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Figure 1. Face-swapped images generated by our Smooth-Swap model. In the swapped images, the identities of the target images are
replaced with that of the source images. See the face-shape, hair, and mustache change in accordance with different sources.

Abstract

Face-swapping models have been drawing attention for
their compelling generation quality, but their complex ar-
chitectures and loss functions often require careful tun-
ing for successful training. ~We propose a new face-
swapping model called ‘Smooth-Swap’, which excludes
complex handcrafted designs and allows fast and stable
training. The main idea of Smooth-Swap is to build smooth
identity embedding that can provide stable gradients for
identity change. Unlike the one used in previous mod-
els trained for a purely discriminative task, the proposed
embedding is trained with a supervised contrastive loss
promoting a smoother space. With improved smoothness,
Smooth-Swap suffices to be composed of a generic U-Net-
based generator and three basic loss functions, a far sim-
pler design compared with the previous models. Extensive
experiments on face-swapping benchmarks (FFHQ, Face-
Forensics++) and face images in the wild show that our
model is also quantitatively and qualitatively comparable
or even superior to the existing methods.

1. Introduction

Face swapping is a task to switch the person-identity of
a given face image with another, preserving other attributes
like facial expressions, head poses, and backgrounds. The
task has been highlighted for its wide use of real-world ap-
plications, such as anonymization in privacy protection and

the creation of new characters in the entertainment indus-
try. With progress made over years [3,6, 16,21,22,28,31,
33], state-of-the-art face-swapping models can generate a
swapped image of decent quality using a single shot of a
new source identity.

Despite the performance improvement, however, exist-
ing models usually adopt complex model architectures and
numerous loss functions to change face shape. Face shape is
a crucial component of identity, but changing it is a nontriv-
ial task; it incurs a dramatic change of pixels, but no guid-
ance can be given due to the inherent absence of the ground-
truth swapped images. Thus, previous studies have focused
on using handcrafted components such as mask-based mix-
ing [6] or 3D face-shape modeling [16,31]. Although such
components are effective for changing shape and improving
the swapped-image quality, the models have added com-
plexity of hyperparameters and loss functions that require
careful tuning for successful training.

In this study, we postulate that the approaches based on
handcrafted components are not the best way to resolve the
difficulty of face-swapping. We propose instead a new iden-
tity embedding model having improved smoothness, which
we assume to be related most to the gist of the problem. An
identity embedding model, or an embedder, plays a key role
during the training of the swapping model. It gives gradi-
ents for the generator, to which direction it has to tune to
change the identity. It is thus important the embedder has a
smooth space, since the gradients can be erroneous or noisy
otherwise. In our proposed model, Smooth-Swap, we con-
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sider a new embedder trained with supervised constrastive
loss [14]. [30]. We find it has a smoother space than the
ArcFace embedder [7], one used in the most of the existing
models, and helps faster and stable training.

Through the smooth embedder, Smooth-Swap works
without any handcrafted components. It adopts a simple U-
Net [24]-based generator, and we train it using only three
basic loss functions—identity change, target preserving,
and adversarial (Fig. 2). While this set-up is simpler than
the existing models, we find that our model can still achieve
comparable or superior performance by taking a data-driven
approach and minimizing inductive bias.

The advantages of Smooth-Swap can be summarized as
follows. 1) Simple architecture: Smooth-Swap uses a sim-
ple U-Net [24]-based generator, which does not involve any
handcrafted components as the existing models. 2) Simple
loss functions: The Smooth-Swap generator can be trained
using minimal loss functions for face-swapping—identity,
pixel-level change, and adversarial loss. 3) Fast training:
The smooth identity embedder allows faster training of the
generator by providing more stable gradient information.

2. Related Work

Approaches based on 3D Models and Segmentation
Earlier face-swapping models rely on external modules
such as 3D Morphable Models (3DMM) [4] and a face seg-
mentation model. Face2Face [29] and [23] fit the source
and the target images to 3DMM and transfers the expres-
sion (and the posture) parameters to synthesize the swapped
image. RSGAN [21], FSNet [20], and FSGAN [22] use a
segmentation model to separate the facial region from the
background, generate the swapped image by switching and
blending the regions. Despite the early success, these ap-
proaches do not produce high quality images since their per-
formance depends on the non-trainable external modules.

Feature-based GAN models In contrast with the ap-
proaches above, recent models consider end-to-end train-
ing, generating a face-swapped image based on learned fea-
tures. IPGAN [3] learns separate embedding vectors for the
identity and the target attributes, switching and recombining
them to generate a swapped image. FaceShifter [16] consid-
ers multi-level mixing using an encoder-decoder architec-
ture, alleviating the information loss in the approach of IP-
GAN. SimSwap [6] proposes weak feature matching to fo-
cus more on preserving the facial expression of the source,
whereas HifiFace [31] proposes a method integrating 3D
shape model to focus more on active shape change. InfoS-
wap [8] uses information bottleneck for better disentangling
the identity attributes from the rest. MegaFS [33] utilizes
a pretrained StyleGAN2 [13] to generate high-resolution
face-swapped images. [19] also tackles high resolution by
training a separate generator for each identity. Although

these models have continuously improved the quality of the
generated images, they tend to show weak identity change
or involve complexity due to handcrafted components.

3. Problem Formulation & Challenges

We first describe the problem formulation and main tech-
nical challenges of face-swapping. Then, we introduce how
the smoothness of an identity embedder can alleviate them.

3.1. Problem Formulation

When a source x4, and a target x4 are given, a face-
swapping model needs to generate the swap image, Z sy ap,
which satisfies the following conditions:

C1. It has the identity of the source image.

C2. Other than the identity, it looks the same as the target
image (having the same background, pose, etc.).

C3. It looks realistic (indistinguishable from real images).

To meet these requirements, most of face-swapping mod-
els [16,31] consist of three components: an identity em-
bedder f . for the source image, a generator f.,, for the
swapped image, and a discriminator f4;, to improve the fi-
delity. Fig. 2 shows an overview of these face-swapping
models including our approach. Note that the identity em-
bedder is pre-trained and frozen during the training of other

components, so the asterisk is included in the superscript.
3.2. Challenges for Changing Identity

The main difficulty for training a face-swapping model
comes from the conflict between C1 and C2. Satisfying C1
makes Zg,,qp move away from x4 to change the identity,
whereas satisfying C2 enforces it to stay around. If we can
accurately extract the identity-irrelevant change of xgyqp
from x4 and use it for the loss of C2, this conflict would
have been relaxed. Unfortunately, designing such a loss is
difficult, and a common fallback is to use an isotropic loss
such as perceptual [32] or pixel-level L, loss.

A major consequence of the conflict and an isotropic C2
loss is stagnant face-shape change. Shape-wise change such
as round to sharp chin involves geometric transformations
and entails dramatic variation in features and pixel values.
It is thus a big fight against the C2 loss preventing any as-
pects of deviation from x4 and often compromised first.
In this regard, previous work put much effort for changing
face shape correctly, using a 3D face model, for example,
to better capture the shape [31]. However, such a design
introduces additional complication and requires a careful
balancing between modules for successful training. In this
work, we hypothesize that the conflict can be relaxed not by
adding new modules but by introducing smoothness to an
identity embedder. We will describe the details on this in
the following section.
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Figure 2. An illustrative comparison of the generator architectures and the loss functions of face-swapping models. Previous models

(FaceShifter [16] and HifiFace [

1) have face-swapping-specific designs such as mask-based mixing (hatched in purple) or 3D face

modeling (f3p). Such designs induce complex architectures and various loss functions, which makes training difficult for balancing. On
the contrary, our architecture is a simple U-Net extension excluding task-related heuristics, and trained by only three typical losses.
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Figure 3. When identity is changed from one to another, the corre-
sponding vector in a smooth embedding space would also change
smoothly. In a non-smooth embedding space, however, the vector
would make discrete jumps. The space can become non-smooth if
the embedder is strongly trained on a discriminative task. In this
case, the embedder cannot give a good gradient direction for the
generator to change the identity correctly. See 3.3.

3.3. Importance of A Smooth Identity Embedder

Most of the previous face-swapping models use Arc-
Face [7] as an identity embedder (embedder for short) since
it is one of the state-of-the-art face recognition models.
Feeding images into the embedder and comparing features
from the last layer (called embedding vectors), it provides
a decent similarity metric for the person-identities of face
images. Using ArcFace or any other face recognition mod-
els, we typically deal with a highly non-smooth embedding
space, because these are trained only by a discriminative

task.

The smoothness of the embedder, however, is crucial
during the training of a face-swapping model. When a
model generates T's,qp With a wrong identity amid train-
ing, the embedder has to give a good gradient direction to
correct it. This gradient has to be accurate and consistent;
otherwise 4,4y €asily goes back to x4 by the loss for
C2. If the embedding space is non-smooth, the gradient di-
rection can be erroneous or noisy since gradients are only
well-defined in a continuous space.

4. Method: Smooth-Swap

We explain our main model called Smooth-Swap. The
model introduces a new identity embedder, trained using
supervised contrastive learning [ 14] to improve the smooth-
ness in the embedding space. It also introduces a simple
U-Net style generator architecture, which is well suited to
the new identity embedder.

Notations Our identity embedder takes images z € X
and outputs the corresponding embedding vectors z € Z
(e.g., Zsre = fr (xsrc)). The generator takes a target
image x;4; and a source embedding z,.., and produces the
swap image: Tswap = fgen(Tigt, Zsre). fais takes Topap
and outputs a scalar ranging [0, 1] (close to 0 for fake and 1
for real).

4.1. Smooth Identity Embedder

As discussed in Sec. 3.3, we desire a smooth embedder
for stable and effective training. To train such an embedder,
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we consult a supervised contrastive learning loss [14]:

(i /7)
L(femp) = (zi,g,x;) —log T ¢ S elm)/m)

where x; denotes a sample from the training dataset; xfg
and z!, denote positive (images having the same identity
as x;) and negative (having a different identity) samples,
respectively.

An important property of contrastive learning is that it
makes the embedding vectors keep the maximal informa-
tion [30], and this is closely related to our need of a smooth
embedder. If we have face images of the same identity but
of a different age or of a different face shape (e.g., from
a diet), discriminative embedders like ArcFace [7] remove
this information aggressively to align the embedding vec-
tors. While this is beneficial for classifying identities, it in-
curs a non-smooth embedding space. When changing the
identity from elderly to young or from a round shape to
sharp in this space, the embedding vectors cannot change
smoothly as such information is removed. For our purpose,
more desired are the embeddings with richer information—
even if the alignment is compromised—as can be obtained
from the contrastive learning. Then, changing from one
identity to another is a smooth path and a good gradient
direction can be obtained for training the swapping model
(see Fig. 3).

4.2. Generator Architecture

Our generator architecture is an adaptation from the
noise conditional score network (NCSN++), which is one
of the state-of-the-art architectures in score-based genera-
tive modeling [27] (Fig. 2). While the original usage of
NCSN++ is far different from face-swapping, we find its U-
Net nature [24] and conditioning structure is useful for our
task. We modify two parts from NCSN++; the time embed-
ding is replaced with the identity embedding and a direct
skip connection from the input to the output is added.

Details on Structure NCSN++ is basically a U-Net [24]
with a conditioning structure and modern layer designs such
as residual and attention blocks. Its original goal is to take
a noisy image and output a score vector having the same
dimensionality as the image. Since it has to output a vec-
tor conditioned on varying noise levels controlled by time,
it also takes a time embedding vector that is added to each
residual block after being broadcasted over the width and
height dimensions. In our design, we replace this embed-
ding vector with identity embedding, as illustrated in Fig. 2.
Also, since the score vector is close to a difference between
images rather than an image itself, we add the input im-
age when making the final output image, instead of directly
passing the output (i.e., an input-to-output skip connection).

Note our architecture does not include any task-specific
design components such as a 3D face model or mask-based
mixing from the previous work. It is universal and mostly
compatible with score modeling by design.

Loss Functions To train this generator, we use three most
basic loss functions, each corresponding to the conditions
for & 4,qp described at the beginning of Sec. 3.

Eid =1- COS(stap7 Zs’rc)
[:(;hg = Hxswap — Tigt H%/D
Cadv = - 1Og(fdis (xswap))

The total loss is computed by combining these functions
and taking the expectation over (Z4¢, Tspc) pairs:

E(fgen) = E(wtgt,xﬁ,,.c) P\id‘cid + Achg‘cchg + AchiULadv]~

Note that cos(-, -) stands for cosine similarity and D stands
for the number of dimensions of X; fg, is trained with
the original loss from [9] and R1 regularizer [17]. The loss
functions are generally the same as [16], except we use a
simpler pixel-level change loss instead of the feature-level
loss (denoted as attribute loss in the paper). For each mini-
batch, we include one (x4, T14¢) pair, whose change loss
effectively acts as a reconstruction loss.

S. Experiments
5.1. Training Details

Datasets For training the generator, we use FFHQ dataset
[12], which contains 70k aligned face images. We use the
10% of images for testing. For training the identity embed-
der, we use the VGGFace2 dataset [5], which contains 3.3M
identity-labeled images of 9k subjects. We crop and align
VGGFace? images using the same procedure as FFHQ. All
images including FFHQ are resized to 256 x256 scale.

Architecture Details Our identity embedder is based on
ResNet50 [10] architecture. The final, average-pooled fea-
ture vector is passed through two fully-connected layers
and normalized to unit length. The generator architecture
is mostly the same as NCSN++ [27], except we use half
as many channels. The discriminator is set to the same as
StyleGAN2 [13]. The detailed structure of the networks is
included in the appendix.

Training We set \ig = 4, Acpg = 1, and Agqy = 1
for training. The discriminator is trained with the non-
saturating loss [9] along with the R1 regularizer [17] to pre-
vent the overfitting. Adam optimizer [15] is used for train-
ing with learning rates 0.001 (generator) and 0.004 (dis-
criminator). It is run for 800k steps with batch-size eight,

10782



Model VGG| VGG-R| Arct Arc-RtT Shpl Shp-R| ‘ Exprl Expr-R| Pose|l Pose-R| PoseHN] ‘ Overall|
Deepfakes 120.907 0.493 0.443 0.524 0.639 0.464 0.802 0.541 0.188 0.445 4.588 0.927
FaceShifter 110.875 0.482 T T 0.658 0.492 0.653 0.456 0.177 0.381 3.175 -0.202
SimSwap 99.736 0.435 T T 0.662 0.479 0.644 0.449 0.178 0.385 3.749 -0.558
HifiFace 106.655 0.469 0.527 0.550 0.616 0.465 0.702 0.484 0.177 0.387 3.370 -0.329
MegaFS 110.897 0.461 T T 0.701 0.500 0.678 0.436 0.182 0.398 5.456 0.234
Smooth-Swap  101.678 0.435 0.464 0.611 0.565 0.403 0.722 0.477 0.186 0.395 4.498 -0.617
50% steps 101.905 0.430 - - 0.578 0.404 0.726 0.476 0.186 0.399 5.979 -0.398
Aia =1 107.096 0.446 0.421 0.581 0.610 0.415 0.669 0.461 0.185 0.398 4.636 -0.419
(Arc) \ig =1 103.767 0.437 T T 0.682 0.460 0.728 0.493 0.192 0416 5.457 0.266
(Arc) N\ig = 4 98.115 0.421 T T 0.684 0.441 0.914 0.543 0.207 0.430 5.655 0.699

Shp: shape, Expr: expression, PoseHN: pose metric with Hopenet [

], (Arc): trained using ArcFace, {: scores cannot be compared because the model uses ArcFace in training.

Table 1. Quantitative comparison between the models (see Sec. 5.2 and Sec. 5.3 for the details). The arrow | (or T) denotes that the score
is the lower (or the higher) the better; the best two are marked as bold. The vertical line in the middle divides the scores into two groups:
ones related to the identity change (left) and ones related to keeping the target attributes (right). The overall score is the average of each
score after standardization (Arc and Arc-R are excluded as some models are ineligible). The last four rows are ablation models (Sec. 5.4).

where the number matches with the total number of im-
ages shown to HifiFace. As described in Sec. 4.2, one
pair in the batch is set to (wtg¢, T¢g¢) for considering the
self-reconstruction case. Adam is also used for training the
embedder (prior to training the swapping model), where the
learning rate is set to 0.001 and decreased by a factor of 10
at 60, 75, and 90% during the total 101K steps. The batch
size is 128 (32 identities, four instances per each) and the
temperature 7 is 0.07 as suggested in [14].

5.2. Evaluation Details

Compared Models We compare our Smooth-Swap
model with the latest feature-based face-swapping mod-
els: FaceShifter [16], MegaFS [33], HifiFace [31], Sim-
Swap [6], and Neural Textures [28]. We also compare two
of the earliest models: Deepfakes [1] and Faceswap [2].

Quantitative Evaluations Since the most of the com-
pared models do not open their source code to the pub-
lic, the current standard for evaluating the models is to
compare their generated images' on the FaceForensics++
(FF++) datasets [25], and we follow accordingly.

We evaluate various metrics that can be grouped into
the following: identity, shape, expression, and pose. We
want Tg,qp to be close to x4, for the first two and close
to x44; for the other two. To evaluate identity, we use VG-
GFace2 [5] and ArcFace [7] embedders and compute the
embedding distance and cosine similarity, respectively, be-
tween Tsyqp and z4... Compared with the retrieval accu-
racy used in [6, 16, 31], which classifies 2,4, among fixed
candidates, this metric allows more fine-grained compari-
son. To evaluate shape, expression, and pose, we follow the
evaluation protocol of [31]; i.e., we use a 3D face model

'Available on https : / / github . com / ondyari /
FaceForensics; some are on the project page of each model.

of [26] to get the parameters of each class and compute the
L2 distances.

When applicable, we compute relative distances and
similarities (denoted by ’-R’) as well. For example,

dist(swap, Tsrc)
diSt(‘rswam xsrc) + diSt(xswaP’ «Ttgt) 7

dist-R :=

is computed for VGGFace2 embedding distance’. This is
to reflect how humans perceive the changes; to our eyes,
important is not only the identity of x4, being close to
Zrc but also its being far from x; ;.

5.3. Basic Face-Swapping Performance

We apply face-swapping on the FaceForensics++ dataset
and compare the results with other models in Fig. 4. The
figure shows that our Smooth-Swap model is more aggres-
sive in changing identity, especially in face shape. For ex-
ample, in the second and the fourth row, our swapped im-
ages show more round and grown chin shapes reflecting the
characteristics of the source identity (more extreme cases
can be found in Fig. 5); the images from the other models
are mostly confined to textural change. Also, we can ob-
serve other identity-related attributes, such as skin tones or
hair colors, are matched more to the source in our results,
making the overall figure visually more close to the source.
Fig. 5 and 6 show the swapping results on FFHQ and face
images in the wild (see appendix for more samples and dis-
cussion on the failure cases).

The same trend can be seen from the quantitative re-
sults summarized in Table 1. In the table, Smooth-Swap
shows good identity and shape scores (VGG, Arc, and Shp).
While it is not as good in the other scores, it at least shows
comparable numbers (not the worst at all times). Con-
sidering that a bypass model (not changing the identity at

2For pose and expressions, numerator is changed to (a:swap, :ctgt)
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Figure 4. Comparison of the face-swapping results of various models on the FaceForensics++ dataset [25]. The results from our models
show the most active identity and shape change, reflecting the characteristics of the source identities. Note there are minor frame differences

among the results as the images are extracted from videos.

all) would achieve the best score in expression and pose
scores, we emphasize that the overall competence is im-
portant here. Thus, we report an overall score in the last
column—average of the metrics after standardizing each—
where our model marks the best.

5.4. Ablation Study on the Identity Embedder

To see how our identity embedder makes a difference,
we train our generator using ArcFace [7] as well. As seen
from the lower part of Table 1, the models using ArcFace
perform worse in most of the metrics.

More importantly, we observe that our embedder enables
faster and stable training. In Fig. 7, the left graph shows that
the identity loss of our model converges faster compared
with the one using ArcFace. Note this is not due to the
scales or the choice of \;4, since Arc16, which has a similar
rate of identity-loss drop, shows a significantly worse curve
for the change loss.

The same trend can be seen in Fig. 8. When paired with
ArcFace embedder, the models show slow training, rarely

changing identity until 400k training steps. In contrast, the
models with our embedder begins to change the identity as
early as 100k steps, and the overall score at 400k steps (50%
training) is already better than HifiFace (Table 1).

5.5. Identity Embedding Performance

The advantage expected from our identity embedder is
the smoothness; in particular, smooth change of identities
along the interpolation curve as shown in Fig. 3. To quan-
titatively evaluate this, we devised a smoothness score and
compared with other baseline embedders.

ISlerp(za, zB;7) — z¢||
Iza — 28]

The score measures the (normalized) gap between the
average point of the two identity embedding vectors,
Slerp(za, zp; ), and the closest valid embedding to it, z¢
(here, r is an averaging ratio). If the embedding space is
smooth, this gap has to be small.

The notion of valid embedding is subject to the settings.
When measured using samples, x4 and zp are samples

dsmooth = Ea:A,mBNp(m)
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Figure 5. The results of Smooth-Swap on the FFHQ test split (un-
curated). An active change of identity (e.g., row-1, column-2) is
observed, but some artifacts can be also found when the source
identity has a complicated hair pattern (column-1).

Figure 6. Face swapping results of Smooth-Swap on wild images.
More samples are included in appendix.

from the FFHQ dataset Dycst, and 2z = femp (o) Where
xe = argmingep,,,,. |[Slerp — femp(x)||. When mea-
sured using GAN, 4 = ¢g(ya) and g = g(yp) are sam-
ples generated from a pretrained StyleGAN2 [13], where

zc = femb(g(Lerp(ya,ys;r))) (g is the generator, and
y’s are the latent codes).
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Figure 7. Ablation study of identity embedding model—Ours
(solid) versus ArcFace (dashed) [7]. The number next to the model
name indicates the identity-loss weight, A;4, used for training. It
can be seen that the model learns to change identity much faster
with our embedder while being stable in the change loss. See Sec.
5.4 for the discussion.

dsmooth Wismp  W/GAN Verification AUC
r=0.25 r=0.5 r=0.5 \ VCHQ VGG2 LFW
CE-Lin 0333 0354 0.797 \ 0.939 0.994  1.000
CE-Arc 0404 0430 0914 \ 0.925 0.997  0.998
ArcFace 0360  0.380 0.802 | - - 0.995
Ours 0.116  0.135 0.671 | 0.956 0.994  0.999

Table 2. Scores of the embedder models. Our model shows
far better smoothness scores, maintaining comparable verifica-
tion scores. CE-Lin and CE-Arc are reproduced versions of VG-
GFace2 [5] and ArcFace [7], trained from FFHQ-aligned VG-
GFace2 dataset. ArcFace is the original model provided in [7],
trained from a larger dataset with a different alignment.

As seen from Table 2, our model shows substantially bet-
ter smoothness while maintaining comparable verification
performance with ArcFace and VGGFace2. Note LFW [11]
is one of the standard benchmark dataset for verification;
VCHQ is a dataset we derived from VoxCeleb [18] (see ap-
pendix for the details).

The same trend is also qualitatively confirmed in Fig. 9.
The figure shows the retrieved x ¢ images for each of the in-
terpolating points (r € [0.1,--- ,0.9]). Our embedder tends
to change smoothly while moving along the interpolation
curve; others tend to stick with the same identities repeat-
edly. To quantify this, we compute the number of unique
images for each interpolation (the lower, the more repeti-
tion, and the worse). Summarizing the results from 64 sam-
ple pairs, the numbers were 5.13+1.18 (Ours), 4.42+1.41
(VGGFace?2), and 4.25+1.33 (ArcFace).
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Figure 8. The progression of model training with different identity embedding models and loss weighting (\;4); the generator architecture
is fixed to ours. The models with ArcFace embedder [7] shows slow training, making little identity change until being trained for 400k
steps. On the other hand, the models with our embedder show identity change at as early as 100k steps. See Sec. 5.4.
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Figure 9. Inspection of the smoothness of embedders via interpolation. For two randomly picked images from the FFHQ test split (the
leftmost and the rightmost), we compute the interpolations in the embedding space. For each of the nine interpolating points, we retrieve
the closest images (compared in the embedding space) from the train split. Our embedder tends to show continuously changing identities,
whereas others show repeating identities, implying non-smoothness of the space. The graph on the right shows our embedder distributes
the identities more uniformly. The distances are normalized by the average of 4k random pairs for each embedder. See Sec. 5.5.

6. Conclusion

We introduced Smooth-Swap, a new face-swapping
model generating high-quality swap images with active
change of face shape. While many existing models use
handcrafted components to tackle the difficulty, our model
stays with the simplest architecture and considers smooth
identity embedding instead. By taking this data-driven
approach with minimal inductive bias, we observed that
Smooth-Swap can achieve the best overall scores with fast
convergence.

We believe this study can open up opportunity for tack-
ling more challenging face-swapping problems by reduc-
ing the complexity considerably. With reduced effort for
balancing the components and reduced memory usage, one
could consider an expanded problem scope, such as mod-
eling face-swapping on videos in an end-to-end manner. A
downside of our current model in that regard is some per-
formance drop in preserving the pose and expression. How-

ever, we suppose a simple fine-tuning or different hyperpa-
rameter choice would be sufficient to meet the goal.

Potential Negative Societal Impact Face-swapping
models, known as Deepfake to the public, have been
maliciously used in making serious negative impacts (e.g.,
spread of fake news). Nonetheless, we believe studying
on these models is important and necessary because
deep understanding on them could set a good starting
point for developing high-quality Deepfake detection
algorithms [25]. We remark that they also have positive ap-
plications, including anonymization for privacy protection
and creating new characters without heavy CGI techniques.
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