
Noise Distribution Adaptive Self-Supervised Image Denoising using
Tweedie Distribution and Score Matching

Kwanyoung Kim1 Taesung Kwon2 Jong Chul Ye1,2
1Kim Jaechul Graduate School of AI, 2 Department of Bio and Brain Engineering, KAIST

{cubeyoung, star.kwon, jong.ye}@kaist.ac.kr

Figure 1. Our image denoising results in Kodak dataset. Top: Gaussian noise (σ =25, σ = 50), Middle: Poisson noise (ζ = 0.01, 0.05),
Bottom: Gamma noise (k = 100, 50).

Abstract

Tweedie distributions are a special case of exponential
dispersion models, which are often used in classical statis-
tics as distributions for generalized linear models. Here,
we show that Tweedie distributions also play key roles in
modern deep learning era, leading to a distribution adap-
tive self-supervised image denoising formula without clean
reference images. Specifically, by combining with the recent
Noise2Score self-supervised image denoising approach and
the saddle point approximation of Tweedie distribution, we
provide a general closed-form denoising formula that can
be used for large classes of noise distributions without ever
knowing the underlying noise distribution. Similar to the
original Noise2Score, the new approach is composed of two
successive steps: score matching using perturbed noisy im-
ages, followed by a closed form image denoising formula

via distribution-independent Tweedie’s formula. In addi-
tion, we reveal a systematic algorithm to estimate the noise
model and noise parameters for a given noisy image data
set. Through extensive experiments, we demonstrate that
the proposed method can accurately estimate noise mod-
els and parameters, and provide the state-of-the-art self-
supervised image denoising performance in the benchmark
dataset and real-world dataset.

1. Introduction

Image denoising is a fundamental problem in low-level
computer vision problems. Nowadays, typical supervised
learning approaches easily outperform classical denois-
ing algorithms such as Block-Matching and 3D filtering
(BM3D) [2] and Weighted Nuclear Norm Minimization
(WNNM) [5]. Nonetheless, the supervised approaches are
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Figure 2. Overall reconstruction flow of the proposed method, where the first step is the estimation of the score function l̂′ by training a
neural network RΘ, which is followed by the estimation of noise model and noise level to obtain final denoised results. During the training
procedure, input images y that belong to the distribution of train set PY , are sampled.

not practical in many real-world applications as they require
a large number of matched clean images for training.

To address this issue, researchers have proposed various
forms of self-supervised learning approaches trained with
ingenious forms of loss functions that are not associated
with clean reference images [1,6,9,12,14,21]. Specifically,
these approaches have focused on designing loss functions
to prevent from learning identity mapping, and can be cat-
egorized into two classes: 1) one with generating altered
target images from noisy input images [1, 6, 12, 14], and 2)
the other by adding regularization terms from Stein’s Unbi-
ased Risk Estimation (SURE) [9, 21].

Although these algorithms appear seemingly different, a
recent Noise2Score [10] revealed that the procedure of gen-
erating altered target images or SURE-based regularization
term is closely related to the score matching [7], and there
exists a Bayes optimal denoising formula in terms of score
function for any exponential family distributions. Unfortu-
nately, Noise2Score requires a prior knowledge of the noise
distribution, so when the underlying noise distribution is un-
known, Noise2Score provide a sub-optimal performance.

One of the most important contributions of this paper
is, therefore, a novel discovery that the classical Tweedie
distribution can provide a “magic” recipe that can be used
for a large class of noise distribution even without knowing
the distribution. Specifically, Tweedie distribution can be
synergistically combined with Noise2Score to provide an
explicit de-noising formulation and an algorithm for esti-
mating the underlying noise model and parameters. In par-
ticular, inspired by the fact that various exponential fam-
ily distributions like Gaussian, Gamma, Poisson, etc. can
be described by saddle point approximation of the Tweedie
distribution by simply changing one parameter, we provide
a universal noise removal formula that can be used for a
large class exponential family distributions without prior
knowledge of the noise model. Furthermore, by assum-
ing that slightly perturbed noisy image may produce simi-
lar denoising results, we provide a systematic algorithm that

can estimate the noise type and associate parameters for any
given images. In spite of the blind nature of the algorithm,
experimental results demonstrated that our method outper-
forms other self-supervised image denoising methods that
are trained with prior knowledge of noise distributions.

Our contribution can be summarized as follows.

• We provide a general closed-form denoising formula
for large classes of noise distributions by combining
Noise2Score approach and the saddle point approxi-
mation of Tweedie distribution.

• We propose an algorithm to estimate the noise model
and noise parameter for given noisy images. In partic-
ular, the proposed noise estimation algorithm signifi-
cantly improves the performance and boosts the infer-
ence speed compared to the original Noise2Score [10].

• We show that the proposed method produces the
state-of-the-art performance amongst various self-
supervised image denoising algorithms in the bench-
mark dataset and real-environment dataset.

2. Related Works
2.1. Self-supervised image denoising

Recently, self-supervised image denoising methods
using only noisy images have been widely explored.
Noise2Noise [14] (N2N) was proposed to train a neural
network by minimizing L2 distance between the noisy im-
age and another noisy realization of the same source im-
age. When additional noisy versions of the same im-
age are not available, Noise2Void (N2V) [12], Noise2Self
(N2S) [1] adopted the blind spot network to avoid learn-
ing the identity noisy images. Other types of mask-based
blind-spot network methods have been explored, which in-
clude Self2Self [20], Noise2Same [25], Laine19 [13], etc.
Instead of using blind-spot methods, Neighbor2Neighbor
(Nei2Nei) [6] generate training image pairs by using the
random neighbor sub-sampler method. Noisier2Noise [18]
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samples doubly noisy images by adding synthetic noises on
the single noisy input. Additionally, Soltanayev et al [21]
proposed a training scheme using Stein’s unbiased risk es-
timator (SURE) to denoise additive Gaussian noise. By ex-
tending this idea, in [9], the authors proposed a loss function
using Poisson Unbiased risk estimator (PURE) to train deep
neural network for Poisson noises.

However, these methods have been mostly designed ei-
ther by distribution independent heuristics or for specific
noise models, and we are not aware of any general methods
that can be used for a large class of noise distributions by
estimating the noise model and parameters.

2.2. Noise2Score

Recently, Noise2Score [10] was proposed to estimate
clean images by Tweedie’s formula given the learned score
function of noisy data. Specifically, Noise2Score [10] con-
sists of two steps: score function estimation using noisy im-
ages, which is followed by Tweedie’s formula to estimate
the clean images. To learn the score function from noisy
data y, Noise2Score employes the amortized residual DAE
(AR-DAE) [15], which is a stabilized implementation of
denoising autoencoder (DAE) [24]. In fact, this procedure
is closely related to the masking procedure in Noise2Void,
Noise2Self, Noiser2Noise, etc. Specifically, Noise2Score
tried to minimize the following loss:

argmin
Θ

= E
y∼PY

∥u+ σaRΘ(y + σau)∥2 (1)

where RΘ is the score model parameterized by Θ, u ∼
N (0, I), and σa ∼ N (0, δ2). σa is perturbed noise which
gradually decrease with an annealing schedule. Minimiz-
ing Equation (1) yields the network R∗

Θ which could di-
rectly estimate the score function of noisy data, R∗

Θ =
∇y log p(y) = l′(y).

Once the score function l′(y) for the noisy image is
learned, Noise2Score provides an explicit formula for the
clean image using Tweedie’s formula. More specifically,
consider an exponential family of probability distributions:

p(y|η) = p0(y) exp
(
η⊤T (y)−A(η)

)
(2)

where the superscript ⊤ denotes the transpose operation.
Here, η is a canonical (vector) parameter of the family, T (y)
is a (vector) function of y, A(η) is the cumulant generating
function which makes p(y|η) integrate to 1, and p0(y) the
density up to a scale factor when η = 0. Then, Tweedie’s
formula [4] shows that the posterior estimate of the canoni-
cal parameter η̂ should satisfy the following equation:

η̂⊤T ′(y) = −l′0(y) + l′(y) (3)

where l′0(y) := ∇y log p0(y) are score functions, and
T ′(y) = ∇yT (y) [10].

3. Main Contribution
In practice, when noisy images are collected, it is diffi-

cult to assume the underlying noise models. For example,
low dose X-ray CT images are contaminated with a lot of
noises, but it is not clear whether it is from Gaussian noise,
Poisson noises, or mixed distribution. Usually, a specific
noise model is assumed for noise removal, but when the
assumed noise model is incorrect, there exists an unavoid-
able bias in the estimated images. The situation is same
in Noise2Score, as a specific form of Tweedie’s formula is
used depending on the assumed noise model. Therefore, a
fundamental question for image denoising is whether there
is a universal algorithm that can be used for various noise
models without losing its optimality.

In this section, we answer this question affirmatively.
Specifically, we show that the classical Tweedie distribu-
tion model is a versatile tool that can be combined with
Noise2Score to provide a near optimal solution for vari-
ous noise distribution without even knowing the underlying
noise model.

3.1. Tweedie distribution

The Tweedie distributions are a family of probability
distributions which include the purely continuous normal,
gamma and Inverse Gaussian distributions, the purely dis-
crete scaled Poisson distribution, and the class of compound
Poisson–gamma distributions [8]. Specifically, for a ran-
dom variable y which follows an exponential dispersion
model, the Tweedie density function is given by

p(y;µ, ϕ) = bρ(y, ϕ) exp

(
−d(y, µ)

2ϕ

)
, (4)

where µ is the mean, ϕ > 0 is the dispersion parameter
which is related to noise level, d(y, µ) is the unit deviance
for ρ ̸= 0, 1, 2 :

d(y, µ) = 2

(
y2−ρ

(1− ρ)(2− ρ)
− yµ1−ρ

1− ρ
+

µ2−ρ

2− ρ

)
. (5)

Tweedie family densities are characterized by power
variance functions of the form V [µ] = ϕµρ, where ρ ∈
(−∞, 0] ∪ [1,∞) is the index determining the distribu-
tion [8]. This has a closed form expression for special cases,
such as the normal distribution (ρ = 0), Poisson (ρ = 1),
gamma (ρ = 2) and inverse Gaussian (ρ = 3) distributions
(see Table 1). However, the function bρ(y, ϕ) cannot be
written in closed form except for special cases.

Thus, the saddle point approximation can be often used
to approximate the Tweedie densities, where bρ(y, ϕ) is re-
placed by a simple analytic expression, which leads to a
simple expression of the density [3]:

p(y;µ, ϕ) = (2πϕyρ)−
1
2 exp

(
−d(y, µ)

2ϕ

)
. (6)
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Table 1. Exponential dispersion models with power variance func-
tions.

Distribution ρ V [µ] ϕ

Gaussian 0 1 σ2

Poisson 1 µ 1
Poisson-Gamma 1< ρ <2 µρ ϕ
Gamma(α, β) 2 µ2 1/α

Inverse Gaussian 3 µ3 ϕ

In the following section, we show that (6) is the key to
derive a universal denoising formula that can be used for
various special cases of Tweedie distribution.

3.2. Noise2Score for Tweedie distribution

Now using the same idea of Noise2Score that relies on
(3), we can obtain the following universal denoising for-
mula from the saddle point approximation (6). All the
proofs in this section are deferred to Supplementary Ma-
terial.

Proposition 1 For the given measurement model (6), the
Bayes optimal estimate of the unknown µ is given by

µ̂ = E[µ|y] = y (1 + (1− ρ)α(y, ρ, ϕ))
1

1−ρ (7)

where

α(y, ρ, ϕ) = ϕyρ−1

(
ρ

2y
+ l′(y)

)
.

Proposition 2 The estimate (7) converges to the specific
formulae in Table 2 for given parameter pairs (ρ, ϕ) .

Table 2. Special cases of Tweedie’s formula for denoising.

Distribution ρ ϕ µ̂

Gaussian 0 σ2 y + σ2l′(y)

Poisson 1 ζ
(
y + ζ

2

)
exp(ζl′(y))

Gamma(α, α) 2 1/α αy
(α−1)−yl′(y)

Note that the specific formula in Table 2 is equivalent to
that of the original paper of Noise2Score [10]. This sug-
gests that by simply estimating the parameter pair (ρ, ϕ),
we can estimate both noise model and noise levels. In the
following, we provide a systematic algorithm to estimate
these parameters from a given noisy measurement.

3.3. Noise Model and Level Estimation

3.3.1 Noise model estimation

Here, we provide an algorithm that can be used to estimate
the noise model parameter ρ. Let y1 be the noisy measure-
ment. Suppose we add a small amount of independent noise

to generate y1:

y2 = y1 + ϵu, u ∼ N (0, I)

where ϵ is a small known value. If the injected noises are
sufficiently small, one could expect that their denoised im-
ages using (7) should be similar, i.e.

E[µ | y1] ≃ E[µ | y2] (8)

Therefore, we have α(y1, ρ, ϕ) ≃ α(y2, ρ, ϕ), which is
equivalent to:

ϕyρ−1
1

(
ρ

2y1
+ l′(y1)

)
≃ ϕyρ−1

2

(
ρ

2y2
+ l′(y2)

)
(9)

Now, the key observation is that the noise level param-
eter ϕ can be canceled from (9) when the equality holds.
Therefore, (9) provides a closed form formula for the noise
model parameter ρ as stated in the following proposition.

Proposition 3 Suppose that equality holds in (9) for y1 ̸=
y2. Then, the distribution parameter ρ is given by

ρ̂ =
−a(b− 2)±

√
(a(b− 2)2 − 4a(−2ab+ w)

2a
(10)

where a = log(y2

y1
), b = 2y1l

′(y1) and w = 2y2l
′(y2) −

2y1l
′(y1).

Proposition 3 implies that we can estimate the unknown
noise model by solving the quadratic equation. Among two
solutions for ρ, we empirically determine ρ̂ by taking the
maximum of two values for the correct estimate of ρ. Since
we assume that ρ ∈ (0, 2), we set the final ρ̂ to max(0, ρ̂).

To determine whether underlying noises are either from
Gaussian, Poisson, and Gamma, we set the empirical rule to
estimate the noise model from ρ̂:

Gaussian, if 0 ≤ ρ̂ < 0.9,
Poisson, if 0.9 ≤ ρ̂ < 1.9,
Gamma, if 1.9 ≤ ρ̂ < 2.9.

(11)

Specifically, if the estimated model parameter ρ̂ is included
in a specific range, we conclude that the noisy images be-
long to corresponding the noise distribution. The detail of
implementation are described in Supplementary Material.

3.3.2 Noise level estimation

If the noise model parameter ρ is known or correctly esti-
mated, the universal denoising formula in (7) still require
the knowledge of noise level ϕ.

Although the original Noise2Score could also estimates
noise level using image quality penalty metric such as total
variation (TV), our method can estimate the unknown noise
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parameter much more efficiently. Again, the basic intuition
is that if the injected noises are sufficiently small, one could
expect that their denoised images using (7) should be sim-
ilar. Proposition 4 provides the specific formula based on
the assumption.

Proposition 4 Assume that the noise model parameter ρ is
known. Suppose, furthermore, that the equality holds in (8)
for y1 ̸= y2. Then, the noise level parameter of several
noise distribution is given by

σ̂2 =
(

−ϵu
l′(y2)−l′(y1)

)
, Gaussian,

ζ̂ =
(
−y1 +

√
y21 − 2c

)
, Poisson,

α̂ = β̂ = k̂ =

(
1 + l′(y2)−l′(y1)

1
y2

− 1
y1

)
, Gamma,

(12)

where c = ϵu/(l′(y2)− l′(y1)).

For the case of Poisson noise, the solution is derived from
the quadratic equation for ζ. Due to ζ > 0, we only calcu-
late the solution with a positive sign. All these formulae are
applied for each pixel level, so we should use the median
for the pixel level estimate.

In contrast to Noise2Score which requires multiple in-
ferences for the noise level estimation, our proposed method
requires only one more inference step to find unknown noise
level parameter. Thus, the proposed method has advantages
in terms of speed and simplicity.

4. Experimental Results
4.1. Implementation Details

Training Details In order to fairly compare the proposed
method with other comparison methods, a modified version
of U-Net generator [12] is used for all methods. The mini-
batch size was adopted as 16 and the total epoch was set to
100 for training. The Adam optimizer [11] was used to train
the neural network with an initial learning rate 2×10−4.
The learning rate was decayed to 2× 10−5 after 50 epochs.
To train the score model in this work, we employed the AR-
DAE in Noise2Score method [10] and adopt the exponential
moving average method with decay rate 0.999. For the an-
nealing sigma σa which is required to learn the score func-
tion of noisy data, we generate geometric sequences which
have the value of the perturbed noise level from σmax

a to
σmin
a [22]. Further details of implementation are described

in Supplementary Material. Our method was implemented
in PyTorch [19] with NVIDIA GeForce GTX 2080-Ti.

Datasets for Synthetic Experiments We used
DIV2K [23] and CBSD400 [16] dataset as training
data set. We sampled 220,000 cropped patches of 128×128
size to train the network. For the data augmentation, we

used the random horizontal, vertical flip, and flop methods.
We generated the synthetic noise images for blind noise
cases where noise levels are randomly sampled from the
particular range for each noise distribution. In the case of
Gaussian noise, noise levels varied with σ ∈ [5,55]. For
Poisson noise, noise levels varied with ζ ∈ [0.1,0.005]. For
Gamma noise, noise levels are in k ∈ [40, 120]. To evaluate
the proposed method for blind synthetic noise experiment,
the test set was adopted for Kodak, CBSD68 [16] dataset.

4.2. Results of Synthetic Experiments.

Gaussian noise To evaluate our method on various noise
distribution, we adopted the nine comparison methods
such as BM3D [2], N2V [12], N2S [1], Nei2Nei [6],
Laine19 [13], N2Score [10], N2N [14], and supervised
learning approaches as shown in Table 3. Comparison
methods are varied depending on the noise distribution. The
supervised learning and N2N using multiple pair images
perform best, but are not practical. In the case of addi-
tive Gaussian noise, our method not only outperforms the
other self-supervised learning approaches for all of dataset
but also provides comparable results to the supervised learn-
ing approaches. Thanks to the improved score function es-
timation described in Supplementary Material, our method
provides even better performance of N2Score. The quali-
tative comparison in Figs. 3 and 4 show that the proposed
method provides the best reconstruction results.

Poisson noise For the Poisson noise case, BM3D was re-
placed with Anscombe transformation (BM3D+VST) as in-
dicated in Table 3. Our proposed method provides signifi-
cant gain in performance compared to other algorithms, al-
though Laine19-pme, taking advantage of the noise model
with known prior, shows the best performance for the Pois-
son case. Note that our proposed method assumes that the
noise model is unknown and estimates the noise statistics.
Despite the unknown noise model, the results of proposed
method are still comparable. We found that our method sig-
nificantly improved the results of Noise2Score in Poisson
case when the noise level parameter is unknown. It con-
firmed that the proposed noise level estimation method is
more effective than quality penalty metrics in Noise2Score.
The visual comparison results in Figs. 3 and 4 show that our
method delivers much visually pleasing results compared to
other self-supervised methods.

Gamma noise As the extension of BM3D and Laine19
for Gamma noises are not available, we only used six com-
parison methods to evaluate the proposed method, as indi-
cated in Table 3. In the case of Gamma noise case, we set
α = β = k. Again, the proposed method yields the best
results against self-supervised learning approaches and sig-
nificantly improves the performance of Noise2Score with
a margin of ∼1dB. The qualitative comparison in Figs. 3
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Figure 3. Visual comparison of our method against other competing methods in CBSD68 dataset. Top : Gaussian noise with σ = 25.
Middle: Poisson noise with ζ = 0.01. Bottom: Gamma noise with k = 100. The number at the lower corner of images indicates the PSNR
value in dB.

Figure 4. Visual comparison of our method against other competing methods in CBSD68 dataset. Top : Gaussian noise with σ = 50.
Middle: Poisson noise with ζ = 0.05. Bottom: Gamma noise with k = 50. The number at the lower corner of the image indicates the PSNR
value in dB.

and 4 confirm that our method provides competitive visual
quality among self-supervised deep denoisers.

4.3. Real Image Noise Removal

To verify that the algorithm can be applied to a real
dataset, a real noise removal experiment was performed us-
ing the AAPM CT dataset [17], which contains 4358 images
in 512×512 resolution from 10 different patients at low-
dose level and high-dose X-ray levels. The input images are

adopted as quarter dose images and the target images are set
to full dose images. We randomly select 3937 images as a
train set, and the remaining 421 images are set as a test set.
The noise distribution in X-ray photon measurement and in
the sinogram are often modeled as Poisson noise and Gaus-
sian noise, but real noise in reconstructed images is spatially
correlated and more complicated, so that it leads to difficul-
ties in modeling the specific noise distributions.

To deal with blind image noise removal in the low dose
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Table 3. Quantitative comparison of denoising results by various methods in terms of PSNR(dB) when the noise parameters are unknown
(N2V: Noise2Void, N2S: Noise2Self, Nei2Nei: Neighbor2Neighbor, N2Score: Noise2Score, N2N: Noise2Noise, SL: supervised learning,
Anscombe: Anscombe method for BM3D).

Noise type Conventional Self-Supervised Supervised

Gaussian Dataset BM3D N2V N2S Nei2Nei Laine19-mu Lain19-pme N2Score Ours N2N SL

σ = 25
CBSD68 28.61 29.22 29.71 30.56 28.61 30.88 30.75 30.89 30.92 30.92
Kodak 29.94 30.02 30.81 31.55 30.19 31.92 31. 78 31.95 31.96 31.96

σ = 50
CBSD68 26.71 25.13 27.14 27.32 26.42 27.65 27.32 27.56 27.73 27.73
Kodak 27.02 25.75 28.21 28.28 27.78 28.63 28.23 28.64 28.70 28.71

Poisson Dataset Anscombe N2V N2S Nei2Nei Laine19-mu Lain19-pme N2Score Ours N2N SL

ζ = 0.01
CBSD68 30.68 31.02 30.74 31.64 30.61 32.73 31.87 32.53 32.94 32.95
Kodak 31.93 31.98 31.92 32.61 31.67 33.51 32.96 33.41 33.86 33.87

ζ = 0.05
CBSD68 26.93 28.12 28.33 28.46 27.53 28.83 28.27 28.73 29.07 29.07
Kodak 28.27 29.32 29.49 29.54 28.68 30.17 28.98 29.72 30.23 30.25

Gamma Dataset N2V N2S Nei2Nei N2Score Ours N2N SL

k = 100
CBSD68 - 31.83 31.71 34.21 - - 33.82 34.52 35.33 35.33
Kodak - 31.66 32.83 35.10 - - 34.23 35.42 36.16 36.16

k = 50
CBSD68 - 30.51 30.63 32.11 - - 31.32 32.43 33.41 33.41
Kodak - 31.38 31.71 32.38 - - 31.81 32.81 34.39 34.40

Figure 5. Denoising results of AAPM data using various methods. The yellow box and green box show the enlarged view of image and
difference image between network input and output, respectively. The intensity window of CT image is (-500,500)[HU] and the intensity
window of difference is (-200,200) [HU].

CT images, we carried out experiment with the proposed
method using the procedure in Fig. 2. The other experiment
settings are identical to synthetic experiments. Based on the
model estimation rule in (11), we observed that the Low-
dose CT images can be interpreted as corrupted by Gaus-
sian noise (ρ̂ ≃ 0). To evaluate the proposed method, we
compare with other methods such as N2S [1], N2V [12],
Nei2Nei [6], N2Score [10], and supervised learning ap-
proach. To implement the original Noise2Score, we assume
that the noise distribution is additive Gaussian noise. The
quantitative results suggest that the proposed method yields

the competitive results to other self-supervised learning ap-
proaches. However, the visual quality is also an impor-
tant criterion to evaluate the results in the medical imag-
ing. In Fig. 5, the qualitative comparison shows that other
self-supervised approaches provide over-smooth denoised
images as shown in Table 4. In particular, the difference
images of these methods show the structure of CT images.
However, our method yields visually similar results com-
pared to full-dose CT image and also provides only noises
in the difference image between the network input and out-
put. Therefore, our method also has the advantage that it
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(a) (b)
Figure 6. The histogram of estimated noise model parameter ρ̂ in
Kodak dataset. (a) For the case of σ =25, ζ = 0.01, k = 100. (b)
For the case of σ=50, ζ = 0.05, k = 50.

can be applied to real environment dataset.

Table 4. Quantitative comparison using various methods
in terms of PNSR(dB) on the AAPM CT dataset. (N2V:
Noise2Void, N2S: Noise2Self, Nei2Nei: Neighbor2Neighbor,
N2Score: Noise2Score SL: supervised learning).

Method N2S N2V Nei2Nei N2Score Ours SL

PSNR 35.82 35.93 37.83 36.63 36.92 38.53

5. Ablation Study
5.1. Results on Noise Model Estimation

Here, we validate the proposed the noise model estima-
tion by (11). Figure 6 shows the histogram of estimated
noise model parameter ρ̂ in the Kodak dataset. We have cal-
culated ρ̂ for each noise distribution and plot distributions in
each figure. According to Tweedie’s distribution, we expect
that the parameters of noise model can be differentiated for
each noise distribution such as Gaussian (ρ̂≃ 0), Poisson (ρ̂
≃ 1), and Gamma (ρ̂ ≃ 2). From the figure, we can observe
that the noise model parameters ρ̂ are distinctly distributed
in the case of low noise levels. Furthermore, in the case of
high noise levels, the distributions can also be distinguished
for each noise distribution. It implies that it was possible
to successfully estimate the noise model with the proposed
method, so that it leads to the use of the exact Tweedie’s
formula for blind image denoising.

Table 5. Reconstruction results with various noise parameter esti-
mation methods on CBSD68 dataset in terms of PSNR(dB).

Noise type N2Score Ours Known value SL

Gaussian (σ=25) 30.78 30.89 30.91 30.92
Poisson (ζ=0.01) 31.89 32.53 32.63 32.95
Gamma (k=100) 33.92 34.52 34.53 35.33

Inference speed 3.1s 0.1s - -

5.2. Ablation Study on Noise Level Estimation

We analyze the effect of the proposed noise level estima-
tion by comparing Noise2Score with quality penalty met-
ric [10] and others. To fairly evaluate the proposed method,

we used an identical weights of the score model for each
case. We carried out an ablation study by fixing the noise
model estimation procedure and by only varying the noise
level estimation as shown Table 5. Here, “known value”
refers to the results assuming the known ground truth noise
level parameter. “SL” denotes that the results of supervised
learning. We found that quality penalty metric yield compa-
rable performance to “known value” in the case of the Gaus-
sian, but the performance with the quality penalty metric
decreased for the case of Poisson and Gamma noises. How-
ever, the proposed methods outperform the quality penalty
metric approach and yields results comparable to “known
value” in all cases. Furthermore, we compare the inference
speed of the estimation stage. The Noise2Score took about
× 30 times more to estimate noise level parameters com-
pared to our method.

6. Conclusion

In this article, we provided a novel self-supervised blind
image denoising framework that does not require clean
data and prior knowledge of noise models and levels. Our
innovation came from the saddle point approximation of
Tweedie distributions, which cover a wide range of expo-
nential family distributions. By taking advantage of this
property, we provided a universal denoising formula that
can be used for various distributions in real life. Further-
more, we proposed a novel algorithm that can estimate the
noise model and noise level parameter in a unified frame-
work. Finally, we validated the proposed method using
benchmark and real CT image data sets, and confirmed that
the method outperforms the existing state-of-the-art self-
supervised learning methods.

Limitation

While we provide a unified approach for noise distribu-
tion adaptive self-supervised image denoising, the method
is not free of limitations. As the formulae for estimating of
noise model and levels were derived from several approxi-
mations, it could fail in a real-world dataset. Furthermore,
the noise model may not be described by Tweedie distribu-
tion in real environments.
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