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Abstract

Establishing dense correspondences across semantically

similar images remains a challenging task due to the signif-

icant intra-class variations and background clutters. Tra-

ditionally, a supervised learning was used for training the

models, which required tremendous manually-labeled data,

while some methods suggested a self-supervised or weakly-

supervised learning to mitigate the reliance on the labeled

data, but with limited performance.

In this paper, we present a simple, but effective so-

lution for semantic correspondence that learns the net-

works in a semi-supervised manner by supplementing few

ground-truth correspondences via utilization of a large

amount of confident correspondences as pseudo-labels,

called SemiMatch. Specifically, our framework gener-

ates the pseudo-labels using the model’s prediction itself

between source and weakly-augmented target, and uses

pseudo-labels to learn the model again between source

and strongly-augmented target, which improves the robust-

ness of the model. We also present a novel confidence

measure for pseudo-labels and data augmentation tailored

for semantic correspondence. In experiments, SemiMatch

achieves state-of-the-art performance on various bench-

marks.

1. Introduction

Establishing dense correspondences across semantically

similar images, depicting different instances of the same ob-

ject or scene category, can facilitate many Computer Vision

applications such as semantic segmentation [42,52,61], ob-

ject detection [34], or image editing [25, 33]. Unlike classi-

cal dense correspondence problems such stereo matching or

optical flow [21, 58], semantic correspondence poses addi-

tional challenges from large intra-class appearance and ge-
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(a) Supervised loss (b) Self-supervised loss

(c) Unsupervised loss (Ours) (d) Semi-supervised loss (Ours)

Figure 1. Comparison of semantic correspondence methods

in terms of different formulation of supervision. Conventional

methods leverage either (a) supervised loss using sparse ground-

truth keypoint matches [16,43,45] or (b) self-supervised loss using

synthetic flow field with random geometric parameters [40,48,63].

Unlike them, we present (c) unsupervised loss using pseudo-labels

from a matching probability and (d) semi-supervised loss using

both sparse ground-truth keypoints and confident pseudo-labels.

ometric variations [10, 16, 23].

Although formulated in various ways, most recent ap-

proaches [9,36,40,41,43,45,48,49,51,54,63,64] addressed

these challenges by carefully designing deep neural net-

works, such as CNNs [36,40,43,45,48,49,51,54,63,64] or

Transformers [9, 59], based models. The most straightfor-

ward way to formulate a mapping function is to use ground-

truth correspondences between the image pairs. Recent ap-

proaches [9, 70], including conventional approaches, have

been formulated in a supervised fashion (Fig. 1a). However,

ground-truth keypoint pairs on the most standard bench-

marks [15,44] can be the inherent bottleneck [10,16,43,45]

because they are annotated subjectively and sparsely.

To alleviate the reliance on the ground-truth data, some

methods [40, 48, 63, 64] presented a self-supervised learn-

ing framework (Fig. 1b), using synthetic geometric warps

of an image to generate a synthetic image pair. Although it

turns out that it is an appealing alternative, using synthetic

image pairs cannot account for extreme intra-class appear-
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ance variations in semantic correspondence [48,55]. On the

other hand, some other methods [20, 23, 25, 45] presented

a weakly-supervised learning framework that casts this task

as a feature reconstruction between the images, but the loss

function often fails to explain the correspondences across

severely different instances among the same class.

On the other hand, most recent approaches in image clas-

sification task [3, 4, 19, 27, 57] have been popularly formu-

lated in a semi-supervised learning framework, which en-

ables learning the model on a large amount of unlabeled

data with a few labeled data, and showed outstanding per-

formance. Most recent trends of semi-supervised learn-

ing [3, 4, 19, 27, 57] integrate consistency regularization [2]

and pseudo-labeling [29]. For instance, FixMatch [57] first

generates a pseudo-label using the model’s prediction on

weakly-augmented unlabeled data and then encourages the

prediction from strongly-augmented unlabeled data to fol-

low the pseudo-label with confidence thresholding. This

learning framework has become a promising solution to

mitigate the reliance on large labeled data [18, 38, 57], but

directly applying these techniques to semantic correspon-

dence is challenging in that learning the matching networks

requires pixel-level pseudo-labels.

In this paper, we present a novel semi-supervised learn-

ing framework, called SemiMatch, that generates pixel-

level pseudo-labels using the model’s prediction itself be-

tween source and weakly-augmented target and then en-

courages the model to predict the pseudo-label again be-

tween source and strongly-augmented target, as illustrated

in Fig. 2. To account for the observation that all of the

pseudo-labels may not help to boost performance, we in-

troduce a novel confidence measure for pseudo-labels by

considering object-centric foreground, forward-backward

consistency, and uncertainty of probability itself. Tailored

for semantic correspondence, we also present a matching-

specialized augmentation that exploits a keypoint-aware

cutout, helping the network to learn distinctive feature rep-

resentations around the keypoints.

We evaluate our method on several benchmarks [15,44].

Experimental results on various benchmarks show that us-

ing our novel loss function with sparsely-supervised loss

function consistently improves the performance compared

to the latest methods for semantic correspondence. We also

provide an extensive ablation study to validate and analyze

components in our learning framework.

2. Related works

Semantic Correspondence. The objective of semantic

correspondence [10, 15, 24, 49] is to find correspondences

across semantically similar images. Recent methods [9, 10,

16,43,45,70] showed great progress by supervised loss, but

they are limited by the availability of sparse ground-truth

annotation. On the other hand, some methods [40,48,63,64]

address the aforementioned limitations by training the net-

work in a self-supervised manner, relying on synthetic

warps of real images, without ground-truth flow and [32]

presents a teacher-student model where the student model

exploits the teacher model’s generalized knowledge learned

from synthetic data. Their improvement is mainly due to

self-supervised training data, but synthetic geometric defor-

mation cannot model intra-class appearance variations and

realistic scene generation. Another alternative is to use a

training loss that only requires a weak-level of supervision,

given for each image pair as either positive (the same class)

or negative (different class), as in [20, 45, 51]. While it [45]

can achieve higher performance than strongly-supervised

methods, it has fundamental limitations to supervise locat-

ing matches. Unlike the methods above, we present for

the first time a semi-supervised learning framework which

overcomes the lack of labeled ground-truth keypoints by

utilizing a large amount of confident correspondences as

pseudo-labels.

Semi-Supervised Learning. The most recent methods

for semi-supervised learning have followed two trends;

pseudo-labeling and consistency regularization. Pseudo-

labeling [1, 29, 47, 56, 67, 71] encourages a model to follow

the pseudo-label from the model’s prediction itself closely

related to entropy minimization [13] where the model’s

predictions are encouraged to be low-entropy (i.e., high-

confidence) on unlabeled data. On the other hand, con-

sistency regularization [2, 53, 62, 67] encourages the model

to produce the same prediction when perturbations are ap-

plied to the input or the model. Consistency regularization-

based methods, enforcing invariant representations across

augmentations, rely heavily on the usage of strong data aug-

mentation, so it is important which strong augmentations

are used and how strong they are. Very recently, some

state-of-the-art methods [3, 19, 27, 57, 67] combine pseudo-

labeling and consistency regularization by a confidence-

based strategy and separate weak and strong augmenta-

tions, but there still remains the problem of ignoring a large

amount of unlabeled data due to reliance on fixed high

thresholding to compute the unsupervised loss. Most afore-

mentioned methods have focused on solving an image-level

task, e.g., image classification, but methods for pixel-level

tasks such as semantic correspondence are done limitedly

and cannot be applied directly.

Uncertainty Estimation. Predicting uncertainty in the

field of Computer Vision has been widely explored [7, 26,

28, 37], even before the expansion of deep learning. There

are two approaches in uncertainty estimation: empirical and

predictive. The former method [5,14] approximates the un-

certainty by sampling a finite number of weight configura-

tions for a given network and computing the mean and vari-

ance of the predictions. In the latter method [46], a network
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Figure 2. Overview of our semi-supervised learning framework for semantic correspondence. SemiMatch first augments the target

image into a weakly-augmented one and a strongly-augmented one. The backbone matching networks extract features from these images,

compute correlation cost, followed by aggregation. The aggregated cost between source and weakly-augmented target images is trans-

formed by the same geometry warp used in strong augmentation and sharpened to generate a pseudo-label. The overall loss function is

composed of supervised loss which uses the sparse ground-truth label and unsupervised loss which uses the pseudo-label.

is trained to infer the mean and variance of the distribution

by design.

In semi-supervised learning in image classification, there

were some approaches, such as Dash [68] and Flex-

Match [69], to measure the uncertainty of pseudo-labels

by applying a different threshold to each sample, unlike

FixMatch [57] which assumes that the samples exceed the

hand-crafted confidence threshold. In contrast to the exist-

ing semi-supervised method [57,68,69] which assumes that

all pseudo-labels are certain without considering the uncer-

tainty of the generated pseudo-label, we improve the perfor-

mance by considering the uncertainty of the pseudo-label.

3. Methodology

3.1. Motivation

Given a pair of images, i.e., source Is and target It,
which represent semantically similar images, the goal of se-

mantic correspondence is to establish matches between the

two images at each pixel. To achieve this, most predominant

methods with CNNs [36, 40, 43, 45, 48, 49, 51, 54, 63, 64]

consist of two steps, including feature extraction and cost

aggregation. First of all, feature extraction networks ex-

tract a feature F ∈ R
h×w×d, where h × w is the spa-

tial resolution and d is the channels. The similarities be-

tween feature maps, called cost volume, can be estimated

by C(i, j) = Ft(i)
TFs(j), where i ∈ {1, .., htwt} and

j ∈ {1, .., hsws} However, initial cost volume itself is vul-

nerable to ambiguous, repetitive, or textureless matches. To

disambiguate these, recent methods [9, 31, 36, 41] employ

the cost aggregation networks for refining the initial match-

ing similarities to achieve the aggregated cost C′(i, j).
Although existing methods [9, 31, 36, 41, 70] can be for-

mulated in various ways, their outputs C or C′ can be con-

sidered as a matching probability through a simple SoftMax

function [30] such that P (i) = p(Is, It(i); θ) ∈ R
hsws×1

with the network parameters θ, defined across all the points

in Is for point i in It. Learning such networks in a super-

vised manner requires manually annotated ground-truth cor-

respondences PGT, which are extremely labor-intensive and

involves subjectivity [9, 45, 70]. Thus, in semantic corre-

spondence, only sparsely-annotated ground-truths are avail-

able, and the supervised loss function is defined such that

Lsup =
∑

i

c(i)D(p(Is, It(i); θ), PGT(i)), (1)

where c(i) is a binary indicator for representing the exis-

tence of ground-truth PGT(i), PGT(i) is an one-hot vec-

tor form, and D(·, ·) is the distance function, e.g., L2 dis-

tance [40] or cross-entropy [23, 51]. Due to the inherent

nature of using sparse ground-truths, the distance function

yields a limited performance [9, 70]. To alleviate the re-

liance on large ground-truth data, self-supervised learning

methods [40, 48, 63, 64] have been popularly used, which

generates synthetic matching pairs by applying a geomet-

ric warping on a single image. In specific, target image It
(or source image Is) is transformed by geometry warping

operator G(·;φ) with a randomly-defined warping field φ,

e.g., generated by affine [66] or thin-plate-spline (TPS) [6]

transformation. The synthetic image pairs are then defined

as It and G(It;φ), and φ is used as a pseudo-label for them.

The self-supervised loss function is then defined as

Lself−sup =
∑

i

D(p(G(It;φ), It(i); θ), Pφ(i)). (2)

where Pφ is one-hot vector form of φ. Since this loss func-

tion does not require annotated ground-truths, and enables
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(a) Is (b) It (c) α(It) (d) G(A(It))

Figure 3. Examples of augmented images in semi-supervised

learning: (a) source image Is, (b) target image It (c) weakly-

augmented target image α(It), and (d) strongly-augmented target

image G(A(It)).

learning with dense labels, it can be an alternative to data

hungry from sparse annotations [9,70]. However, such syn-

thetic image pairs cannot contain realistic appearance vari-

ations across the two images and model moving objects or

occlusion, which limits the performance in semantic corre-

spondence that often poses challenges by intra-class appear-

ance and shape variations [30, 41].

3.2. Formulation

We present a novel semi-supervised learning framework,

SemiMatch, for learning a matching model on a large

amount of unlabeled pixels with few labeled pixels be-

tween source and target images. Following recent trends

of semi-supervised learning in image classification [57, 67]

that have not been applied in semantic correspondence yet,

we present to extend the consistency regularization between

two differently augmented instances from the same im-

age [57] to semantic correspondence. They are commonly

based on the assumption that when perturbations are applied

to the input, the prediction should not change significantly.

However, it is difficult to adapt the existing consistency reg-

ularization techniques [3,4,57] to semantic correspondence

directly, predicting dense probabilities because they were

designed for image classification task.

In this section, we study how to formulate the loss func-

tion for unsupervised learning within semantic correspon-

dence framework that can be simultaneously used with

sparsely supervised loss function for semi-supervised learn-

ing. First of all, as shown in Fig. 3 given source Is and

target It images, we build a triplet {Is, α(It),G(A(It))},

where α(·) and A(·) represent weak and strong photomet-

ric and geometric augmentations, respectively. Our key in-

gredient is to exploit the difference in difficulty levels of

matching weak pairs and strong pairs, i.e., the weak pairs

are easier to generate pseudo-labels for the strong pairs, in-

spired by [57]. However, without the geometric augmenta-

tion, the performance of trained models may be sub-optimal

because the models may lack the robustness to geometric

variations, which frequently occur in semantic correspon-

dence. But if the geometric augmentation is applied si-

multaneously, direct consistency regularization cannot be

formed,i.e., to perform consistency regularization on the ge-

ometrically warped image pairs, it is necessary to find the

Figure 4. Comparison of matching difficulty between weak

branch and strong branch.The yellow and red lines show the

result of the weak and strong branch, respectively. The green

lines show when the weak branch and strong branch results are

the same. Weak branch gives more accurate results.

pseudo labels in the misaligned image pair.

To overcome the aforementioned issues, we present a

novel unsupervised loss function that jointly leverages pho-

tometric and geometric augmentations, defined such that

Lun−sup =
∑

i

m(i)D(p(Is,G(A(It(i));φ); θ), Q(i)),

(3)

where Q(i) is a pseudo-label defined as

Q(i) = G(p(Is, α(It(i)); θ);φ), (4)

which means the geometrically-warped matching probabil-

ities between weak pairs with φ. And the same geometric

warping applied to the target image, such that G(A(It);φ).
Like previous consistency regularization methods [2], we

generate pseudo-labels from better correspondences of the

weak pairs than the strong pairs as shown in Fig. 4.

By geometrically-warping the pseudo-labels, we can align

matching probability for strong pairs, enabling the model to

achieve robustness to strong augmentation as well.

In the following section, we will explain how to achieve

the confidence m(i) of pseudo-label.

3.3. Confidence of PseudoLabel

Matching probabilities inferred from the weak branch

are used to define pseudo-labels in the strong branch.

However, incorrect pseudo-labels may hinder performance

boosting, which is called confirmation bias [1] problem. To

overcome this, some semi-supervised learning methods for

image classification use simple thresholding of the proba-

bility value itself, e.g., FixMatch [57]. This is too a strong

constraint in early iterations of training in that most false

positives cannot be captured.

To alleviate this, we present three constraints to measure

the confidence of pseudo-labels. First of all, we utilize

a binary object mask of source and target images, which

helps to limit the matching candidates within object-centric

regions. In specific, since the pseudo-labels are defined at

geometrically-warped regions, we define Mmask as a binary

foreground object mask for target image It. Note that the

object mask is synthesized using the min and max values of

ground-truth keypoints.
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(a) Source (b) Target (c) Mask intersection

(d) Mmask (e) Mfb (f) Mthres

Figure 5. Visualization of our confidence mask: (a) source, (b)

target, (c) mask intersection, (d) Mmask, (e) Mfb, and (f) Mthres.

Sampled pixels by mask intersection belong to object-centric and

discriminative image regions.

Secondly, we also utilize forward-backward consistency

checking [35, 39, 60]. In specific, by estimating correspon-

dences between {Is, α(It)} in forward and backward direc-

tions simultaneously and checking the consistency between

them, we determine the reliability of pseudo-labels based

on the observation that if this consistency constraint is not

satisfied, the points in α(It) are occluded at the matches in

Is (or vice-versa), and the estimated flow vector is incorrect.

This constraint is denoted by Mfb.

Finally, unlike existing consistency regularization meth-

ods [57], using a few samples through high thresholding

with a pre-defined scalar value τ , we present uncertainty-

based weighting on the loss function itself. This lets a con-

siderable amount of unlabeled data, especially at the early

iteration of training phase, be used as pseudo-labels accord-

ing to their different learning status. Specifically, we mea-

sure the uncertainty u(i) of matching probabilities P (i) as

u(i) = 1/ exp
(

∑

j
P (i, j) logP (i, j)

)

, (5)

where P (i, j) is j-th component of P (i). Mthres(i) is

then measured by (1/u(i))⊙1 (max (P (i)) ≥ τ) to weight

loss function depending on uncertainty where ⊙ denotes

Hadamard product.

Our final confidence m is determined by G(Mmask ⊙
Mfb ⊙Mthres;φ). We visualize each mask component be-

longing to the intersection of the masks in Fig. 5.

3.4. Augmentation

Consistency regularization-based methods [2], enforcing

invariant representations across augmentations, greatly de-

pend on what kind of transformations are used for strongly-

augmented images. Even though any kind of augmenta-

tion can be used in this framework, for semantic correspon-

(a) Image pair (b) Keypoint pair (c) KeyOut pair

Figure 6. Visualization of KeyOut augmentation: (a) image

pair, (b) keypoints, and (c) keyOut applied to the target image.

dence, augmentation should be more focused on discrimi-

native local parts of an object to infer the matches.

In this section, we propose a matching-specialized aug-

mentation, called keypoint-guided CutOut (KeyOut), which

cuts and removes boxes of a certain size around the key-

point location as shown in Fig. 6. It allows the model to

learn to find the keypoint locations by integrating keypoint

peripheral information.

3.5. Loss Functions

Finally, we propose two loss functions to train our model

using different supervision, including supervised loss and

semi-supervised regimes. As described above, any distance

function D can be used for loss functions. In specific, fol-

lowing the common practice [40], Lsup is defined as the L2

distance such that

Lsup =
∑

i

c(i)∥ξ(p(Is, It(i); θ))− ξ(PGT(i))∥, (6)

where ξ(·) is denoted as general max function including soft

argmax and hard argmax. In addition, Lun−sup is formu-

lated with the contrastive loss function [65] as

Lun−sup

= −
∑

i

m(i) log

(

exp (p(Is(i
′), G(i); θ)/γ)

∑

j exp(p(Is(j), G(i); θ)/γ)

)

,
(7)

where G = G(A(It);φ), i
′ and j represent the locations in

source image, respectively, i′ is determined as ξ(Q(i)), and

γ is the temperature hyper-parameter.

Our total loss Ltotal = Lsup + λLun−sup where λ is a

weight that is adaptively determined by the ratio between

Lsup and Lun−sup such that λ = L∗
sup/L

∗
un−sup, where L∗

is the loss value itself and no back propagation happens.

3.6. Network Architecture

Our semi-supervised learning framework can be used in

any deep networks for semantic correspondence [9, 22, 31,

36,41,43,50,51]. In this paper, we leverage the recent state-

of-the-art network, especially focusing on cost aggregation

stage, CATs [9] that explores global consensus among ini-

tial correlation map with the help of Transformer-based ag-

gregator. By considering the outputs of the networks as

matching probabilities, it directly leverages the proposed

unsupervised loss, as well as supervised loss. Our overall

architecture is shown in Fig. 2.
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Method Supervision
Learning

signal

PF-PASCAL PF-Willow SPair-71k

0.05 0.1 0.15 0.05 0.1 0.15 0.1

PFHOG [15] None - 31.4 62.5 79.5 28.4 56.8 68.2 -

CNNGeoResNet-101 [48]
Self-sup. synthetic pairs

41.0 69.5 80.4 36.9 69.2 77.8 20.6

A2NetResNet-101 [55] 42.8 70.8 83.3 36.3 68.8 84.4 22.3

SF-NetResNet-101 [30]

Weak-sup.

bbox 53.6 81.9 90.6 46.3 74.0 84.2 -

WeakalignResNet-101 [49]

images

49.0 74.8 84.0 37.0 70.2 79.9 20.9

RTNsResNet-101 [23] 55.2 75.9 85.2 41.3 71.9 86.2 25.7

NC-NetResNet-101 [51] 54.3 78.9 86.0 33.8 67.0 83.7 20.1

DCC-NetResNet-101 [20] 55.6 82.3 90.5 43.6 73.8 86.5 -

DHPFResNet-101 [45] 56.1 82.1 91.1 50.2 80.2 91.1 37.3

SCNetVGG-16 [16]

Sup. keypoints

36.2 72.2 82.0 38.6 70.4 85.3 -

ANC-NetResNet-101-FCN [31] - 86.1 - - - - 28.7

HPFResNet-101 [43] 60.1 84.8 92.7 45.9 74.4 85.6 28.2

DHPFResNet-101 [45] 75.7 90.7 95.0 49.5 77.6 89.1 37.3

CHMNetResNet-101 [41] 80.1 91.6 94.9 52.7 79.4 87.5 46.3

MMNetResNet-101 [70] 77.6 89.1 94.3 - - - 40.9

CATs†ResNet-101 [9] 67.5 89.1 94.9 46.6 75.6 87.5 42.4

CATsResNet-101 [9] 75.4 92.6 96.4 50.3 79.2 90.3 49.9

SemiMatch†

Semi-sup. keypoints
75.0 91.7 95.6 47.4 76.3 88.2 43.0

SemiMatch 80.1 93.5 96.6 54.0 82.1 92.1 50.7

Table 1. Quantitative evaluation on PF-PASCAL and PF-Willow [15] and SPair-71k [44]. Subscripts of each method’s name indicate

the feature backbone used. The best results in bold, and the second best results are underlined. CATs† means without fine-tuning feature.

Methods aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

CNNGeo [48] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6

A2Net [55] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

WeakAlign [49] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NC-Net [51] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

HPF [43] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

SCOT [36] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6

DHPF [45] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3

CHMNet [41] 49.1 33.6 64.5 32.7 44.6 47.5 43.5 57.8 21.0 61.3 54.6 43.8 35.1 43.7 38.1 33.5 70.6 55.9 46.3

MMNet [70] 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6 40.9

CATs† [9] 46.5 26.9 69.1 24.3 44.3 38.5 30.2 62.7 15.9 53.7 52.2 46.7 32.7 35.2 32.2 31.2 68.0 49.1 42.4

CATs [9] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

SemiMatch† 47.8 29.0 70.6 24.0 44.5 37.6 29.8 65.2 17.2 54.7 52.8 47.1 35.2 37.6 29.9 32.7 68.5 49.4 43.0

SemiMatch 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9 50.7

Table 2. Per-class quantitative evaluation on SPair-71k dataset [44]. The best results are in bold, and the second best results are

underlined

4. Experiments

4.1. Implementation Details

In experiments, we evaluate our framework with the

state-of-the-art network, CATs [9]. For a fair comparison,

we use the same hyper-parameters and photometric aug-

mentation lists following CATs [9]. For geometric trans-

formation [30,48,63], we apply a combination of affine and

thin-plate-spline with random transformation parameters in

range [0,1] * tscale (0.15 for affine, and 0.4 for tps). To gen-

erate matching-specialized augmentations, we add blur as

in [8] and KeyOut on strong augmentation. We set γ = 0.1
and τ = 0.5.

4.2. Experimental Settings

In this section, we conduct comprehensive experiments

for semantic correspondence, by evaluating our framework

through comparisons to state-of-the-art methods includ-

ing HOG [15], CNNGeo [48], A2Net [55], SFNet [30],

WeakAlign [49], SCNet [16], RTNs [23], NC-Net [51],

DCC-Net [20], HPF [43], DHPF [45], SCOT [36], ANC-

Net [31], CHM [41], CATs [9], MMNet [70].

Dataset. We extensively conduct experiments on three

popular benchmarks for semantic correspondence: PF-

PASCAL [15], PF-WILLOW [15], SPair-71k [44]. PF-

PASCAL contains 1,351 semantically related image pairs

from 20 categories of the PASCAL VOC dataset [12]. PF-

Willow contains 900 image pairs from 4 categories. SPair-

19704



(a) CHMNet [70] (b) CATs [9] (c) SemiMatch (d) GT keypoints

Figure 7. Qualitative results on PF-PASCAL [15]. (a) CHMNet [41] (b) CATs [9] (c) SemiMatch, and (d) sparse GT keypoints.

Component
PF-PASCAL PF-Willow

0.05 0.1 0.05 0.1

(I) SemiMatch 80.1 93.5 54.0 82.1

(II) (I) w/o Mmask 73.9 92.0 51.4 79.7

(III) (I) w/o Mfb 78.7 93.1 52.9 81.9

(IV) (I) w/o Mthres 72.3 91.3 52.1 81.5

Table 3. Ablation study of mask elements.

71k consists of total 70,958 image pairs in 18 categories

with diverse view-point and scale variations. We used the

same split proposed in [44].

Evaluation Metric. Following the standard experimental

protocol [15,44], we use the percentage of correct keypoint

(PCK@α), computed as the ratio of estimated keypoints

within the threshold from ground-truths to the total num-

ber of keypoints. Given a set of predicted and ground-truth

keypoint pairs K = {(kpred(m), kGT(m))}, PCK can be

defined as PCK(K) = 1
M

∑M

m d (kpred (m), kGT(m)) ≤
αk · max(H,W ), where M is the number of keypoint

pairs, d(·) is Euclidean distance; a threshold is scaled by

αk · max(H,W ) in proportion to the larger portion of im-

age for PF-PASCAL [15], and the object’s bounding box for

PF-Willow [15], and SPair-71k [44].

4.3. Matching Results

For fair comparisons with our baseline, CATs [9],

and previous state-of-the-art methods, we exploit the

same network architecture, ResNet-101 [17] pretrained

on ImageNet [11]. As shown in Table 1, for PF-

PASCAL [15], SemiMatch records state-of-the-art results

with 80.1% PCK@0.05, 93.5% PCK@0.1 and 96.6%

PCK@0.15. Without and with fine-tuning feature ex-

traction backbone, SemiMatch outperforms CATs [9]

by 7.5%/4.7% PCK@0.05, 2.6%/0.9% PCK@0.1, and

0.7%/0.2% PCK@0.15. It demonstrates the effectiveness

of our semi-supervised framework with the confidence con-

straints of pseudo-labels and matching-specialized augmen-

tation. Compared to CATs, it can operate more sensitively

at local regions through the significant performance im-

provement in PCK@0.05, which is the most strict match-

ing criterion in PF-PASCAL. Experiments show that a large

amount of pseudo-labels provide information on neighbor-

ing keypoints that cannot be provided by sparse keypoints.

Generalization power of SemiMatch can be proven through

the best performance in PF-willow for all PCKs by 1.3%,

1.9% and 1.0%, respectively compared to the previous state-

of-the-art results. Finally, we also record the best perfor-

mance with 50.7% PCK@0.1 even in SPair-71k [44] hav-

ing large-scale variation. To show the effectiveness and ro-

bustness of our framework in detail, we compare per-class

accuracy in Table 2 and our approach outperforms all state-

of-the-art networks on 11 of the 18 classes. Our qualitative

results are shown in Fig. 7.

4.4. Ablation Study

We conduct ablation analyses to investigate the effective-

ness of components in our framework and also explore the

effect of pseudo-labeling compared to CATs [9]. All ex-

periments are conducted on PF-PASCAL dataset [15] and

validated on PF-PASCAL and PF-Willow.

Effects of Confidence Mask. In Table 3, we evaluate

each mask constraint in SemiMatch baseline (I) by remov-

ing each from the entire constraints. From (I) to (II), PCK

decline shows that the network can learn more representa-

tive information of the object by foreground samples sep-

arated from the background. A large performance drop in

(IV) compared to (III) shows that it is important to adjust a

weighting on the loss function proportionally according to

the uncertainty.

Effects of Keypoint-Based Augmentation. We also

evaluate additional strong augmentation by CutOut, KeyOut

with low probability and small box regions (KeyOutweak),

and KeyOut with high probability and large box regions

(KeyOutstrong). As shown in Table 4, we can prove the

effectiveness of our KeyOut, cutout regions based on key-

point locations by comparing (II) and (III)-(IV). Especially

19705



5 10 15 20 25 30

Label Fraction (%)

85

86

87

88

89

90

PC
K 

@
 0

.1
 (%

)

SemiMatch
CATs

(a) PCK@0.1 on PF-PASCAL

5 10 15 20 25 30

Label Fraction (%)

62

64

66

68

70

72

PC
K 

@
 0

.0
5 

(%
)

SemiMatch
CATs

(b) PCK@0.05 on PF-PASCAL

5 10 15 20 25 30

Label Fraction (%)

76

77

78

79

80

81

PC
K 

@
 0

.1
 (%

)

SemiMatch
CATs

(c) PCK@0.1 on PF-Willow

5 10 15 20 25 30

Label Fraction (%)

48

49

50

51

52

53

PC
K 

@
 0

.0
5 

(%
)

SemiMatch
CATs

(d) PCK@0.05 on PF-Willow

Figure 8. PCK results of CATs [9] and SemiMatch on PF-PASCAL and PF-Willow with various label fractions: (a) PCK@0.1 on

PF-PASCAL, (b) PCK@0.05 on PF-PASCAL, (c) PCK@0.1 on PF-Willow, and (d) PCK@0.05 on PF-Willow.

Component
PF-PASCAL PF-Willow

0.05 0.1 0.05 0.1

(I) SemiMatchBase 79.8 93.3 52.9 81.5

(II) w/ CutOutweak 79.8 93.2 51.8 81.1

(III) w/ KeyOutweak 80.1 93.6 54.0 82.1

(IV) w/ KeyOutstrong 79.8 93.4 53.6 81.9

Table 4. Ablation study of types of data augmentation.

on PF-Willow, (III) shows powerful generalization power

compared to (I) and (II) by 1.1% and 2.2%.

Experiments with Label Fraction. We investigate the

performance gap between CATs and SemiMatch according

to the label fraction of PF-PASCAL dataset, referring to the

percentage of data in entire image pairs. We conduct abla-

tion experiments using labels of 5%, 10%, 20%, and 30%

of the total dataset. Fig. 8 shows that SemiMatch is consis-

tently ∼4.5% better than CATs in any label fraction setting

on both PF-PASCAL and PF-Willow. Note that SemiMatch

using 5%, 10%, 20%, and 30% of labels surpasses CATs us-

ing all labels by 0.9%, 1.3%, 1.2% and 2.3% PCK@0.1 for

PF-Willow, respectively. Also, SemiMatch using 5%, 10%,

20%, and 30% of labels surpasses CATs using all labels by

0.9%, 1.7%, 2.2%, and 2.9% PCK@0.05 for PF-Willow.

Experiments with Warm-Up stage. The fundamental

problem of pseudo-labeling is that in the early stages of

the training, the model is hindered by incorrect pseudo-

labels caused by parameter initialization, which is called

confirmation bias [1]. Therefore, semi-supervised frame-

works based on pseudo-labeling generally have a warm-up

stage using only the labeled data. We evaluate the effect

of warm-up stage results, which is 20 epochs of training

with supervised loss. In experiments, there is no significant

difference in performance with or without the warm-up, as

shown in Table 5. It can be interpreted that our network ex-

plores the effectiveness of utilizing unlabeled data accord-

ing to the model’s learning status by uncertainty-based con-

fidence measurement.

Warm-up
PF-PASCAL PF-Willow

0.05 0.1 0.15 0.05 0.1 0.15

✓ 80.1 93.6 96.6 54.0 82.1 92.1

✗ 78.9 93.5 96.8 53.9 82.3 92.7

Table 5. Ablation study of warm-up stage.

Loss function
PF-PASCAL PF-Willow

0.05 0.1 0.15 0.05 0.1 0.15

AEPE 78.9 92.7 96.4 53.6 82.1 92.2

Contrastive 80.1 93.6 96.6 54.0 82.1 92.1

Table 6. Ablation study of loss function.

Comparison of Distance Function. A distance function

for unsupervised loss in our semi-supervised framework can

be defined as either AEPE or Contrastive loss. It should

be noted that, SemiMatch shows better performance than

CATs, our baseline, regardless of loss formulation. We ex-

perimentally observed that using Contrastive loss performs

better than using AEPE as shown in Table 6.

5. Conclusion

In this paper, we have presented a novel semi-supervised

learning framework, called SemiMatch, that exploits the

pixel-level pseudo-label generated by source and weakly-

augmented target to learn a model again by taking source

and strongly-augmented target as input. We introduce a

novel confidence measure for pseudo-labels to ignore in-

correct pseudo-labels and augmentation tailored for seman-

tic matching, exploiting keypoint locations, to learn the

model to integrate keypoint peripheral information. We

have shown that SemiMatch achieves state-of-the-art per-

formance over the latest methods in several benchmarks.
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