have images containing
multiple objects [33, 56]. However, the multi-label classi-
fication task has some fundamental difficulties in making a
dataset because it requires annotators to label all categories’
existence/absence for every image. As the number of cate-
gories and images in the dataset increase, annotation cost
becomes tremendous [19].

*Equal contribution.
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Figure 1. Memorization in WSML. When training ResNet-50
model on PASCAL VOC dataset with partial label, we set all unob-
served labels as negative. These labels are composed of true nega-
tive and false negative. We observe that the model first fits into true
negative label (learning), and then fits into false negative (memo-
rization).

To alleviate these issues, weakly supervised learning ap-
proach in multi-label classification task (WSML) has been
taken into consideration [2, 18, 36, 50]. In a WSML setting,
labels are given as a form of partial label, which means only
a small amount of categories is annotated per image. This
setting reflects the recently released large-scale multi-label
datasets [12,19] which provide only partial label. Thus, it is
becoming increasingly important to develop learning strate-
gies with partial labels.

There are two naive approaches to train the model with
partial labels. One is to train the model with observed labels
only, ignoring the unobserved labels. The other is to assume
all unobserved labels are negative and incorporate them into
training because majorities of labels are negative in a multi-
label setting [32]. As the second one has a limitation that
this assumption produces some noise in a label which ham-
pers the model learning, previous works [7,9,16,21] mostly
follow the first approach and try to explore the cue of un-
observed labels using various techniques such as bootstrap-
ping or regularization. However, these approaches include
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heavy computation or complex optimization pipeline.
We hypothesize that if label noise can be handled prop-

erly, the second approach could be a good starting point be-
cause it has the advantage of incorporating many true neg-
ative labels into model training. Therefore, we try to look
at the WSML problem from the perspective of noisy label
learning.

Our key observation is about the memorization effect [1]
in a noisy label learning literature. It is known that when
training a model with a noisy label, the model fits into clean
labels first and then starts memorizing noisy labels. Al-
though previous work showed the memorization effect only
in a noisy multi-class classification scenario, we found for
the first time that this same effect also happens in a noisy
multi-label classification scenario. As shown in Figure 1,
during training, the loss value from the clean label (true neg-
ative) decreases from the beginning while the loss from the
noisy label (false negative) decreases from the middle.

Based on this finding, we borrow the idea from noisy
multi-class literature [13, 17, 23] which selectively trains
the model with samples having small loss and adapt this
idea into a multi-label scenario. Specifically, by assigning
the unknown labels as negative in a WSML setting, label
noise appears in the form of false negative. Then we de-
velop the three different schemes to prevent false negative
labels from being memorized into the multi-label classifi-
cation model by rejecting or correcting large loss samples
during training.

Our method is light and simple, yet effective. It involves
negligible computation overhead and does not require com-
plex optimization for model training. Nonetheless, our
method surpasses the weakly supervised multi-label classi-
fication performance compared to the state-of-the-art meth-
ods in Pascal VOC 2012 [10], MS COCO [24], NUSWIDE
[6], CUB [42], and OpenImages V3 [19] datasets. More-
over, while some existing methods are only effective in spe-
cific partial label setting [7, 9, 16], our method is broadly
applicable in both artificially created and real partial label
datasets. Finally, we provide some analysis about the rea-
son why our methods work well from various perspectives.

To sum up, our contributions are as follows;
1) We empirically show for the first time that the memo-

rization effect occurs during noisy multi-label classification.
2) We propose a novel scheme for weakly supervised

multi-label classification that explicitly utilizes a learning
technique with noisy label.

3) Although light and simple, our proposed method
achieves state-of-the-art classification performance on vari-
ous partial label datasets.

2. Related Works
Multi-label classification. The main research trend of this
field has been modeling correlations between labels [15,

31, 38, 55] because multiple objects can appear simultane-
ously in a multi-label setting. Recently this modeling was
realized through graph neural networks [4, 5, 53], recur-
rent models [43, 52], or transformer encoder structure [22].
Recent research trends also include solving imbalance is-
sues in multi-label dataset such as long-tail class distribu-
tion [11, 48] or positive-negative label imbalance [32].
Weakly supervised multi-label classification. Due to the
annotation issue, weakly supervised learning of multi-label
classification has been another important study. There are
several approaches to train the model using partially anno-
tated labels: regarding missing labels as negative [2, 3, 36,
44], predicting the missing labels via label correlation mod-
eling [8,47,49,50] or probabilistic model [18,41]. Note that
these methods use traditional optimization and they are not
scalable to training deep neural networks.

[9] is the first work to train a deep neural network using
partial label. It adopts a curriculum learning approach to
label some unannotated easy samples using its model pre-
diction. However, its initial model trained only on a partial
label has a weak representation, which may lead to wrong
labelling. [16, 21] models label similarity and image simi-
larity to predict unobserved labels from other semantically
similar images’ features or observed labels. Recently, [7]
suggested learning with only one positive label per image,
which is a subset of partial label scenario. It also proposed
a regularization scheme using an average number of posi-
tive labels in a dataset and alternate optimization of classi-
fier and unobserved label estimator. However, they require
complex optimization pipeline or heavy computation cost.
Our method takes a different route with previous method by
casting WSML into noisy multi-label classification. Note
that few studies have been done in this route except for ap-
plying label smoothing [7, 21].
Noisy multi-class classification. In label noise literature,
there are two major branches: one is sample selection and
the other is label correction. Sample selection approach
starts from the finding of [1] and tries to select only clean
samples to train the model in the presence of noisy labels.
The criterion of clean samples can be small-loss [13, 17,
23,46], consistent prediction with running average of previ-
ous predictions [25,29], low divergence between prediction
and label [51]. Label correction approach tries to update the
noisy label instead of viewing it as a fixed one. There are ap-
proaches for updating label into softmax-activated predic-
tion [39], optimizing label via backprop [54], using adaptive
target during training [45]. [26] showed that label smooth-
ing can be also viewed as one of the approaches in label
correction. There is also a hybrid method [34] which takes
advantage of both sample selection and label correction.
Our method borrows the idea of sample selection and la-
bel correction to cope with label noise in a WSML setting.
However, since the noise type is different between multi-
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class and multi-label, we propose a method specialized in a
multi-label setting.

3. Approach
In this section, we start with the definition of assume

negative (AN) in weakly supervised multi-label setting
(WSML) in §3.1. Within this setting, we show in §3.2 that
the model first learns features of true positive and true neg-
ative labels, and then starts memorizing false negative la-
bels. Based on this finding, we propose three methods in
§3.3, that is to modify the large loss samples during train-
ing which is likely to be from false negative labels.

3.1. Target with Assume Negative

Let us define an input x ∈ X and a target y ∈ Y
where X and Y compose a dataset D. In a weakly super-
vised multi-label learning for image classification task, X
is an image set and Y = {0, 1, u}K where u is an annota-
tion of ‘unknown’, i.e. unobserved label, and K is the num-
ber of categories. For the target y, let S p = {i|yi = 1},
S n = {i|yi = 0}, and S u = {i|yi = u}. In a par-
tial label setting, small amount of labels are known, thus
|S p|+ |S n| < K. We start our method with Assume Neg-
ative (AN) where all the unknown labels are regarded as
negative. We call this modified target as yAN ,

yAN
i =

{
1, i ∈ S p

0, i ∈ S n ∪ S u ,
(1)

and the set of all yAN as Y AN . {yAN
i |i ∈ S p} and

{yAN
i |i ∈ S n} are the set where each element is true pos-

itive and true negative, respectively. {yAN
i |i ∈ S u} con-

tains both true negative and false negative. The naive way
of training the model f with the dataset D ′ = (X ,Y AN ) is
to minimize the loss function L,

L =
1

|D ′|
∑

(x,yAN )∈D ′

1

K

K∑
i=1

BCELoss (f(x)i, y
AN
i ) ,

(2)
where f(·) ∈ [0, 1]K and BCELoss(·, ·) is the binary cross
entropy loss between the function output and the target. We
call this naive method as Naive AN.

3.2. Memorization in WSML

Let us first revisit the memorization effect in a noisy
multi-class learning [1]. In the noisy multi-class setting,
each data in a dataset is composed of an input and a target
where the target is a single category with some of it anno-
tated wrong. For clean labels, the annotated single category
is true while for noisy labels the annotated category is false.
When a model is trained with the dataset that contains both
clean labels and noisy labels, the model first learns features

Highest loss
phase

Pascal VOC (%) MS COCO (%)
TP TN FN TP TN FN

Warmup 88.3 90.7 23.8 64.0 82.6 17.3
Regular 11.7 9.3 72.2 36.0 17.4 82.7

Table 1. Distribution of the highest loss occurrence. For each la-
bel, we first draw the loss plot in the training process. We then
record whether the highest loss occurred in the warmup phase
(epoch 1) or in the regular phase (after epoch 1). TP, TN, FN refers
to true positive, true negative, and false negative, respectively.

of data with clean labels and then starts to memorize the
data with noisy labels. This is in line with the other obser-
vation where the model first learns easy patterns and then
learns more difficult patterns [40].

We observe that a similar memorization effect occurs in
WSML when the model is trained with the dataset with AN
target. To confirm this, we make the following experimen-
tal setting. We convert Pascal VOC 2012 [10] dataset into
partial label one by randomly remaining only one positive
label for each image and regard other labels as unknown
(datasetD). These unknown labels are then assumed as neg-
ative (dataset D ′). We train ResNet-50 [14] model with D ′

using the loss function L in Equation 2. We look at the trend
of loss value corresponding to each label yAN

i in a train-
ing dataset while the model is trained. A single example for
true negative label and false negative label is shown in Fig-
ure 1. For a true negative label, the corresponding loss value
keeps decreasing as the number of iteration increases (blue
line). Meanwhile, the loss of a false negative label slightly
increases in the initial learning phase, and then reaches the
highest in the middle phase followed by decreasing to reach
near 0 at the end (red line). This implies that the model starts
to memorize the wrong label from the middle phase.

To see if this phenomenon constantly occurs across all
the labels in a training dataset, we conduct the following
experiment. For every label, we track the loss value on each
training epoch. Then we count the number of labels hav-
ing the largest loss in the first epoch. We perform this ex-
periments on partially labeled Pascal VOC 2012 [10] and
MS COCO dataset [24] with AN target and ResNet-50.
The results are shown in Table 1. Most of true positive and
true negative samples have a highest loss in the first epoch
(warmup phase), whereas false negatives usually show a
highest loss after the first epoch (regular phase). These re-
sults indicate that the model learns features from the data
corresponding to true positive and true negative labels in
the initial phase, while memorization of false negative la-
bels generally starts in the middle of the training phase.

3.3. Method: Large Loss Modification

In this section, we propose novel methods for WSML
motivated from the ideas of noisy multi-class learning
[13, 17, 23] which ignores the large loss during training the
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Figure 2. Overall pipeline of our proposed methods. We propose three different ways of dealing false negative labels in AN target yAN

which cause large loss. While Naive AN baseline takes average over all elements in BCELoss l, our methods control the weight λ to reject
or correct the false negative labels (LL-R or LL-Ct), or directly change the label from negative to positive (LL-Cp). Note that ’u’ in target
y means its label is unobserved.

model. Remind that in WSML with AN target, the model
starts memorizing the false negative label in the middle of
the training with having a large loss at that time. While we
can only observe that the label in the set {yAN

i |i ∈ S u}
is negative and cannot explicitly discriminate whether it is
false or true, we are able to implicitly distinguish between
them. It is because the loss from false negative is likely to
be larger than the loss from true negative before memoriza-
tion starts. Therefore, we manipulate the label in the set
{yAN

i |i ∈ S u} that corresponds to the large loss value dur-
ing the training process to prevent the model from memoriz-
ing false negative labels. We do not manipulate the known
true labels, i.e. {yAN

i |i ∈ S p∪S n}, since they are all clean
labels. Instead of using Equation 2 as a loss function, we
further introduce the weight term λi in the loss function,

L =
1

|D ′|
∑

(x,yAN )∈D ′

1

K

K∑
i=1

li × λi . (3)

We define li = BCELoss (f(x)i, y
AN
i ) where arguments

of function li, that are f(x) and yAN , are omitted for
convenience. The term λi is defined as a function, λi =
λ(f(x)i, y

AN
i ), where arguments are also omitted for con-

venience. λi is the weighted value for how much the loss li
should be considered in the loss function L in Equation 3.
Intuitively, λi should be small when i ∈ S u and the loss li
has high value in the middle of the training, that is, to ignore
that loss since it is likely to be the loss from a false negative
sample. We set λi = 1 when i ∈ S p ∪ S n since the label
yAN
i from these indices is a clean label. We present three

different schemes of offering the weight λi for i ∈ S u. The
schematic description is shown in Figure 2.

Large loss rejection. One way of dealing with large loss
sample is to reject it by setting λi = 0. In a noisy multi-

class task, B. Han et al. [13] propose a method of gradually
increasing the rejection rate during the training process. We
set the function λi similarly,

λi =

{
0, i ∈ S u and li > R(t)

1, otherwise ,
(4)

where t is the number of current epochs in the training pro-
cess and R(t) is the loss value that has [(t − 1) · ∆rel]%
largest value in the loss set {li | (x,yAN ) ∈ D ′, i ∈ S u}.
∆rel is a hyperparameter that determines the speed of in-
crease of rejection rate. Defining λi as Equation 4 makes
rejecting large loss samples in the loss function L. We do
not reject any loss values at the first epoch, t = 1, since the
model learns clean patterns in the initial phase. In practice,
we use mini-batch in each iteration instead of full batch D ′

for composing the loss set. We call this method as LL-R.

Large loss correction (temporary). Another way of
dealing with large loss sample is correcting rather than re-
jecting it. In a multi-label setting, this can be easily achieved
by switching the corresponding annotation from negative to
positive. Specifically, when the loss li is large and i ∈ S u,
we temporarily modify its label to positive, i.e. yAN

i = 1.
The term “temporary” means that it does not change the
actual label, but only uses the loss calculated from the mod-
ified one. To reflect this temporary correction scheme in
Equation 3, we define the function λi as

λi =

{
log f(x)i

log(1−f(x)i)
, i ∈ S u and li > R(t)

1, otherwise ,
(5)

where R(t) is same as that in LL-R. This makes li × λi

in Equation 3 to be the binary cross entropy loss between
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the function output and positive label when i ∈ S u and
li > R(t) because

li × λi = BCELoss(f(x)i, y
AN
i = 0)× λi

= − log(1− f(x)i)× λi

= − log f(x)i

= BCELoss(f(x)i, 1) . (6)

We name this method as LL-Ct. This method has the advan-
tage that it increases the number of true positive labels from
unobserved labels.

Large loss correction (permanent). In this method, we
treat the large loss value more aggressively by permanently
correcting the label. We directly change the label from neg-
ative to positive and use that modified label from the next
training process. To achieve this, we define λi = 1 for ev-
ery case, and modify the label as follows:

yAN
i =

{
1, i ∈ S u and li > R(t)

unchanged, otherwise ,
(7)

where R(t) has a constant value of ∆rel% largest value in
the loss set instead of [(t − 1) · ∆rel]%. This makes the
number of corrected labels gradually increase as the training
progresses. When the label yAN

i is modified by belonging
to the first condition in Equation 7, the set S u and S p are
also changed as follows:

S u ← S u − {i} , (8)
S p ← S p ∪ {i} . (9)

We name this method as LL-Cp.

Absolute variant. Instead of gradually increasing the re-
jection/correction rate, we borrow the idea of using absolute
value of loss as a rejection threshold [17] and apply it in
WSML. In the rejection and temporary correction schemes,
we define the function λi the same as Equation 4 except for
R(t) where it is defined as R(t) = R0 − t · ∆abs. R0 and
∆abs are hyperparameters where R0 is an initial threshold
and ∆abs determines the speed of decrease of the threshold.
We report the experimental results of these variant methods
in Appendix.

4. Experiments
In this section, we present experimental results of our

method and compare it with previous approaches in two
different partial label setting in §4.1 and §4.2. In §4.3, we
analyze the reason why our methods work well in 5 differ-
ent ways, that is precision analysis, hyperparameter effect,
qualitative results, model explanation, and generalization in
a subset of training images. Throughout this section, we use
mean average precision (mAP) as an evaluation metric.

4.1. Artificially created partial label dataset

Datasets. For a multi-label dataset where full labels are an-
notated, we artificially drop some of its labels for a par-
tial label setting. Specifically, we follow the procedure pre-
sented by [7]: for each training image in a dataset, we ran-
domly remain one positive label and regard other labels as
unknown. We experiment on Pascal VOC 2012 [10], MS
COCO 2014 [24], NUSWIDE [6], and CUB [42] datasets.
For CUB the task is to classify not the bird categories but
the attributes where multiple attributes exist for each image.
Implementation details. For fair comparisons we use the
same seed number to create the same artificial dataset as
in [7]. We use ResNet-50 [14] architecture which is pre-
trained on ImageNet [20] dataset. A single GPU with batch
size 16 is used. Each image is resized into 448x448 and
performed data augmentation by randomly flipping an im-
age horizontally. We conduct experiments on two learning
schemes. One is using the “LinearInit” which first freezes
the backbone and update the weights of final linear layer for
the initial epochs followed by fine-tuning the entire weights
for the remaining epochs, and the other is “End-to-end”
which is to fine-tune the entire weights from the beginning.
Details about hyperparameter settings are described in Ap-
pendix.
Compared methods. We compare our method with Naive
AN, Weak AN (WAN) [7, 27], Label Smoothing with AN
(LSAN) [7, 37], EPR [7] and ROLE [7]. Note that some
methods using only observed labels without using AN target
(Curriculum labeling [9], IMCL [16]) doesn’t work in this
setting. They give a trivial solution that predicts all labels as
positive since only positive labels are observed.
Results. As shown in Table 2, our method is closest to the
fully labeled performance, e.g. 1.0 and 6.2 mAP difference
in Pascal VOC and MS COCO datasets when fine-tuned
end-to-end. Compared with Naive AN and Weak AN which
use λi = 0 and λi = 1

K−1 when yAN
i = 0 in Equation

3, respectively, our three different methods all have bet-
ter performance. Our method also surpasses LSAN in all
datasets, especially having +4.1 and +2.7 mAP gain on a
COCO dataset with End-to-end and LinearInit setting re-
spectively. It implies that our method handles the label noise
in AN target better than LSAN. Moreover, in most datasets,
our method also outperforms EPR and ROLE. This result
shows that gradually modifying large loss samples helps the
model to have better generalization in the presence of false
negative labels.

4.2. Real partial label dataset

Datasets. To see if our proposed method consistently works
on a dataset with real partial label, we use OpenImages
V3 [19] dataset where there is 3.4M training/42K valida-
tion/125K test images with 5,000 classes. In this dataset less
than 1% of labels are annotated.
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Method
End-to-end LinearInit.

VOC COCO NUSWIDE CUB VOC COCO NUSWIDE CUB

Full label 90.2 78.0 54.5 32.9 91.1 77.2 54.9 34.0
Naive AN 85.1 64.1 42.0 19.1 86.9 68.7 47.6 20.9

WAN [7, 27] 86.5 64.8 46.3 20.3 87.1 68.0 47.5 21.1
LSAN [7, 37] 86.7 66.9 44.9 17.9 86.5 69.2 50.5 16.6

EPR [7] 85.5 63.3 46.0 20.0 84.9 66.8 48.1 21.2
ROLE [7] 87.9 66.3 43.1 15.0 88.2 69.0 51.0 16.8

LL-R (Ours) 89.2 71.0 47.4 19.5 89.4 71.9 49.1 21.5
LL-Ct (Ours) 89.0 70.5 48.0 20.4 89.3 71.6 49.6 21.8
LL-Cp (Ours) 88.4 70.7 48.3 20.1 88.3 71.0 49.4 21.4

Table 2. Quantitative results in artificially created partial label datasets. Results of the model trained with full label are given in
the second row to show the upper bound of WSML. “End-to-end” indicates that the entire weights of the model is fine-tuned from the
beginning, while “LinearInit.” indicates the backbone is frozen for the first few epochs. LL-Ct outperforms all baseline methods in 7 out of
8 settings, while LL-R and LL-Cp in 6 out of 8 settings.

Implementation details. We use ImageNet-pretrained
ResNet-101 architecture and 4 GPUs with batch size 288.
Each image is resized into 224x224 and random horizon-
tal flip is applied during training. To better analyze the re-
sults, we sort the 5000 categories in ascending order with
respect to the number of counted training images and di-
vide them into 5 groups, having 1000 categories for each.
Group1 is the group where the number of counted images
are the smallest while Group5 is the biggest. We report the
mAP results in each group as well as in all groups. Details
about hyperparameter settings are described in Appendix.

Compared methods. We compare our method with Cur-
riculum labeling [9], and IMCL [16], Naive AN, WAN and
LSAN. Naive IU (Ignore Unobserved) is also compared
which trains the model only with partial label. Note that
ROLE [7] do not work because they require storing whole
label matrix in a memory which is infeasible.

Results. The results are reported in Table 3. We first ob-
serve that training the model with naive BCE loss with AN
target (Naive AN) boosts the classification performance for
a large margin compared to previous methods using only the
observed labels (Naive IU, Curriculum, IMCL). We specu-
late this performance improvement occurred since the aver-
age number of observed categories for each image is much
smaller than the number of full categories, which hinders
the model to be generalized to unseen data when trained
with a limited amount of observed labels only. In contrast,
even though the AN target is noisy, a large amount of cate-
gories may be annotated as true negative after modifying the
unobserved labels to the negative labels, making the gener-
alization performance of Naive AN better.

We also observe that LL-Ct has the best performance
of 82.6 mAP, and other methods of ours provide similar
high performance. Compared to the Naive AN, our method

Method G1 G2 G3 G4 G5 All Gs

Naive IU 69.5 70.3 74.8 79.2 85.5 75.9
Curriculum [9] 70.4 71.3 76.2 80.5 86.8 77.1

IMCL [16] 71.0 72.6 77.6 81.8 87.3 78.1
Naive AN 77.1 78.7 81.5 84.1 88.8 82.0

WAN [7, 27] 71.8 72.8 76.3 79.7 84.7 77.0
LSAN [7, 37] 68.4 69.3 73.7 77.9 85.6 75.0

LL-R (Ours) 77.4 79.1 82.0 84.5 89.5 82.5
LL-Ct (Ours) 77.7 79.3 82.1 84.7 89.4 82.6
LL-Cp (Ours) 77.6 79.1 81.9 84.6 89.4 82.5

Table 3. Quantitative results in OpenImages V3 dataset with
real partial label. 5000 categories are sorted in ascending order
with respect to the number of training images in which the la-
bel of that category is known and then sequentially grouped from
Group1 to Group5 with all groups having the same size. All Gs
corresponds to the set of all categories. We observe that LL-Ct has
the best performance, followed by LL-Cp and LL-R.

further rejects or corrects the possible false negative la-
bels, making the degree of noisy labels as less as possible
which leads to performance improvement in every groups,
from Group1 to Group5. One thing to note is that WAN
and LSAN show worse performance than Naive AN, which
means that they cannot handle the label noise in AN target
in a real partial label scenario.

4.3. Analysis

In this section, we analyze the reason why our method
works well in WSML. Unless mentioned, we perform anal-
ysis of our method on an artificially created COCO partial
label dataset presented in §4.1 with ∆rel = 0.2.
Precision analysis. To verify whether the label that our pro-
posed methods reject (LL-R) or correct (LL-Ct, LL-Cp) is
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Figure 3. Qualitative results in artificially generated COCO partial label dataset. The arrow indicates the change of categories with
positive label during training in our correction scheme LL-Ct and GT indicates actual ground truth positive labels for a training image. We
show three cases where LL-Ct modifies the unannotated ground truth label correctly, and the failure case at the fourth column.
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Figure 4. Precision analysis of proposed methods on COCO
dataset.

actually noisy, we measure the precision of modification.
That is, among the labels modified by our scheme as its loss
values are large, we calculate the percentage of labels whose
actual label is positive. While the precision is calculated in
each epoch for LL-R and LL-Ct, we calculate the precision
using the accumulated number of labels for LL-Cp for a
fair comparison. We observe in Figure 4 that our schemes
indeed modify the false negative labels with high precision.
As the number of epoch increases, precision decreases be-
cause the model gradually memorizes the wrong label.

We can see that LL-Cp shows the highest precision value
among our proposed schemes. However, according to Table
2, LL-Cp does not always guarantee highest performance
and it may seem a bit contradictory. We conjecture that this
is because of the characteristics of LL-Cp. As LL-Cp per-
forms permanent correction, erroneously corrected labels
may keep damaging the model learning once it is changed.
Therefore, it might lead to lower mAP even with higher pre-
cision of modification.
Effect of hyperparameter ∆rel. We evaluate the model
performance of LL-Ct with different values of hyperparam-
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Figure 5. Hyperparameter effect of LL-Ct on COCO dataset.

eter ∆rel on a COCO dataset. From Figure 5 we observe
that the model produces the best mAP when ∆rel = 0.2.
When ∆rel becomes smaller, its performance decreases be-
cause the model memorizes false negative labels that are not
corrected due to a low correction rate. On the other hand,
the performance decreases as ∆rel increases after 0.2. Also,
the number of epoch when the model has the best valida-
tion score decreases at this time. This is because as ∆rel

increases, our correction scheme wrongly modifies the true
negatives labels as positive, making them false positives.
The increased number of false positives hinders the model’s
generalization, letting model perform early stopping.
Qualitative results. Fig 3 shows the qualitative result of
LL-Ct. The arrow indicates the change of categories with
positive labels during training and GT indicates actual
ground truth positive labels for a training image. We see
that although not all ground truth positive labels are given,
our proposed method progressively corrects the category
of unannotated GT as positive. We also observe in the
first three columns that a category that has been corrected
once continues to be corrected in subsequent epochs, even
though we perform correction temporarily for each epoch.
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Figure 6. Training with smaller number of image.

This conveys that LL-Ct successfully keeps the model from
memorizing false negatives. We also report the failure case
of our method on the rightmost side where the model con-
fuses the car as truck which is a similar category and mis-
understands the absent category person as present.

Method VOC COCO

Naive AN 78.9 46.4
WAN [7, 27] 79.8 47.7
LSAN [7, 37] 79.5 49.1

EPR [7] 80.2 48.1
ROLE [7] 82.5 51.5

LL-R (Ours) 83.7 54.0
LL-Ct (Ours) 83.7 54.1
LL-Cp (Ours) 83.5 53.3

Table 4. Pointing Game.

Model explanation. We
have seen that our methods
have quantitatively better
performance than other
baseline methods. To see
if this is related to the
model’s better under-
standing of the data, we
examine how much the
model’s explanation is re-
lated to the human reasoning process. Concisely, we regard
the class activation mapping (CAM) [58] as the model’s
explanation and the ground truth object as the human’s
explanation. To measure how much these two explanations
are aligned, we use the Pointing Game metric [30, 57]. For
each existing category in an input instance, we consider it
as ‘Hit’ if the pixel point of the maximum value in CAM
is inside the bounding box of the object, and ‘Miss’ if it is
not. We count the #Hit and #Miss in all existing categories
in all test data, and report the average of #Hit / (#Hit +
#Miss) × 100 calculated for each category in Table 4.

We observe that in both VOC and COCO datasets, our
three methods outperform previous methods. In particular,
LL-Ct has +1.2 and +2.6 gain in VOC and COCO datasets
compared to ROLE [7], respectively. This result indicates
that the explanation of the model trained with our meth-
ods is better aligned to human’s explanation. We report the
CAM visualization results in Appendix.
Training with smaller number of image. To see if our
method also works in a smaller number of training image,
we randomly subsample training images in COCO dataset
by 10%, 20%, · · · , 90%, 100%, respectively, and train the
model with partial label in §4.1 as well as full label. We then
measure the classification performance on test set.

The results are shown in Figure 6. While the number of
observed labels for weakly supervised methods with 100%

of training image is much more smaller than the fully su-
pervised method with 10% of training image, i.e. × 1/8, all
the weakly supervised methods outperform the performance
with full supervision. Moreover, LL-Ct showes a similiar
performance to the fully supervised method with 30% train-
ing image only with 1/24 of the observed labels. This indi-
cates that when we have a limited cost to annotate the labels
when making a multi-label dataset, it is better to weakly an-
notate many images rather than fully annotate small number
of images. We also observe that LL-Ct outperforms other
weakly supervised methods on all ranges of number of ob-
served labels. When only 10% of training image is given,
LL-Ct has +9.2 mAP better performance compared to the
result from Naive AN method. This means our method also
provides better generalization with small number of training
image.

5. Conclusion
In this paper, we present large loss modification schemes

that reject or correct the large loss samples appearing dur-
ing training the multi-label classification model with par-
tially labeled annotation. This originates from our empir-
ical observation that memorization effect also happens in
a noisy multi-label classification scenario. Although heavy
and complex components are not included, our schemes
successfully keep the multi-label classification model from
memorizing the noisy false negative labels, achieving state-
of-the-art performance on various partially labeled multi-
label datasets.
Limitations and broader impact. Since it is difficult to
collect enormous data with fully annotated categories,
partial label setting is essential [28, 35]. For instance,
Instagram dataset is composed of billions of social media
images with its corresponding hashtags as labels that are
used to be noisy [28]. Our methodology makes one step
progress towards dealing with noisy multi-label classifica-
tion. However, current WSML methods have limitations
that are yet to be reached to the performance with fully
annotated label. We hope our methodology facilitates
further research in the field of WSML to reach full label
performance.
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