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Abstract

We consider distributed (gradient descent-based) learn-
ing scenarios where the server combines the gradients of
learning objectives gathered from local clients. As individual
data collection and learning environments can vary, some
clients could transfer erroneous gradients e.g. due to ad-
versarial data or gradient perturbations. Further, for data
privacy and security, the identities of such affected clients
are often unknown to the server. In such cases, naı̈vely ag-
gregating the resulting gradients can mislead the learning
process. We propose a new server-side learning algorithm
that robustly combines gradients. Our algorithm embeds the
local gradients into the manifold of normalized gradients and
refines their combinations via simulating a diffusion process
therein. The resulting algorithm is instantiated as a compu-
tationally simple and efficient weighted gradient averaging
algorithm. In the experiments with five classification and
three regression benchmark datasets, our algorithm demon-
strated significant performance improvements over existing
robust gradient combination algorithms as well as the base-
line uniform gradient averaging algorithm.

1. Introduction

The success of deep learning relies on the abundance of
training data and computational capability to process such
data. When computational resources are limited at centralized
servers, distributed learning can be employed, where data is
distributed across multiple clients and part of the learning pro-
cess is performed within each client. To enhance data privacy
and security, and reduce the required communication cost, of-
ten in such environments, details of the localized data are hid-
den to the server and other clients, and the server aggregates
only encapsulated information communicated from clients.

We consider distributed gradient descent-based optimiza-
tion as an instance of such learning problems: The main
objective is to minimize a differentiable energy function
presented as the sum of the client energies defined based on
the respective local data (e.g. the average of squared errors
or cross-entry losses over clients’ datasets) [23, 27, 41]. Then
each client iteratively calculates and transfers the gradient of

the local energy with respect to the learner parameters while
the server maintains and updates these parameters using the
aggregated local gradients.

The nature of individual clients and local data therein
can vary significantly. For instance, a client could be a data
center securing professionally annotated data while another
client might be an edge device containing data labeled by
inexperienced annotators. In this case, some clients could
exhibit abnormal behavior e.g. due to incorrect labeling or
adversarial attacks, and the corresponding local gradients
can be unreliable. This can distract the gradient aggregation
process at the server leading to suboptimal learning.

Robust distributed learning with such affected clients has
only recently come to recognition and existing approaches
are limited in that they require a separate training set at
the server (to train a detector of affected clients) [34],
information on the number of affected clients [32], or access
to local training data [12] (see Sec. 2 for details).

We present a new approach that combines local gradients
when some clients undergo adversarial perturbation. Our
algorithm takes the naı̈ve uniform average of gradients as a
noisy observation of an underlying ground-truth combination,
and iteratively improves this during the gradient descent
steps of the learner parameters. Specifically, our algorithm
represents the combined gradient as a convex combination of
all local gradients. The corresponding combination weights
are uniformly initialized. As the optimization proceeds, the
genuine (unaffected) local gradients are automatically iden-
tified by adjusting the combination weights via simulating
the diffusion of the combined gradient. Our approach does
not require a separate training set at the server, and it offers
the advantage of refining the gradient combination without
having to know the number and identities of affected clients
as well as the nature of perturbations therein.

In the experiments with five classification and three
regression benchmark datasets, and two different scenarios of
client perturbations, our approach demonstrated significant
performance improvements over the standard uniform
gradient averaging algorithm and existing robust gradient
combination approaches.
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2. Related work

Privacy-enhancing and communication-efficient dis-
tributed learning. Since the introduction of the federated
averaging (FedAvg) algorithm [23], federated learning has
been established as a standard problem and method for
communication-efficient and cross-device distributed learn-
ing [17]. The main challenges in this scenario include min-
imizing the communication cost (e.g. via gradient compres-
sion [21] and quantization [19]), optimizing the topology of
the underlying communication networks [43], data protection
and encapsulation, personalization [7], and theoretical conver-
gence guarantee [20,35]. Recent work also focuses on robust-
ness against non-independent and identically distributed (non-
i.i.d.) data generation processes [24] and the extensions of Fe-
dAvg to e.g. multi-task learning [27] and meta-learning [18].

Robust distributed learning. In privacy and security-
enhancing distributed learning, the server has only access to
the gradients or updated learner parameters provided by the
individual clients, and therefore, it is susceptible to corrupted
updates [8,39].

Learning approaches that are robust against such updates
have only been recently introduced. Sun et al.’s gradient clip-
ping approach assumes that the gradients generated from the
affected clients tend to have large norms and it excludes the
gradients whose norms are larger than a given threshold T in
the combination [29]. This algorithm is tailored to attacks that
focus on specific sub-tasks in multi-task environments, and it
is not directly applicable to perturbations that we consider in
this paper. Furthermore, in general adversarial perturbation
scenarios, the threshold T might not be known in advance.
Hu et al.’s gradient normalization approach builds on a sim-
ilar idea [15]: Assuming that the affected gradients exhibit
larger norms, they normalized the gradients to suppress their
contributions. In our preliminary experiments (with random
labeling and random gradient perturbations; see Sec. 4) we
observed that the perturbed gradients do not necessarily ex-
hibit larger norms than genuine gradients, and in such cases,
gradient normalization or clipping are not directly applicable.

In Han and Zhang’s robust federated learning algorithm,
the clients take the role of (partially corrupted) teachers while
the server acts as a student [12]. Each teacher then provides
a few known genuine data instances, verified by domain
experts, to guide the teaching process. This approach requires
access to local data of individual clients and known identities
of genuine data instances therein, and therefore its application
is limited when the server is agnostic to the client internals.

The local gradients can be considered as abstract high-
dimensional vectors and in this respect, combining perturbed
local gradients can be seen as the problem of robustly estimat-
ing their mean (see Eq. 3). In general, when observed data
are noisy, potentially including outliers, the central statistical
tendency can be better captured by their medians as robust es-

timators than the means. Pillutla et al.’s gradient aggregation
algorithm uses geometric median as another robust alternative
to the mean [25]. In the experiments, we demonstrate that our
approach outperforms the algorithms that replace the gradient
means with their medians or geometric medians [25].

Turan et al.’s gradient combination algorithm provides an
alternative approach to exploit the median estimates [32]: For
each optimization step, the median of the local gradients are
calculated. Then, the genuine gradients are selected as K-
nearest neighbors of the median. While this algorithm demon-
strated significant improvements over federated averaging,
it requires determining K which might vary across the prob-
lems and be difficult to estimate. In the experiments, we show
that this algorithm achieves robustness when the numbers of
affected clients are limited and when K is known explicitly.
However, when more clients are affected, the median esti-
mates were distracted by the perturbed gradients and the per-
formance degraded accordingly. Our algorithm demonstrated
improvements over [32] even without having to tune K, es-
pecially when large numbers of clients are affected. Other
robust mean alternatives can be found e.g. in gradient filtering
via low-rank signal recovery [28] and trimmed mean [38, 42].

Some existing approaches build upon additional assump-
tions or trade data privacy and security with robustness: For
example, Xie et al.’s Zeno algorithm detects affected clients
based on the accuracy of each local model assessed based on
labeled datasets at the server [40]. Alistarh et al.’s Byzantine
stochastic gradient descent approach provides a theoretical
guarantee on the near-optimality of the final solution, but
it requires the convexity of training objectives [1]. Wan and
Chen’s robust federated learning algorithm detects the gen-
uine gradients via training a separate learner that estimates
the probability of each local gradient being genuine [34].
While this approach achieved a significant performance gain
over uniform gradient averaging, its application domain is
limited as it requires a separate training set at the server.

3. Robust gradient combination against adver-
sarial perturbations

Problem formulation. Our goal is to learn a function f
with domain X and range Y . We will focus on deep neural
network learners f parameterized by weight vectors w while
our methods can be applied to other types of learners that can
be trained using gradient descent techniques. For classifica-
tion, we will use one-hot encoding where Y⊂Rc with c being
the number of classes. For regression, Y ⊂R. In standard
supervised learning, one is provided with a single training set
Z={(x1,y1),...,(xN ,yN )}⊂X×Y and the prediction func-
tion f is constructed by minimizing the sum of losses:

E(w;Z)=

N∑
j=1

l(f(xj),yj).
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For classification, we will employ the standard cross-entropy
loss: l(a,b)=−

∑c
j=1[a]j log([b]j) with [a]j being the j-th

element of the vector a while for regression, the squared
error will be used: l(a,b)=(a−b)2. Applying the standard
gradient descent, one obtains the final learner parameter
(weight vector) w∗ by iteratively updating w

w(t+1)=w(t)−η∇wE(w;Z) (1)

with a step size η>0.
In distributed learning, the training set Z is distributed

across K different clients {Ck}Kk=1 where Ck is provided
with a subset Zk of Z, and it calculates the update of w
based only on Zk. For instance, McMahan et al.’s federated
averaging (FedAvg) framework [23] replaces the centralized
update in Eq. 1 with an aggregation of local gradients:1

w(t+1)=w(t)−η

K∑
k=1

gk(t), (2)

where gk(t) is the gradient ∇wE(w(t);Zk) calculated by the
client Ck based on the learner parameter w(t). For stochastic
gradient descent, only a small portion (called mini-batch)
of Zk contributes to the gradient evaluation ∇wE: All
gradient combination algorithms considered in this work
can be straightforwardly applied to this case. At iteration
t, a server S distributes the previous learner parameter w(t),
collects the resulting local gradients {gk}Kk=1, and performs
the parameter update in Eq. 2. To enhance security and
privacy, the local datasets {Zk} are not shared with the
server or other clients. Therefore, the only information that
is communicated from Ck to S is the gradient gk(t).

When each client provides a genuine gradient of E , the Fe-
dAvg update w(t+1) in Eq. 2 is equivalent to the centralized
update (Eq. 1) and they will lead to identical solutions. How-
ever, when some clients undergo adversarial perturbation and
accordingly transfer erroneous gradients, the final solution of
FedAvg process can be inferior to the centralized counterpart.
The nature of the perturbations (e.g. the labels {yj}|Zk|

j=1 in
Zk are randomly changed or the k-th client gradient gk(t) is
replaced by a random vector; see Sec. 4) and the number and
identities of the affected clients are not known to the server
where the parameter update (Eq. 2) is performed.

Robust estimation of gradient update using diffusion on
the gradient manifold. We employ a modified parameter

1In the original federated averaging algorithm, the client Ck provides
the locally updated weights wk(t) instead of the gradient gk(t) (after one
or more stochastic gradient descent steps) [23]. We use the form in Eq. 2
to encompass other existing gradient combination models. This original
algorithm can be restored by replacing gk(t) with wk(t)−w(t) in Eq. 2.

update rule:

w(t+1)=w(t)−ηKq(t), (3)

q(t)=

K∑
k=1

[a(t)]kgk(t), (4)

where a(t) (∥a(t)∥1 = 1 and [a(t)]k ≥ 0 for 1 ≤ k ≤ K)
regulates the contributions of the local gradients {gk(t)}.
When a(t) is uniform (i.e. [a(t)]k = 1/K), Eq. 3 becomes
the standard FedAvg (Eq. 2) while general non-uniform a(t)
can instantiate different gradient combination strategies. Our
algorithm automatically determines a(t) via simulating a
diffusion process on the manifold M of normalized gradients.
Diffusion on data manifolds. The diffusion of a function f on
a manifold M induced by its Laplace-Beltrami operator ∆M

is described as a partial differential equation [16,26]:

∂h

∂t
=∆Mh. (5)

When h is a noisy observation of an underlying ground-truth
function h

h(r)=h(r)+ε, (6)

with ε being Gaussian noise, it can be shown that the diffusion
(Eq. 5) performs denoising of h depending on the curvature
of M [14,36]. In particular, when h is presented as a noisy
embedding of M into an ambient Euclidean space Rm, ap-
plying the diffusion in Eq. 5 tends to recover the underlying
true embedding {h(r) : r∈M}⊂Rm by pushing along M
the noisy observations {h(r) :r∈M}⊂Rm towards them.

As shown shortly, we will take the local client gradients
{gk} and the combined gradient q (Eq. 4) as a sample from
M and denoise q via simulating diffusion. For this, we first
spatially discretize the original diffusion process: Suppose
that we have a set of data instances H={h1,...,hS} sampled
from a manifold M . The dataset H is not directly observed
but instead presented as a noisy embedding H={h1,...,hS}
within Rm. The normalized graph Laplacian L on H is
defined as

L=I−D−1A, where (7)

[A]ij=κ(hi,hj ;σ
2) :=exp

(
−∥hi−hj∥2

σ2

)
, (8)

for i ≠ j and [A]ij = 0 for i= j. The i,j-th kernel matrix
entry [A]ij measures the similarity of data instance hi

and hj controlled by the parameter σ2. D is a diagonal
matrix of the column-sums of A: [D]ii =

∑
j [A]ij , which

makes the corresponding diffusion process (presented below)
probabilistically normalized. With graph Laplacian L as an
approximation of −∆M , a spatial discretization of Eq. 5
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is formulated as a time evolution of H (see [6, 13] for
convergence analysis of L to −∆M ):

∂H

∂t
=−LH (9)

with H=[h⊤
1 ,...,h

⊤
S ]

⊤. This diffuses the rows of H (equiva-
lently, H) along the manifold M . It should be noted that our
diffusion is nonlinear as its generator L depends on H which
is being evolved: Initially, L is given as a noisy discretization
of −∆M (as it is constructed based on H , instead of H), and
L and H are jointly denoised during the diffusion process.
Denoising combined gradients via diffusion. We consider a
manifold M consisting of normalized gradients of E : ∥g∥2=
1,
∑

j [g]j=0 for g∈h(M). The corresponding graph Lapla-
cian is constructed using the local gradients {gk}Kk=1 and
the combined gradient q: The data matrix H is obtained by
assigning gk to hk for 1≤k≤K and q=hS with S=K+1.

Now applying the explicit Euler time-discretization to the
continuous evolution of Eq. 9, we obtain to the following
iterative algorithm

H(t+1)−H(t)

δ
=−LH(t)

⇔H(t+1)=(I−δL)H(t), (10)

where δ is the discretization step.
This diffusion process simultaneously denoises all

gradients, which can be computationally demanding. Since
our goal is to robustify the update process of w (Eq. 3)
via the gradient combination q (Eq. 4), we focus on only
diffusing q given the local gradients {gk}: The evolution
of q is accordingly derived from Eqs. 7 and 10 as

q(t+1)=(1−δ)q(t)+δ

K∑
k=1

[a(t)]kgk(t), (11)

a(t)=
ã(t)

∥ã(t)∥1
, [ã(t)]k=κ(gk(t−1),q(t);σ2).

Finally, our learning algorithm is obtained by first
determining the initial solution q(1) as a uniform average
of the local gradients: q(1) =

∑K
k=1[a(1)]kgi(1) with

[ã(1)]k=1/K and incorporating the resulting diffusion step
of q (Eq. 11) in the update of w in Eq. 3. By noting that
q(t) is uniquely determined by a(t) given the local gradients
{gk(t)}Kk=1, this casts the q-update step of Eq. 11 into an
update rule of the gradient combination weights a:

[a(t+1)]k=(1−δ)[a(t−1)]k+δ[a(t)]k. (12)

As a(t+1) is not automatically normalized, we explicitly
normalize it before the update of w (Eq. 3). Algorithm 1
summarizes the training process.

Hyperparameters and complexity. The hyperparameters
of our algorithm include the diffusion step δ (Eq. 11) and the

Algorithm 1: Server execution of our distributed
learning framework: The client Ck is equipped with a
dataset Xk and it provides the corresponding loss gra-
dient gk(t) at step t. An unknown subset of the total
clients {Ck}Kk=1 communicate erroneous gradients.
Input: Diffusion step size δ (Eq. 10) and

kernel width σ2 of graph Laplacian (Eq. 8).
Output: Optimized learner parameter w∗.

Initialize the learner parameters w(1) randomly;
Initialize combination coefficients a(1) uniformly;
for each round t=1,... do

Collects the local gradients {gk(t)}Kk=1;
Normalize the gradients gk(t)=

gk(t)
∥gk(t)∥2

;
Calculate the weighted
average gradient q(t)=

∑K
k=1[a(t)]kgk(t);

Calculate the kernel evaluations ã(t) (Eq. 11);
Calculate
w(t+1) (Eq. 3) and distribute it to clients;

Calculate and normalize a(t+1) (Eq. 12);
end
w∗=w(t);

kernel width σ2 (Eq. 8). The parameter σ2 controls the unifor-
mity of the combination coefficients a: For small σ2 values,
only a small portion of local gradients {gk} contributes to
the combination q helping suppress noisy gradients, at the
expense of potentially neglecting some genuine gradients.
Large σ2 values lead to close to uniform coefficients making
more gradients contribute to the combination, possibly includ-
ing affected gradients. We fix σ2 as a conservative value of 2
leading to close to uniform a values for the first 50 iterations
of optimization. Thereafter, it is determined as 0.2 which is
roughly half the squared mean distance of the pairs of the ini-
tial gradients of CIFAR10 dataset (see Sec. 4). As the explicit
Euler scheme in Eq. 11 is not stable for large δ values, we fix
δ at a small value of 0.1. This offered fast enough q-update
while keeping the evolution stable. For large δ values, when
a is not normalized, q can quickly diverge to infinity or con-
verge to zero: As a is normalized in our algorithm, a actually
converges to a vector consisting of zeros except for an entry
of value one. In general, tuning these hyperparameters per
problem and dataset can improve performance. However, this
might require separate validation sets at the server, which can
limit the application domain of distributed learning.

Each step of our algorithm requires updating the gradient
combination weights a (Eq. 12), and calculating the simi-
larity of each local gradient and the combined gradient q
(Eq. 11). Given the local gradients {gk(t)}Kk=1, the time
complexity of each step of our algorithm depends linearly on
the number K of clients and the size m of a gradient vector
(equivalently, the number of weights of the learner f ) incur-
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Figure 1. Our algorithm and FedAvg applied to a simple 2D
example where the last 40 (out of 125) clients are affected. Our
algorithm successfully suppressed the gradients from the affected
clients leading to 11.5% accuracy improvements from FedAvg.

ring the total complexity of O(K×m). We terminate the
weight diffusion (Eq. 12) when the diversity of local gradi-
ents Dt=

∑K
k=1∥gk(t−1)−q(t)∥ decreases rapidly. For CI-

FAR100, each gradient combination step takes less than a sec-
ond in a machine with i7-10700K CPU and RTX2080Ti GPU.

An illustrative example. Figure 1 illustrates the learning
behavior of our algorithm using a two-dimensional toy ex-
ample: A training set (Fig. 1(b)) of size 500 is generated as a
noisy sample from a ground-truth class map (Fig. 1(a)), which
is distributed across 125 clients. At each training iteration,
the gradients of 40 clients are replaced by Gaussian random
vectors simulating adversarial attacks. Our algorithm success-
fully suppressed the perturbed gradients as indicated by the
small a values assigned for these affected clients (Fig. 1(e))
and achieved the testing accuracy of 90.81% (Fig. 1(d)).

The FedAvg was distracted by these random gradients
significantly degrading the performance (81.38%; Fig. 1(c)).

Discussion. The gradient combination framework in Eq. 3
is general and it includes other algorithms including Wan and
Chen’s robust federated learning approach [34] as a special
case. In [34], the combination weight [a]k is constructed
based on the probability of the gradient gk being genuine,
which is estimated by a separate attention mechanism trained
on an annotated dataset (of genuine and affected gradients).
This requires a separate dataset at the server and incurs the
overhead of transmitting such data to clients to collect the
example gradients. Our algorithm can be considered as
an alternative that can be applied even when such labeled
datasets are not available at the server and when high data
communication costs cannot be afforded.

Diffusion processes have been widely used in semi-
supervised learning [30, 44], image and surface enhance-
ment [3, 36], clustering and data embedding [5, 33]. Most
closely related to our approach is Hein and Maier’s manifold
denoising algorithm [14] which denoises a given point cloud
sampled from a manifold. Unlike [14], our approach employs
a probabilistic normalization (Eq. 8) leading to a convex com-
bination of local gradients (Eq. 11) and focuses on diffusing a
single combined gradient vector rendering the update rule for
the combination weights a (Eq. 12). Further, our approach
uses the explicit Euler time discretization. This leads to a
computationally more affordable solution (Eq. 10) than the
implicit Euler scheme of [14], as the former does not require
solving a large-scale optimization problem per diffusion step.
However, this comes at the expense that our update rule is
not uniformly stable for any values of the diffusion step δ>0
(Eqs. 11 and 12) and therefore, we keep it at a small value.

Our algorithm was conceived by simulating diffusion
on a data manifold. While this offers an advantage of
theoretical rigor inheriting the convergence analysis of
diffusion processes and their denoising properties [14, 36],
a more intuitive interpretation exists: At step t, the new
combined gradient vector q(t+1) (Eq. 11) can be seen as
the minimizer of the following convex energy

EW (q)=
1

2

S∑
k=1

[c(t)]k∥hk(t)−q∥2, (13)

where for 1≤ k≤ S−1, hk(t) = gk(t), [c̃(t)]k = δ[a(t)]k,
and c̃(t) = c(t)

∥c(t)∥ , and hS(t) = q(t) and [c̃(t)]S = 1− δ.
This penalizes the deviation of q(t+1) from the previous
solution q(t) and the current local gradients {gk(t)}. The
contribution [c(t)]k of gk(t) is controlled based on the
error ∥q(t)−gk(t−1)∥2 incurred at the previous step: The
iterative minimization of EW tends to assign smaller weights
{[c(t)]k} to the gradients {gk} that exhibit large errors. This
introduces robustness in the gradient aggregation of Eq. 11
as the outliers are gradually ignored during optimization.
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Achieving robustness via reweighting the contributions
of individual error terms has been studied in robust linear
regression and compressed sensing [10].

4. Experiments
We evaluated our robust gradient combination algorithm

on five classification and three regression datasets.

4.1. Classification

Setting. The Caltech256 dataset contains 30,607 color
images from 257 object and background classes [11].
The CIFAR10 and CIFAR100 datasets consist of 60,000
images of 10 and 100 classes, respectively [22]. The
FashionMNIST dataset consists of 70,000 grayscale images
in 10 categories [37]. The CINIC10 dataset contains 270,000
images selected from ImageNet and CIFAR10 [9].

We simulated random labeling perturbations where
the ground-truth training labels of the affected clients are
replaced by random class labels. In the accompanying
supplemental document, we also report the results of
experiments with random gradient perturbations where the
local gradient vectors are replaced by i.i.d. Gaussian random
vectors. As our algorithm operates at the server, it is agnostic
to the nature of the local datasets and perturbations, and
the only information that our algorithm received from each
client is the output gradient.

For all datasets, we performed experiments with varying
portions of affected clients: Ten to sixty percent of the
total clients were affected. For all datasets and portions
of affected clients, we ran experiments 10 times with
different distributions of training data across clients and
averaged the results. For Caltech256, CIFAR10, CIFAR100,
FashionMNIST, for each experimental run, 20,000 data
instances were randomly selected and equally distributed
to 100 clients while 10,000 points were used for testing.
For CINIC10, 180,000 training instances (the union of the
training and validation sets proposed by the authors of [9])
were randomly distributed to 1,000 clients, and the remaining
90,000 points were reserved for testing. Here, the sizes of
the local datasets across clients varied: The largest local
dataset was around 10 times larger than the smallest set.

We used the learner that combines a fixed ResNet101
pretrained on ImageNet and three fully-connected layers.

Baselines. We compared with 1) the naı̈ve application of
FedAvg which uniformly averages all local gradients. As our
algorithm combines these gradients by taking weighted av-
erages instead (Eq. 4), it can be considered as an instance of
robust alternatives to the mean. In this context, we compared
with 2) the median of local gradients as a popular robust
estimator of central statistical tendency (denoted as Median)
and 3) Pillutla et al.’s geometric median-based approach as
another robust average replacement (GeoMed) [25]. GeoMed

requires solving an optimization problem at each gradient
combination step (taking around 10 seconds per step). Also,
we compared with 4) Turan et al.’s robust gradient-based
optimization strategy [32] (MedTh). This selects local
gradients whose distance from the median gradient is
within a threshold. As it is challenging to determine such a
threshold value without having access to separate validation
sets, we set it in the way that the number of selected gradients
becomes the same as the ground-truth number of unaffected
clients; Our algorithm did not use this additional information.
Lastly, we compared with FedAvg applied to only genuine
clients (GTC). This will serve as the ideal performance upper
bounds of all gradient combination algorithms.

Results. Table 1 summarizes the results. Note that the
performance of GTC degrades with increasing portions of
affected clients since the numbers of total genuine training
instances accordingly decrease. Federated averaging (Fe-
dAvg) demonstrated robustness when only moderate numbers
(around 10–20%) of clients are affected. However, its
performance degraded rapidly as more clients were affected.
This tendency was consistently observed across all datasets.
While the median is a well-established robust alternative to
the mean, combining local gradients based on their median
(Median) turned out to be only comparable to, or sometimes
even significantly worse than the naı̈ve mean (FedAvg).
GeoMed was more effective than Median, yet it was
noticeably inferior to FedAvg in a few cases despite the much
higher computational cost. MedTh demonstrated competitive
performance when affected clients were fewer than 50% of
the total clients. However, for larger numbers of affected
clients, it also delivered notably worse results than FedAvg.
Our algorithm demonstrated graceful performance degrada-
tion even in these cases, and overall, it yielded (statistically)
significantly better results than FedAvg on 28 out of 30 cases.
Importantly, it was never significantly worse than FedAvg.

Throughout the entire experiments on random gradient
perturbations (see supplemental document), both MedTh
and ours significantly outperformed FedAvg, constantly
achieving the best performance.

Combining MedTh and Ours. Our original algorithm
estimates the continuous gradient combination weights
a. This helps suppress the perturbed gradients but it
does not completely rule out their contributions. In the
accompanying supplemental document, we demonstrate
that when additional validation sets are available, we can
achieve this goal and improve performance by combining
our algorithm with the thresholding idea of MedTh.

4.2. Regression

Setting. We used three benchmark datasets. The MOCAP
dataset provides 50,000 motion capture data instances [2].
Each instance provides the 3D locations of 62 skeletal
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Dataset Method Accuracy

% clients affected 10 20 30 40 50 60

Caltech256

GTC 76.54 (0.34) 75.96 (0.20) 75.47 (0.19) 74.84 (0.41) 73.83 (0.16) 72.26 (0.50)
FedAvg 76.29 (0.32) 75.16 (0.35) 74.14 (0.45) 72.29 (0.33) 70.50 (0.27) 66.75 (0.44)
Median 64.80 (0.47) 63.58 (0.97) 61.82 (0.74) 59.15 (0.98) 55.57 (0.85) 48.15 (0.99)
GeoMed 76.29 (0.36) 75.68 (0.41) 74.69 (0.44) 71.70 (0.53) 66.49 (0.36) 60.77 (0.82)
MedTh 76.28 (0.27) 75.59 (0.38) 74.70 (0.85) 72.51 (1.17) 69.74 (1.04) 46.31 (5.19)
Ours 76.39 (0.20) 75.95 (0.29) 75.06 (0.26) 73.72 (0.31) 71.90 (0.50) 69.25 (0.47)

CIFAR10

GTC 89.57 (0.11) 89.49 (0.15) 89.44 (0.15) 89.55 (0.20) 89.36 (0.16) 89.22 (0.10)
FedAvg 89.23 (0.10) 87.34 (0.23) 86.58 (0.15) 85.98 (0.37) 85.24 (0.41) 84.83 (0.37)
Median 87.21 (0.25) 86.89 (0.26) 86.74 (0.82) 86.30 (1.37) 84.65 (1.19) 82.01 (0.62)
GeoMed 87.38 (0.47) 87.49 (1.06) 87.14 (1.07) 86.89 (1.83) 84.99 (0.85) 82.46 (0.32)
MedTh 89.39 (0.18) 89.27 (0.10) 89.01 (0.19) 88.57 (0.25) 78.10 (19.90) 31.40 (18.43)
Ours 89.51 (0.06) 89.43 (0.17) 89.22 (0.19) 89.14 (0.13) 88.95 (0.16) 88.85 (0.20)

CIFAR100

GTC 66.86 (0.23) 66.50 (0.21) 66.10 (0.33) 65.81 (0.30) 65.14 (0.42) 64.41 (0.45)
FedAvg 66.50 (0.40) 65.95 (0.54) 64.67 (0.28) 63.25 (0.40) 61.99 (0.32) 60.53 (0.33)
Median 65.76 (0.23) 64.53 (0.29) 62.73 (0.31) 59.51 (0.75) 53.51 (0.85) 47.89 (0.65)
GeoMed 67.11 (0.40) 66.80 (0.63) 65.75 (0.69) 65.20 (0.23) 58.63 (0.57) 49.79 (1.05)
MedTh 66.80 (0.14) 66.35 (0.29) 65.78 (0.24) 64.11 (0.33) 38.34 (1.43) 36.93 (2.52)
Ours 66.80 (0.23) 66.41 (0.38) 65.87 (0.38) 65.44 (0.27) 64.80 (0.20) 63.56 (0.62)

FashionMNIST

GTC 86.96 (0.18) 86.84 (0.23) 86.84 (0.11) 86.92 (0.19) 86.77 (0.19) 86.77 (0.20)
FedAvg 86.48 (0.19) 83.12 (0.24) 81.93 (0.35) 81.30 (0.31) 80.80 (0.50) 80.47 (0.26)
Median 83.23 (1.44) 82.77 (1.30) 82.68 (1.71) 82.02 (1.57) 80.44 (1.05) 78.40 (0.44)
GeoMed 83.29 (1.65) 82.37 (0.40) 82.42 (1.72) 81.20 (0.36) 80.41 (0.45) 78.37 (0.30)
MedTh 86.75 (0.11) 86.55 (0.22) 86.27 (0.22) 83.57 (4.56) 76.16 (14.07) 52.65 (23.84)
Ours 87.01 (0.23) 86.73 (0.16) 86.63 (0.27) 86.40 (0.51) 86.24 (0.16) 86.41 (0.27)

CINIC10

GTC 79.99 (0.07) 79.96 (0.11) 79.75 (0.12) 79.70 (0.08) 79.66 (0.12) 79.60 (0.15)
FedAvg 78.20 (0.11) 76.88 (0.21) 76.04 (0.16) 75.41 (0.29) 74.81 (0.27) 74.38 (0.13)
Median 77.16 (1.59) 76.91 (1.61) 77.03 (1.95) 76.84 (1.33) 73.83 (1.44) 71.04 (0.72)
GeoMed 78.13 (1.95) 79.01 (1.86) 77.49 (2.61) 78.92 (1.20) 75.64 (1.28) 71.51 (0.75)
MedTh 79.48 (0.11) 79.31 (0.15) 79.06 (0.10) 78.57 (0.15) 57.10 (23.87) 42.19 (20.96)
Ours 80.03 (0.13) 79.95 (0.17) 79.85 (0.16) 79.64 (0.32) 79.19 (0.50) 78.69 (0.52)

Table 1. Results of classification under random labeling perturbations: Mean accuracy and standard deviation (in parenthesis) are shown
in % (higher is better). The best and second-best results excluding GTC are highlighted with bold and italic, respectively. For Median,
GeoMed, MedTh, and ours, the results of statistical significance test with respect to FedAvg (t–test with α=0.95) are shown: Blue and
orange respectively represents significantly better and worse results than FedAvg.

joints. A body surface mesh model is fitted to these 62
joints and the locations of five end effectors (two hands, two
feet, and head) are recorded, constituting 15-dimensional
coarse representations. The goal is to restore the 186 (62×3)-
dimensional joint locations from the input 15-dimensional
coarse representations. We focused on estimating the first 12
attributes (4 out of 62 joints). Our learners consisted of five
fully-connected layers. Experiments were repeated 10 times,
and for each experimental run, a randomly selected subset
of size 40,000 was used for training while the remaining
data instances were used for testing. The training sets were
distributed across 100 clients where 40% were affected:
Each output instance is contaminated with a Gaussian

noise whose standard deviation per dimension is twice the
standard deviation of the corresponding dimension. The
School dataset provides exam scores of 15,362 students in
139 UK secondary schools in the years 1985, 1986, and
1987 [4]. Our goal is to predict these exam scores using 27
input features including the year of the exam, gender, and
ethnic group. A small subset was selected from each school,
constituting a combined test set of size 5,362. The remaining
10,000 instances were distributed to the clients based on
the corresponding schools. The ICVL hand dataset contains
17,604 depth frames of size 320×240 capturing human
hands and the corresponding 3D annotations of 16 joints [31].
Among them, 16,008 frames were used for training while the
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remaining 1,596 frames were assigned for testing. For each
frame, features were extracted using the ImageNet-pretrained
ResNet101. Similarly to MOCAP, for School and ICVL, 40%
of total local gradients were contaminated by Gaussian noise.

Results. Table 2 summarizes the results. For all datasets,
the three robust gradient combination algorithms demon-
strated performance gains over FedAvg. For MOCAP,
GeoMed was marginally better than FedAvg while MedTh
and ours achieved further significant improvements. For
School, ours ranked the best while the other two robust
algorithms also exhibited marked performance gain. For
ICVL, GeoMed ranked first followed by ours.

5. Conclusions

We have considered the problem of robust distributed
learning under adversarial perturbation. Our approach
embeds the gradients calculated from local clients into the
manifold of normalized vectors and performs diffusion
therein. The resulting algorithm is instantiated as a robust av-
erage estimator against outliers and it improves the combined
gradient without having to require additional labeled datasets
at the server or known number of affected clients. On five
classification and three regression benchmark datasets, and
two scenarios of adversarial perturbations, our algorithm
demonstrated significant improvements over baseline feder-
ated averaging [23], robust median and geometric median es-
timators [25], and median-based thresholding approach [32].

Limitations. The application of our approach (as well
as the other algorithms considered in our experiments) is
limited to cases where individual clients are either entirely
affected or not: As our original algorithm is agnostic to data
distributions and operations performed within clients, it does
not exploit the possibility that only part of each local dataset
is perturbed. When access to local datasets is guaranteed,
such a scenario could be approached by applying our main
gradient update step (Eqs. 11 and 12) in two levels: Within
each client, it can suppress perturbed data instances by taking
each data instance and the corresponding error gradient as
a sub-client. The resulting locally combined gradients could
then be combined at the server as in our main experiments.

Future work and potential negative societal impacts.
Our approach contributes to promoting distributed learning,
in particular over devices where data acquisition and annota-
tion processes might not be responsibly moderated. This can
potentially facilitate the transfer of bias (e.g., age, gender, and
ethnicity) present in individual clients to the entire learning
process. Therefore, future work should investigate detecting
and mitigating the effect of bias in local datasets. Further,
future work should assess the performance of our algorithm
under different adversarial perturbation scenarios, e.g. when
the input images (instead of the labels as in our experiments)

Attr. FedAvg GeoMed MedTh Ours

MOCAP

1 2.05 (0.17) 2.01 (0.06) 1.75 (0.13) 1.74 (0.09)
2 5.67 (0.05) 5.66 (0.02) 3.48 (0.10) 2.69 (0.08)
3 18.76 (0.05) 18.62 (0.07) 9.39 (0.52) 4.40 (0.30)
4 3.43 (0.05) 3.36 (0.05) 2.75 (0.05) 2.55 (0.06)
5 18.95 (0.08) 18.86 (0.08) 9.48 (0.53) 4.31 (0.35)
6 1.93 (0.13) 1.84 (0.05) 1.58 (0.10) 1.62 (0.14)
7 3.96 (0.05) 3.96 (0.05) 2.89 (0.05) 2.46 (0.06)
8 18.83 (0.09) 18.73 (0.05) 9.25 (0.49) 3.87 (0.30)
9 2.02 (0.11) 1.92 (0.08) 1.69 (0.10) 1.68 (0.12)

10 8.78 (0.07) 8.69 (0.06) 4.41 (0.24) 2.47 (0.09)
11 19.43 (0.05) 19.37 (0.04) 9.23 (0.56) 3.60 (0.21)
12 2.63 (0.13) 2.55 (0.04) 2.32 (0.09) 2.23 (0.08)

School

1 15.89 (0.36) 13.36 (0.43) 13.87 (0.63) 12.38 (0.41)

ICVL

1 3.61 (0.04) 3.62 (0.11) 3.63 (0.06) 3.57 (0.05)
2 3.75 (0.09) 2.73 (0.09) 3.17 (0.14) 3.00 (0.19)
3 16.40 (0.08) 4.53 (0.08) 9.09 (0.67) 7.02 (1.60)
4 3.46 (0.02) 3.56 (0.08) 3.43 (0.09) 3.49 (0.04)
5 4.03 (0.04) 2.95 (0.12) 3.58 (0.11) 3.36 (0.14)
6 16.19 (0.04) 4.50 (0.10) 8.98 (0.60) 6.90 (1.60)
7 3.77 (0.02) 3.94 (0.11) 3.70 (0.04) 3.79 (0.08)
8 3.91 (0.10) 3.32 (0.25) 3.56 (0.11) 3.46 (0.09)
9 15.33 (0.08) 4.56 (0.10) 8.54 (0.63) 6.65 (1.43)

10 4.52 (0.05) 4.50 (0.05) 4.39 (0.03) 4.42 (0.10)
11 3.69 (0.05) 3.64 (0.29) 3.73 (0.12) 3.69 (0.06)
12 15.18 (0.09) 5.02 (0.04) 8.74 (0.56) 7.01 (1.33)

Table 2. Regression results: Mean error rate and standard deviation
in parenthesis (lower is better). The best and second-best results
are highlighted with bold and italic, respectively. Statistically
significantly better and worse results than FedAvg are highlighted
in blue and orange, respectively.

are randomly contaminated by noise or systematically
altered, and adversarial perturbations are coordinated (e.g. by
injecting noise correlated across clients). We experimentally
demonstrated that our algorithm offers the capability of
suppressing affected gradients. Future work should also con-
duct a theoretical analysis, e.g. on the deviation between the
gradients combined by our algorithm and the corresponding
ground-truth combinations (generated by GTC).
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