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Abstract

We present a novel self-taught framework for unsuper-
vised metric learning, which alternates between predicting
class-equivalence relations between data through a mov-
ing average of an embedding model and learning the model
with the predicted relations as pseudo labels. At the heart
of our framework lies an algorithm that investigates con-
texts of data on the embedding space to predict their class-
equivalence relations as pseudo labels. The algorithm
enables efficient end-to-end training since it demands no
off-the-shelf module for pseudo labeling. Also, the class-
equivalence relations provide rich supervisory signals for
learning an embedding space. On standard benchmarks
for metric learning, it clearly outperforms existing unsu-
pervised learning methods and sometimes even beats super-
vised learning models using the same backbone network.
It is also applied to semi-supervised metric learning as a
way of exploiting additional unlabeled data, and achieves
the state of the art by boosting performance of supervised
learning substantially.

1. Introduction
Understanding similarities between data is at the

heart of many machine learning tasks such as data re-
trieval [29, 37, 47, 48], face verification [35, 45], person
re-identification [7, 56], few-shot learning [41, 46, 49], and
representation learning [29, 52, 61]. Metric learning em-
bodies the perception of similarity by learning an embed-
ding space where the distance between a pair of data rep-
resents their inverse semantic similarity. Also, the mapping
from data to such a space is typically modeled by deep neu-
ral networks.

Recent advances in metric learning rely heavily on super-
vised learning using large-scale datasets. Manual annota-
tion of such datasets is however costly, and thus could limit
the class diversity of training data and in consequence the
generalization capability of learned models. Unsupervised
metric learning has been studied to resolve this issue. Exist-
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Figure 1. Accuracy in Recall@1 versus embedding dimension on
the CUB-200-2011 [54] dataset using GoogleNet [50] backbone.
Superscripts denote embedding dimensions and † indicates super-
vised learning methods. Our model with 128 embedding dimen-
sions outperforms all previous arts using higher embedding dimen-
sions and sometimes surpasses supervised learning methods.

ing methods in this line of research mainly synthesize class
information of training data by assigning a surrogate class
per training instance [13, 55, 59, 60] or discovering pseudo
classes through k-means clustering [3, 4, 26, 33, 34, 57], hi-
erarchical clustering [57], or random walk [25]. Although
these methods have demonstrated impressive results with-
out using groundtruth labels in training, they often fail to
capture intra-class variation [13, 55, 59, 60] or impose sub-
stantial computational burden due to the off-the-shelf tech-
niques [3, 4, 25, 26, 33, 34, 57].

In this paper, we propose a new method for unsupervised
metric learning that addresses the aforementioned limita-
tions of previous work and achieves the state of the art
as shown in Fig. 1. The major contribution of this paper
is two-fold. First, we introduce a novel, end-to-end self-
taught metric learning framework (STML), whose overall
pipeline is illustrated in Fig. 2. Unlike the existing works,
it predicts class-equivalence relations between data within
each mini-batch by self-exploration and leverages the pre-
dicted relations as synthetic supervision for metric learning.
Our framework manages two embedding networks, namely
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Figure 2. An overview of our STML framework. First, contextualized semantic similarity between a pair of data is estimated on the
embedding space of the teacher network. The semantic similarity is then used as a pseudo label, and the student network is optimized by
relaxed contrastive loss with KL divergence. Pink arrows represent backward gradient flows. Finally, the teacher network is updated by an
exponential moving average of the student. The student network learns by iterating these steps a number of times, and its backbone and
embedding layer in light green are considered as our final model.

teacher and student whose backbone are initialized identi-
cally. Class-equivalence between a pair of data is approxi-
mately estimated as their semantic similarity on the embed-
ding space of the teacher network. The predicted similarity
is used as a soft pseudo label for learning the student model,
and the teacher model is in turn updated by a momentum-
based moving average of the student. Iterating this process
evolves the student model progressively.

The success of STML depends heavily on the quality
of predicted semantic similarities, and our second contribu-
tion lies in the way of estimating semantic similarities us-
ing contexts. Specifically, given a pair of data, we compute
their semantic similarity considering the overlap of their
contexts (i.e., neighborhoods in the embedding space) as
well as their pairwise distance. We found that the contextu-
alized semantic similarity approximates class-equivalence
precisely. Further, since it has a real value indicating the
degree of semantic similarity, it provides rich information
beyond binary class-equivalence. Also, since it requires
no external module nor memory banks [20, 31], it makes
STML efficient and concise. To further enhance the quality
of predicted semantic similarity, we design the teacher net-
work to learn a higher dimensional embedding space than
the student counterpart. This asymmetric design of the two
networks allows the teacher to provide more effective su-
pervision thanks to its improved expression power while the
student, i.e., our final model, remains compact.

To the best of our knowledge, STML is the only un-
supervised metric learning method that can consider se-
mantic relations between data in end-to-end training with-
out introducing off-the-shelf techniques. Compared to the
instance-level surrogate classes [13, 55, 59, 60], pseudo la-
bels generated and exploited by STML are more appropriate

to capture semantic relations between data since they indi-
cate class-equivalence relations. Also, unlike previous work
based on pseudo labeling [3, 4, 25, 26, 33, 57], STML em-
ploys no external algorithm and thus allows training to be
efficient, end-to-end, and less sensitive to hyper-parameters.
Further, it is naturally applied to semi-supervised metric
learning [14] as well as unsupervised metric learning.

We first evaluate STML on standard benchmarks for
metric learning [32, 48, 54], where it largely outper-
forms existing unsupervised learning methods. Surpris-
ingly, sometimes it even beats some of supervised learn-
ing models using the same backbone network as shown
in Fig. 1. Beyond that, its efficacy is demonstrated on
two benchmarks for semi-supervised metric learning [14],
where it substantially outperforms previous work as well.

2. Related Work

Unsupervised metric learning has been mainly addressed
in two different directions, instance discrimination [13, 55,
59, 60] and pseudo labeling [3, 4, 25, 26, 33, 34, 57]. Fol-
lowing the contrastive learning strategy [2, 6, 8, 20], in-
stance discrimination methods assign a unique label per
training instance and learn embedding spaces where dif-
ferent instances are well discriminated. Unfortunately,
they have a trouble modeling variations within each latent
class. On the other hand, pseudo labeling methods dis-
cover pseudo classes by applying off-the-shelf algorithms
like k-means clustering [3, 4, 26, 33, 34], hierarchical clus-
tering [57] and random walk [25] to unlabeled training data.
Such methods can consider the class-equivalence relations
between training data by utilizing existing supervised met-
ric learning losses [19, 45, 53] with pseudo labels. How-
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ever, the major drawback of these methods is their pro-
hibitively high complexity imposed by the auxiliary algo-
rithms, which obstructs end-to-end training.
Semi-supervised metric learning, recently introduced by
Duan et al. [14], assumes that a training dataset consists of
both labeled and unlabeled data. The previous work dis-
covers and assigns pseudo labels to unlabeled training data
via k-means clustering. Unfortunately, it also suffers from
the aforementioned drawbacks of the unsupervised learning
using pseudo labeling.
Self-supervised representation learning aims at learning
high-quality intermediate features to generalize to other
downstream tasks. To this end, various annotation-free pre-
text tasks have been proposed, e.g., rotation prediction [17],
solving jigsaw puzzle [38], image colorization [62], and im-
age inpainting [40]. Pseudo labeling also has been widely
used as it allows to learn models using conventional losses;
existing methods in this direction discover pseudo classes
by clustering [4] or treat each training instance as a sur-
rogate class [6, 13, 20, 55]. Also, as an extension of the
surrogate class, nearest neighbors have been leveraged as
a positive set for self-supervised learning [15, 23, 31], but
they often produce noisy labels unless a sufficiently trained
embedding space is provided in advance.

3. Proposed Method
This section first presents an overview of our self-taught

metric learning framework, dubbed STML. We then de-
scribe the each step of STML in detail and how to esti-
mate the contextualized semantic similarity, which is the
synthetic supervision for our framework.

3.1. Overview

STML enables efficient end-to-end training without us-
ing any off-the-shelf technique, while capturing semantic
relations between data by generating and exploiting pseudo
labels that approximate their class-equivalence.

Fig. 2 illustrates the overall pipeline of STML. It man-
ages two embedding networks with the identically initial-
ized backbone: a teacher and a student. The teacher net-
work is used to estimate semantic similarities between data
as their approximate class-equivalence relations, which are
in turn used as synthetic supervision for training the stu-
dent network. In particular, the teacher model leverages a
high-dimensional (e.g., 1024 or 2048) embedding layer gt

with the backbone encoder ϕt of the teacher. The use of
the high dimensional space allows the teacher embedding
layer to encode richer information and produce more reli-
able semantic similarity. Our student model has two par-
allel embedding layers fs and gs that share the backbone
encoder ϕs. fs is the embedding layer of our final model,
and has a lower dimension (e.g., 128 or 512) to learn a com-
pact embedding space. gs is an auxiliary layer dedicated to

Algorithm 1 Self-taught metric learning

Input: teacher model t, student model s, kernel bandwidth σ,
momentum m, batch size n.

1: set θt = θϕt ∪ θgt , θs = θϕs ∪ θgs

2: Identically initialize the backbone of t and s.
3: for number of epochs do
4: Construct mini-batches using nearest neighbor

batch construction. ▷ Step #1
5: for number of iterations do
6: for all samples in a mini-batch {xk}nk=1 do
7: ztk ← (gt ◦ ϕt)(xk)

8: zfsk ← (fs ◦ ϕs)(xk), z
gs
k ← (gs ◦ ϕs)(xk)

9: end for
10: for all i ∈ {1, · · · , n} and j ∈ {1, · · · , n} do ▷ Step #2
11: wP

ij ← exp(−||zti − ztj ||22/σ)
12: compute wC

ij using Eq. (7, 8, 9).
13: wij ← 1

2
(wP

ij + wC
ij)

14: end for
15: compute LSTML using Eq. (3) and optimize t. ▷ Step #3
16: θt ← mθt + (1−m)θs ▷ Step #4
17: end for
18: end for
19: return student model s

continually updating the teacher embedding layer gt, and
thus having the same output dimension with that of gt.

Algorithm 1 describes the procedure of STML in detail.
First, the teacher network estimates semantic similarities
that approximate class-equivalence relations between data,
which are in turn used as synthetic supervision for training
the student network. Then the teacher network is updated by
the momentum-based moving average of the student. Our
final model is the student network obtained by iterating this
alternating optimization a predefined number of times. In
the next section, we will elaborate each step of STML.

3.2. Self-Taught Metric Learning Framework

Step #1: Nearest neighbor batch construction. The way
of constructing mini-batches for training has a massive im-
pact on performance in metric learning [16, 44]. One of the
most widely used methods for batch construction is the pk-
sampling: It randomly chooses p unique classes, and then
randomly samples k instances per class. Since this method
leverages class labels of training data, it is however prohib-
ited in an unsupervised learning setting. We instead propose
a new strategy based on the nearest neighbor search. For
each mini-batch, it randomly samples q queries and then
searches for k − 1 nearest neighbors of each query; includ-
ing both queries and their nearest neighbors, the mini-batch
becomes of size qk. Our strategy is simple, fast, yet allows
mini-batches to include diverse and relevant samples.

Step #2: Generating synthetic supervision. Supervised
metric learning methods in general employ as supervision
class-equivalence relations between data, which are how-
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ever not available in our setting. STML instead approxi-
mates the class-equivalence relations by semantic similar-
ities between data on the teacher embedding space, which
are used as synthetic soft supervision for learning the stu-
dent model. The major challenge is that the teacher embed-
ding space is not mature enough to grasp the semantic rela-
tions between data at early stages of unsupervised learning.
We thus propose contextualized semantic similarity, which
measures the similarity between a pair of data while con-
sidering their contexts on the teacher embedding space; its
details are presented in Sec. 3.3.
Step #3: Learning the student model. We simultane-
ously optimize the two branches of the student model us-
ing the contextualized semantic similarities as synthetic su-
pervision. Since its value is soft, however, the contex-
tualized semantic similarity cannot be incorporated with
the ordinary metric learning losses that take discrete la-
bels as supervision. We thus employ the relaxed contrastive
loss [28], which is designed to utilize soft relational labels
for metric learning. Let wij be the contextualized seman-
tic similarity between xi and xj , and zfsi denote the stu-
dent embedding vector of xi generated by fs. Defining
dfsij := ||zfsi − z

fs
j ||2/( 1n

∑n
k=1 ||z

fs
i − z

fs
k ||2) as the rel-

ative distance between fsi and fsj , the loss is then given by

LRC(Zfs) =
1

n

n∑
i=1

n∑
j ̸=i

wij

(
dfsij

)2
+

1

n

n∑
i=1

n∑
j ̸=i

(1− wij)
[
δ − dfsij

]2
+
,

(1)

where Zfs is all student embedding vectors generated by
fs, n is the number of samples in the batch, and δ is a mar-
gin. The contextualized semantic similarity serves as the
weights for the attracting and repelling terms of the loss,
and thus determines the magnitude of the force that pulls or
pushes a pair of data on the student embedding space. Note
that gs is trained in the same manner on fs. We addition-
ally apply self-distillation to further utilize complex higher
dimensional information for lower dimensional space. Fol-
lowing [43], we use Kullback-Leibler divergence as objec-
tive of self-distillation:

LKL(Zfs ,Zgs) =
1

n

n∑
i=1

n∑
j ̸=i

ψ(−dgsij ) log
ψ(−dgsij )
ψ(−dfsij )

, (2)

where ψ(·) is softmax operation. Note that the gradient-
flow of gs is truncated. In summary, STML trains the two
branches fs and gs of the student model by minimizing the
overall loss defined as

LSTML(Zfs ,Zgs) =
1

2

[
LRC(Zfs) + LRC(Zgs)

]
+ LKL(Zfs ,Zgs).

(3)

Step #4: Momentum update of the teacher model. The
teacher model should be updated as the student model is
trained so that the synthetic supervision computed from the
teacher embedding space is enhanced progressively. The
simplest update strategy is to replace the teacher model with
the student counterpart at every iteration. However, this
could deteriorate the consistency of the synthetic supervi-
sion over iterations, which leads to unstable training of the
student model. We thus update the teacher model by the
momentum-based moving average of the student, except for
the embedding layer fs since the teacher model has only
a high-dimensional one. Let θt be the parameters of the
teacher model and θt be the parameters of ϕt and gt. Then
θt is updated by

θt ←− mθt + (1−m)θs, (4)

where m ∈ [0, 1] is the coefficient that controls the momen-
tum update rate, slowing down the update of the teacher
model as its value increases.

3.3. Contextualized Semantic Similarity

The quality of predicted semantic similarities is of vital
importance in STML since they are the only supervision for
training. However, it is not straightforward to compute reli-
able semantic similarities especially at early stages of unsu-
pervised learning where the teacher network is significantly
incomplete. To overcome this challenge, we propose to use
context, i.e., neighborhood on a data manifold.

Our key idea is not to rely on the relations considering
two images of interest only, but to figure out their indirect
semantic relations via their contexts. Their multiple indi-
rect relations can contribute to capturing common patterns
frequently observed within each class and thus understand-
ing the underlying class-equivalence relations. To this end,
we design the contextualized semantic similarity. Given a
pair of samples, their contextualized semantic similarity is
defined as a combination of their pairwise similarity and
contextual similarity on the teacher embedding space.
Pairwise similarity. The pairwise similarity of two samples
xi and xj , denoted by wP

ij , is given by

wP
ij = exp

(
−
||zti − ztj ||22

σ

)
, (5)

where zti is the teacher embedding vector of xi and σ is
the Gaussian kernel bandwidth. This kind of similarity has
been known to encode rich information about relations of
xi and xj when the teacher embedding space is pre-trained
in a fully supervised manner [28], but is often broken in
unsupervised metric learning. We thus supplement it with
the contextual similarity, which is detailed below.
Contextual similarity. The underlying assumption of the
contextual similarity is that the more two samples seman-
tically similar, the larger their contexts overlap. One may
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consider nearest neighbors of a data point on the teacher
embedding space as its context, but they often include
irrelevant data when the embedding space is not suffi-
ciently trained yet. We thus instead consider k-reciprocal
nearest neighbors as context since they are known to dis-
cover highly correlated candidates [42, 63]. The set of k-
reciprocal nearest neighbors of a data point xi is given by

Rk(i) = {j|(j ∈ Nk(i)) ∧ (i ∈ Nk(j))}, (6)

where Nk(i) is the k-nearest neighbors of xi, including it-
self (i.e., i ∈ Nk(i)), in the current mini-batch. The initial
form of contextual similarity measures the degree of over-
lap between Rk(i) and Rk(j) while considering whether xi
and xj are in k-reciprocal nearest neighbor relation. Since
the size of the neighbor set of xi and xj would be different,
we design an asymmetric Jaccard similarity as

w̃C
ij =


|Rk(i) ∩Rk(j)|
|Rk(i)|

, if j ∈ Rk(i),

0, otherwise.

(7)

In addition, we adopt the idea of query expansion [1, 10,
11] to further improve its reliability. Specifically, w̃C

ij is
reformulated as the average of the contextual similarities
between xj and nearest neighbors of xi as follows:

ŵC
ij =

1

|N k
2
(i)|

∑
h∈N k

2
(i)

w̃C
hj . (8)

The expanded version in Eq. (8) is not symmetric anymore.
To ensure symmetry, the final form of the contextual sim-
ilarity is defined as the average of ŵC

ij and its transpose,
which is given by

wC
ij = wC

ji =
1

2
(ŵC

ij + ŵC
ji). (9)

Contextualized semantic similarity. Finally, the contextu-
alized semantic similarity between xi and xj is defined as
the average of their pairwise similarity in Eq. (5) and con-
textual similarity in Eq. (9):

wij =
1

2
(wP

ij + wC
ij). (10)

Note that both of wP
ij and wC

ij lie within [0, 1] thus their
scales are balanced. The contextualized semantic similarity
effectively represents semantic relatedness between data by
considering both of their pairwise relation and context. We
found that the contextualized semantic similarity is highly
correlated with groundtruth class-equivalence, which is em-
pirically verified in Sec. 4.1.4.

4. Experiments
This section validates the effectiveness of STML on two

metric learning tasks with lack of supervision, i.e., unsuper-
vised metric learning and semi-supervised metric learning.

4.1. Unsupervised Metric Learning

We consider the student embedding model trained by
STML as our final model, which is evaluated and compared
with state-of-the-art unsupervised metric learning methods
and representative self-supervised learning methods.

4.1.1 Experimental Setup

Datasets and evaluation. The models are evaluated and
compared on three benchmark datasets, i.e., CUB-200-2011
(CUB) [54], Cars-196 (Cars) [32], and Stanford Online
Product (SOP) [48]; for their train-test splits, we directly
follow the standard protocol presented in [60]. Performance
on these datasets is evaluated by Recall@k, the fraction of
queries that have at least one relevant sample in their k-
nearest neighbors on a learned embedding space.
Embedding networks. For comparisons to previous work,
we employ GoogleNet [50] and Inception-BN [24] as our
teacher and student embedding model architecture. The di-
mension of embedding layers gt and gs are set as the output
size of the last pooling, and that of fs follows each experi-
mental setting. We append an l2 normalization layer on top
of the teacher so that the Euclidean distances in Eq. (5) are
bounded for computing semantic similarities stably.
Implementation details. The student model of STML is
optimized by AdamP with Nesterov momentum [22] for 90
epochs on a single Titan RTX; the learning rate is initialized
to 10−4 and scaled down by the cosine decay function [36].
Training images are randomly cropped to 227 × 227 and
flipped horizontally at random while test images are resized
to 256× 256 then center cropped. For all experiments, σ in
Eq. (1) is set to 3. The margin δ, momentum coefficient m
and the number of nearest neighbors k are 1.0, 0.999 and
10 on the CUB and Cars datasets, and 0.9, 0.9 and 4 on
the SOP dataset. Note that k in the nearest neighbor batch
construction and that in Eq. (6) are identical.
Batch construction. Nearest neighbors used to construct
mini-batches in STML are computed on the student embed-
ding space and update at every epoch. On the CUB and Cars
datasets, each mini-batch consists of 120 images including
24 queries and their 4 nearest neighbors. Since the SOP
dataset has a tiny number of samples per class, we construct
a mini-batch with 60 queries and their top-1 neighbors on
the dataset. Also, all images are randomly augmented twice
following the multi-view augmentation strategy in [28].

4.1.2 Quantitative Results

For fair comparisons to previous work, performance eval-
uation is done in the following settings: GoogleNet with
64/128/512 embedding dimensions, and Inception with
BatchNorm with 512 embedding dimensions. All backbone
networks in this experiment are pre-trained on ImageNet.
The results on the three datasets are summarized in Table 1.
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Methods Arch.

CUB Cars SOP

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100

Supervised

ABIER [39] G512 57.5 69.7 78.3 82.0 89.0 93.2 74.2 86.9 94.0
ABE [30] G512 63.0 74.5 83.3 85.2 90.5 94.0 76.3 88.4 94.8
MS [53] BN512 65.7 77.0 86.3 84.1 90.4 94.0 78.2 90.5 96.0
PA [27] BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2

Unsupervised (Using ImageNet pre-trained embedding networks)

MOM [25] G64 45.3 57.8 68.6 - - - - - -
ROUL [26] G64 52.0 64.0 74.5 - - - - - -
STML G64 55.0 67.5 78.6 42.0 54.4 65.9 64.9 79.6 89.3

MOM [25] G128 - - - 35.5 48.2 60.6 43.3 57.2 73.2
Examplar [13] G128 38.2 50.3 62.8 36.5 48.1 59.2 45.0 60.3 75.2
NCE [55] G128 39.2 51.4 63.7 37.5 48.7 59.8 46.6 62.3 76.8
DeepCluster [4] G128 42.9 54.1 65.6 32.6 43.8 57.0 34.6 52.6 66.8
ISIF [60] G128 46.2 59.0 70.1 41.3 52.3 63.6 48.9 64.0 78.0
PSLR [59] G128 48.1 60.1 71.8 43.7 54.8 66.1 51.1 66.5 79.8
ROUL [26] G128 56.7 68.4 78.3 45.0 56.9 68.4 53.4 68.8 81.7
SAN [34] G128 55.9 68.0 78.6 44.2 55.5 66.8 58.7 73.1 84.6
STML G128 59.7 71.2 81.0 49.0 60.4 71.3 65.8 80.1 89.9

UDML-SS [3] G512 54.7 66.9 77.4 45.1 56.1 66.5 63.5 78.0 88.6
TAC-CCL [33] G512 57.5 68.8 78.8 46.1 56.9 67.5 63.9 77.6 87.8
UHML [57] G512 58.9 70.6 80.4 47.7 58.9 70.3 65.1 78.2 88.3
STML G512 60.6 71.7 81.5 50.5 61.8 71.7 65.3 79.8 89.8

UDML-SS [3] BN512 63.7 75.0 83.8 - - - - - -
STML BN512 68.0 78.8 86.4 66.2 74.5 81.9 69.7 82.7 91.2

Table 1. Performance of the unsupervised and supervised metric learning methods on the three datasets. Their network architectures are
denoted by abbreviations, G–GoogleNet [50], BN–Inception with BatchNorm [24], where superscripts denote their embedding dimensions.

Methods

SOP

R@1 R@10 R@100

NCE [55] 34.4 49.0 65.2
ISIF [60] 39.7 54.9 71.0
PSLR [59] 42.3 57.7 72.5
ROUL [26] 45.4 60.5 74.8
SAN [34] 46.3 61.9 77.0
STML 60.7 74.8 85.2

Table 2. Performance on the SOP dataset using ResNet18 without
pre-trained weights.

On all the datasets, our model achieves state-of-the-art
performance in every setting. It improves the previous best
score by a large margin, from 3.8% to 7.1% at Recall@1
with the 128 embedding dimensions. We note that our
model clearly surpasses all existing models whose embed-
ding dimension is 4 times higher on all the datasets, some-
times at 8 times higher. Moreover, on the CUB dataset, it
even outperforms some of the supervised learning methods,
e.g., ABIER [39] and MS [53], given the same embedding
networks. These results suggest that our framework allows
the model to learn compact yet effective embedding spaces
by providing high-quality synthetic supervision. Last but

not least, STML enables more efficient learning than exist-
ing pseudo labeling methods due to no use of off-the-shelf
algorithms, especially on large-scale SOP dataset.

4.1.3 Unsupervised Metric Learning from Scratch

We demonstrate that STML is also effective for met-
ric learning from scratch without pre-training on Ima-
geNet. Following [60], we employ randomly initialized
ResNet18 [21] with 128 embedding dimensions as the
backbone network, and evaluate our model trained on the
SOP dataset. As shown in Table 2, our model substan-
tially outperforms existing methods including those for self-
supervised representation learning in this setting. This re-
sult suggests that STML can generate reliable pseudo labels
even on a randomly initialized embedding space, and our
model trained by STML well generalizes to unseen class.

4.1.4 In-depth Analysis

Correlation between similarities and class-equivalence.
To justify the contextualized semantic similarity, we com-
pare our three similarity metrics (i.e., pairwise similarity
wP

ij , contextual similaritywC
ij , contextualized semantic sim-
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Figure 3. Comparison between the contextualized semantic sim-
ilarity and its two components in terms of class-equivalence pre-
diction accuracy on the CUB dataset with pre-trained weights (left)
and SOP dataset without pre-trained weights (right).

Methods

CUB Cars

R@1 R@1

STML 60.6 50.5
w/o contextual pairwise similarity 44.2 40.2
w/o pairwise similarity 56.0 45.0
w/o relaxed contrastive loss 53.4 38.7
w/o momentum update 56.8 46.1
w/o NN batch construction 54.6 44.8
w/o KL divergence 59.2 49.4

Table 3. Ablation study of the components in STML on the CUB
and Cars datasets.

ilarity wij) in terms of how well they are correlated with
class-equivalence, i.e., the groundtruth for supervised met-
ric learning. Specifically, we predict class-equivalence of
every pair of data by thresholding its semantic similarities,
and count the accuracy of such predictions at various thresh-
old settings. Fig. 3 presents AUROC scores of our contex-
tualized semantic similarity and its two components during
training. The results suggest that the accuracy of the pair-
wise similarity relies heavily on the quality of the teacher
embedding space, while the contextual similarity helps infer
class-equivalence correctly even at early stages of training
without pre-trained weights. The contextualized semantic
similarity achieves the best consistently, which also indi-
cates that the pairwise and contextual similarities are com-
plementary to each other.
Ablation study. The impact of each component in STML
is reported in Table 3. The results in the table are obtained
by using GoogleNet with 512 embedding dimensions. The
analysis reveals that the contextual similarity contributes
most to the performance while the pairwise similarity has
the minimum impact; Fig. 3 also supports this observation.
Even if both similarities are used, the performance is largely
degraded when using the conventional contrastive loss [19]
instead of the relaxed version since the conventional one
quantizes our semantic similarity into a binary value, lead-
ing to significant information loss. The momentum-based
update of the teacher model and the nearest neighbor batch
construction strategy also have significant impacts; the per-
formance degrades substantially when the teacher model is
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Figure 4. Recall@1 versus the hyper-parameters k and σ on the
CUB and Cars datasets. Larger markers indicate our default ex-
perimental setting.

Methods Arch.

CUB Cars SOP

R@1 R@1 R@1

MoCo [20] G128 48.3 37.2 53.3
BYOL [18] G128 47.7 31.5 48.7
MSF [31] G128 46.0 30.5 41.6
STML G128 59.7 49.0 65.8
MoCo [20] G512 51.0 39.0 53.4
BYOL [18] G512 50.9 38.5 51.2
MSF [31] G512 49.6 32.5 47.8
STML G512 60.6 50.5 65.3

Table 4. Comparison between STML and recent self-supervised
representation learning methods using momentum encoder.

updated directly by the student counterpart or the batch con-
struction strategy is replaced with a random sampling. The
KL divergence loss has relatively little influence compared
to other components.
Effect of hyper-parameters. We investigate how much
sensitive STML is to the hyper-parameters k and σ.
Specifically, we measure performance of STML employing
GoogleNet with 512 embedding dimensions on the CUB
and Cars datasets while varying values of k and σ. The re-
sults shown in Fig. 4 suggest that the performance of STML
is consistently high when k < 14, and σ has virtually no
effect on the performance if σ > 1 on both datasets. More-
over, whenever k < 14 our model outperforms all existing
unsupervised metric learning methods. Note that our final
results reported in Table 1 are not the best scores in Fig. 4
since we did not tune the hyper-parameters on the test splits.
Comparison with recent SSL methods. STML has com-
ponents used in recent self-supervised representation learn-
ing (SSL) methods such as the momentum encoder. To
validate that the improvements of our framework do not
originate from its structure, such methods are compared
with STML under the same setting. Table 4 shows that
MoCo and BYOL clearly underperform our method in all
settings and achieve similar performance to unsupervised
metric learning methods based on instance-level surrogate
classes. Although they are structurally similar to STML, the
reason for the degradation of performance is that they can-
not capture intra-class variation unlike our method, and are
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Methods Arch. Init.

CUB Cars

MAP@R RP R@1 MAP@R RP R@1

Supervised

Contrastive [9] R50512 ImageNet 25.0 35.8 65.3 26.0 36.4 81.2
MS [53] R50512 ImageNet 26.4 37.5 66.3 28.3 38.3 85.2
Proxy-Anchor [27] R50512 ImageNet 28.3 39.1 69.9 30.5 39.9 87.7
Contrastive [9] R50512 SwAV [5] 29.3 39.8 71.2 31.7 41.2 88.1
MS [53] R50512 SwAV [5] 29.2 40.2 70.8 33.4 42.7 89.3
Proxy-Anchor [27] R50512 SwAV [5] 31.7 42.0 74.6 35.1 44.1 90.4

Semi-supervised (Labeled dataset + Additional unlabeled dataset)

SLADE (MS) [14] R50512 ImageNet 30.9 41.9 69.6 32.1 41.5 87.4
STML (MS) R50512 ImageNet 37.8 47.9 75.5 38.4 46.1 93.0

SLADE (MS) [14] R50512 SwAV [5] 33.9 44.4 74.1 38.0 46.9 91.5
STML (MS) R50512 SwAV [5] 35.2 45.3 76.2 38.2 46.5 93.2

Table 5. Performance of the supervised and semi-supervised methods on the two datasets. Network architectures of the methods are all
ResNet50 (R50) [21] and superscripts denote their embedding dimensions. Also, the column “Init.” indicates whether the models are
pre-trained on ImageNet or by SwAV. Our model and SLADE are all fine-tuned with the MS loss.

limited in representing semantic similarities between data.

4.2. Semi-supervised Metric Learning

Semi-supervised metric learning aims to improve per-
formance of supervised metric learning by exploiting addi-
tional unlabeled data [14]. STML can be employed for this
task naturally since it provides a way of using the unlabeled
data for training by predicting their class-equivalence rela-
tions as synthetic supervision. In this section, we validate
the efficacy of STML for semi-supervised metric learning
and compare it with SLADE [14], the first and only exist-
ing method for the task, on the CUB and Cars datasets.

4.2.1 Experimental Setup
Datasets and evaluation. We directly adopt the evalua-
tion protocol of SLADE. Specifically, we employ two com-
binations of labeled and unlabeled datasets, {CUB [54],
NABirds [51]} and {Cars [32], CompCars [58]}, and three
performance metrics, MAP@R, RP, and Recall@1.
Embedding networks. For comparisons to SLADE, we
employ ResNet50 [21] with 512 embedding dimensions as
the backbone network of the teacher and student models.
Before applying STML, these models are pre-trained either
on ImageNet [12] or by SwAV [5], then fine-tuned with the
MS loss [53] on a labeled dataset (i.e., CUB or Cars).
Implementation details. In this task, STML adopts an em-
bedding model trained on a labeled dataset as the initial
teacher and student models and trains them using both la-
beled and unlabeled data. Note that it computes and utilizes
contextualized semantic similarities as supervision for la-
beled data as well as unlabeled data. For all experiments,
m in Eq. (4) and σ in Eq. (10) are set to 0.9999 and 2, re-
spectively, and the rest settings are the same as those for
unsupervised metric learning.

4.2.2 Results

STML is compared with SLADE and state-of-the-art super-
vised metric learning methods on the two datasets. The re-
sults summarized in Table 5 show that STML improves per-
formance of its supervised learning counterpart (i.e., MS)
significantly regardless of the model initialization schemes.
In particular, it enhances the performance by more than 5%
in Recall@1 on both datasets for ImageNet pre-trained set-
ting. Also, STML clearly outperforms SLADE in all the
settings except one, where their gap is only 0.4% in RP.

5. Conclusion
We have proposed STML, a novel end-to-end unsuper-

vised metric learning framework that estimates and exploits
semantic relations between samples as pseudo labels. The
pseudo labels in STML are estimated by investigating con-
texts of data as well as their pairwise distances on an em-
bedding space. STML has achieved the state of the art on
the three benchmark datasets for unsupervised metric learn-
ing, and demonstrated impressive performance even with-
out pre-trained weights. Moreover, it has been applied to
semi-supervised learning, and outperformed state of the art
on the two benchmark datasets. Unfortunately, like other
approaches, STML has a limitation in that it uses ImageNet
pre-trained weights in some settings. In the future, we will
explore extensions of our method where class labels are
never involved in the training.
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