
TransforMatcher: Match-to-Match Attention for Semantic Correspondence

Seungwook Kim Juhong Min Minsu Cho

Pohang University of Science and Technology (POSTECH), South Korea

http://cvlab.postech.ac.kr/research/TransforMatcher

Abstract

Establishing correspondences between images remains
a challenging task, especially under large appearance
changes due to different viewpoints or intra-class varia-
tions. In this work, we introduce a strong semantic image
matching learner, dubbed TransforMatcher, which builds on
the success of transformer networks in vision domains. Un-
like existing convolution- or attention-based schemes for
correspondence, TransforMatcher performs global match-
to-match attention for precise match localization and dy-
namic refinement. To handle a large number of matches in a
dense correlation map, we develop a light-weight attention
architecture to consider the global match-to-match interac-
tions. We also propose to utilize a multi-channel correla-
tion map for refinement, treating the multi-level scores as
features instead of a single score to fully exploit the richer
layer-wise semantics. In experiments, TransforMatcher sets
a new state of the art on SPair-71k while performing on par
with existing SOTA methods on the PF-PASCAL dataset.

1. Introduction

Establishing correspondences between images is a fun-
damental task in computer vision, and is used for a wide
range of problems including 3D reconstruction, visual lo-
calization and object recognition [11]. With the recent
advances of deep neural networks, many learning-based
keypoint extractors and feature descriptors were intro-
duced [7,10,41,51,53], showing significantly improved per-
formances over their traditional counterparts [1, 6, 32, 33].
More recently, dense feature matching methods - which use
all extracted features for matching - have shown impres-
sive performances despite higher computation complexi-
ties [29, 34, 45]. However, establishing reliable correspon-
dences between images under the presence of intra-class
variations i.e., different instances of the same category, re-
mains a critical challenge for semantic visual correspon-
dence [3,12–14,16–18,20,30,30,34,36,38,42,43,45,53].

The idea of applying high-dimensional convolutional

Input images

(3) Match-to-match attention

: an element to transform

: a match between two features

: a set of elements attended

(1) Patch-to-patch self-attention

(2) Patch-to-patch cross-attention

Figure 1. Patch-to-patch vs. Match-to-match attention. Patch-
to-patch attention considers each position in a 2D feature map as
an individual element, while match-to-match attention considers
every match in pair-wise correlations as an individual element.

layers on the 4D feature correlation map was first proposed
in NCNet [45], which proposes that unique matches will
support the nearby ambiguous matches. Among the vari-
ous methods proposed for establishing semantic correspon-
dences, NCNet and its follow-up methods have shown im-
pressive results [16,27,34,44,45]. These methods evidence
that considering the match-to-match consensus by utilizing
the full set of dense correspondences represented by the 4D
correlation map is effective in establishing robust and accu-
rate semantic correspondences. However, the convolution-
based methods suffer from inherent limitations of local and
static transformations; performing the same local transfor-
mation over all spatial positions of the input.

While convolutional neural networks have been the de-
facto standard for visual correspondence, transformer net-
works have recently shown promising results in the com-
puter vision domain. The success of transformer networks
can be largely attributed to their dynamic feature transform
unlike stationary convolutional layers, and the non-local in-
teractions between input elements which enable easy scal-
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Figure 2. Conceptual difference between recent methods and
ours. Convolution-based matching methods [16, 34, 35, 45] (left),
Cost Aggregation Transformers [3] (middle), and ours (right).

ability to attend to global contexts. For example,ViT [9]
attains excellent results compared to convolutional base-
lines on the task of image recognition with fewer train-
ing computational resources; Segmenter [47] outperforms
convolution-based methods by modeling global context al-
ready at the first layer and throughout the network. These
pioneering work show that transformer layers are attractive
alternatives to convolutional layers in vision models.

Inspired by the effectiveness of match-to-match con-
sensus consideration and transformer networks, we pro-
pose a novel semantic matching pipeline, dubbed Trans-
forMatcher. Specifically, we introduce match-to-match at-
tention, a self-attention based mechanism to consider the
global match-to-match interactions by leveraging the 4D
correlation maps computed from features of images to
match. Considering the global match-wise interactions
allows to capture long-range relevance across matches,
and incorporates geometric consistency between distant
matches in a dynamic manner especially under challeng-
ing appearance variations. This is achieved by considering
each spatial entry of the 4D correlation map (i.e. a match)
as an individual element for attention, which differs from
LoFTR [49] or CoTR [19] which consider the patch-to-
patch relations within or across 2D feature maps through
self- or cross-attention. Figure 1 visualizes the comparison
between patch-to-patch and match-to-match attention.

Our contributions can be summarized as follows:

• We propose the TransforMatcher, a novel image
matching pipeline built on transformer networks for
dynamic match-to-match interactions at a global scale,

• To the best of our knowledge, we are the first to
model the global interactions between the full set of
dense correspondences using a self-attention mecha-
nism within feasible computational constraints,

• We leverage multi-level correlation scores to be used
as features, improving over using a single score,

• We demonstrate state-of-the-art or on-par perfor-
mances on standard benchmarks of category-level
matching - SPair-71k and PF-PASCAL.

2. Related work

Category-level matching using convolutional networks.
Category-level matching, a.k.a semantic matching aims to
find corresponding elements between images of different
instances in the same category. Traditional approaches
to category-level matching use hand-crafted descriptors
to obtain matches between images [2, 50]. Recent ap-
proaches [18, 27, 38] build on the success of deep learn-
ing to extract learned features from convolutional neural
networks, usually pretrained on the ImageNet classification
task [23]. An emerging trend is to exploit high-dimensional
convolution on the correlation map obtained from features
of images to match, considering the local match-to-match
consensus to refine the correlation map [24, 26, 34, 45].

While these work have proven the efficacy of utilizing
correlation maps for local match-to-match consensus in dis-
covering reliable matches, we propose that exploiting the
global match-to-match interactions further enables to cap-
ture long-range relevance between matches, which is cru-
cial for image pairs with challenging appearance variations.
We therefore impose efficient match-to-match attention on
the 4D correlation map, exploiting a lightweight attention
scheme to easily scale to use the global context.

Image matching using transformer networks. Follow-
ing the success of transformer networks in computer vi-
sion [9,31,52,54,57], recent instance-level matching meth-
ods propose to use transformer networks. On a concep-
tual level, SuperGlue [46] employs an attention-like mech-
anism on a set of sparse keypoints and their descriptors.
LoFTR [49] extends this idea to dense 2D feature maps
of the images to match, leveraging self- and cross-attention
layers between the feature maps to generate strong features
for matching. COTR [19] concatenates the feature maps of
images to match along the spatial dimension, which is used
as input to the transformer networks together with the query
point to output the target point. Note that these methods are
actually performing patch-to-patch attention, not leveraging
the match-to-match interactions between feature maps.

The work of CATs [3] does employ the transformer net-
works to model global consensus on the 4D correlation map
for the task of semantic correspondence. However, they dif-
fer from our work in the following aspects: (1) We use ev-
ery match on the correlation map as the input element and
multi-level scores as features to perform match-to-match
attention to model fine-grained interaction, but CATs re-
shapes the 4D correlation map to 2D feature maps to per-
form patch-to-patch attention, modeling a comparatively
coarse-grained interaction between elements. This is illus-
trated in Figure 2. (2) CATs additionally concatenates a
transformed feature map to the reshaped correlation map,
increasing the memory overhead of each transformer layer,
making it infeasible to stack multiple layers.
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Figure 3. Overview of TransforMatcher. The feature maps extracted from an image pair are used to compute a multi-channel correlation
map to be processed by our match-to-match attention module for refinement. We construct a dense flow field from the resulting correlation
map, which can be used to transfer keypoints for training with keypoint pair annotation.

Efficient Transformers. Due to the quadratic complex-
ity of conventional transformers [55], they are infeasible
to model extremely long-range interactions. This moti-
vates the use of efficient transformers with lower computa-
tional complexity for feasible computation overhead when
handling long sequences. Reformer [22] reduces the com-
plexity down to log-linear using locality-sensitive hashing
and reversible residual layers. Linformer [56] approxi-
mates the self-attention mechanism using low-rank matri-
ces for linear complexity. Instead of relying on sparsity or
low-rankedness, Performer [4] proposes positive orthogo-
nal random features approach (FAVOR+) to achieve linear
complexity as well. Recently, Fastformer [58] proposes an
architecture which uses additive attention techniques only
with element-wise products. We build on the success of
additive attention to implement global match-to-match at-
tention for its scalable complexity and efficacy.

3. Preliminaries: Transformer

Transformers [55] are built on multi-head self-attention
(MHSA) which consists of multiple self-attention layers.
Each self-attention layer takes input elements X ∈ RT×Din

to form global self-attention matrices using linear projec-
tions of W(h)

Q ,W
(h)
K ∈ RDin×Dh and W

(h)
V ∈ RDin×Dv ,

capturing long-range dependencies between the elements:

SA(h)(X) = σ(τXW
(h)
Q (XW

(h)
K )>)XW

(h)
V (1)

= σ(τQ(h)K(h)>)V(h), (2)

where (h) is the head index, τ is a scaling parameter, and
σ(·) is row-wise softmax function. The MHSA layer with
Nh heads aggregates the self-attention outputs by affine

transformation with WO ∈ RNhDv×Dout and bO ∈ RDout :

MHSA(X) = concat
h∈[Nh]

[
SA(h)(X)

]
WO + bO. (3)

It can be seen that the computational complexity of the
transformer architecture is quadratic with respect to the se-
quence length T , being a fundamental bottleneck when han-
dling long sequences (T � Dh). This bottleneck also per-
tains to our case of processing 4D correlation map, i.e., a
full set of pair-wise correlations between two 2D feature
maps, as establishing match-to-match attention matrix in
self-attention layer demands quartic memory with respect
to the spatial size of the feature maps. In the next section,
we provide an overview of our method as well as an effi-
cient self-attention layer which implements global match-
to-match interactions without quartic complexity.

4. TransforMatcher

We first provide an overview of our TransforMatcher
pipeline. Given a pair of images to match, a feature ex-
tractor provides a set of intermediate feature map pairs
which are used to construct a multi-channel correlation
map. Due to multifarious match-wise interactions within
the 4D global correlation map, we employ additive atten-
tion with linear complexity to perform match-to-match at-
tention with feasible computation overhead. We refine the
multi-channel correlation map with several match-to-match
attention layers, considering the global context within the
correlation map in a dynamic manner. The refined correla-
tion map is used to construct a dense flow field, which can
be used for keypoint transfer to supervise our pipeline with
ground-truth keypoint pair annotations. Fig. 3 illustrates the
overview architecture of our method.
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Figure 4. Match-to-match attention module. The multi-channel correlation map is projected to query, key and value matrices, which are
multiplied with rotary positional embeddings. The match-to-match attention module exploits additive addition mechanisms to aggregate
query/key matrices to global vectors, which is used for element-wise product to induce global context awareness. The final output is
projected to a single-width channel to be reshaped to a refined 4D correlation map.

4.1. Multi-channel correlation computation

We use the ImageNet-pretrained ResNet-101 [15] archi-
tecture as the feature extractor. We use all bottleneck layers
of conv4 x and conv5 x to extract the features given an
input pair of images I, Î ∈ RH×W×3, and denote the set of
intermediate feature pairs as {(Fl, F̂l)}Ll=1.

A feature map pair extracted from the same bottleneck
layer, Fl, F̂l ∈ RHl×Wl×Dl , are used to construct a cor-
relation map Cl ∈ RHl×Wl×Hl×Wl which represents the
confidence score for all candidate correspondences between
the two feature maps. Given a set of feature map pairs from
different bottleneck layers {(Fl, F̂l)}Ll=1, we compute the
4D correlation tensors for each pair as follows:

Cl
x,x̂ = ReLU

( Flx,: · F̂
l

x̂,:

‖Flx,:‖‖F̂lx̂,:‖

)
, (4)

where x,x̂ ∈ R2 refer to 2-dimensional spatial positions
of the feature maps corresponding to the image pair (I, Î).
The L correlation tensors are then stacked together along
the channel dimension after bilinear interpolation to the size
of H ×W × H ×W , i.e., 1

16 the size of the input image
resolutions, resulting in the final multi-channel correlation
map C ∈ RL×H×W×H×W .

This is unlike correlation maps used in prior work [45],
which only have a single channel, i.e., one similarity score
value for each pair of positions between the source and tar-
get feature maps. By constructing a multi-channel correla-
tion map, we treat the multi-level scores for each candidate
match as features instead of a single score. This leverage
of different correlation tensors across the bottleneck layers
allows us to exploit the richer semantics in different lev-
els of feature maps, unlike previous methods which disre-

gard the layer-wise similarities and semantics. Furthermore,
having a non-single channel prior to the linear projection to
query, key and value matrices is architecturally natural for
a transformer-based architecture.

4.2. Match-to-match attention

Attention layer. We flatten the 4D correlation map to be-
have as the input sequence for the transformer module, i.e.,
R
L×H×W×H×W → R

L×HWHW , considering the match
at each spatial position as an element for attention. We then
linearly embed the channel dimension of our flattened cor-
relation map, i.e., X = C>Win, where C refers to the cor-
relation map, Win ∈ RL×Din is the linear transformation
matrix, and X ∈ RHWHW×Din is the input to the subse-
quent attention blocks. However, the quadratic complexity
of conventional self-attention in transformers poses an in-
feasible computation overhead in our setting, as a flattened
4D tensor results in a significantly long 1D tensor.

Inspired by Fastformer [58], we aim to alleviate this bot-
tleneck through the use of additive attention to effectively
model long-range match-to-match interactions; instead of
computing a quartic attention map (with respect to the spa-
tial size of feature maps) which encodes all possible inter-
actions between candidate matches QK> ∈ RT×T where
T = HWHW , we form a compact representation of query-
key interactions H ∈ RT×Dh via additive attention which
computes interactions between a global query representa-
tion and every key vector:

H
(h)
i,: = K

(h)
i,: �

T∑
j=1

Q
(h)
j,: σ(τwqQ(h)>)j , (5)

where wq ∈ RDh learns to transform the query vectors
into a global vector. A similar additive attention mecha-
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nism summarizes the context-aware key representations H
with a linear projection wk ∈ RDh to model its interaction
with value vectors as follows:

SA(h)
TM(X)i,: = V

(h)
i,: �

T∑
j=1

H
(h)
j,: σ(τwkH

(h)>)j , (6)

with the assumption of Dh = Dv . The output is trans-
formed by an MLP followed by residual connection with
Q. Our proposed match-to-match attention layer reduces
the time and memory complexity down to linear with re-
spect to the input length: O(T 2Dh) −→ O(TDh).

Finally, to ensure that our attention layer can attend to
parts of the flattened correlation map differently, we formu-
late our multi-head self-attention layer as follows:

MHSATM(X) = concat
h∈[Nh]

[
SA(h)

TM(X)
]
WO + bO. (7)

where a linear transformation layer transforms the con-
catenated outputs of the multiple self-attention layers. We
use the pre-LN approach, where the layer normalization is
placed inside the residual blocks of the attention layers.
4D rotary positional embedding. In transformer-based
networks, positional embedding models the dependency be-
tween elements at different positions in the sequence. While
relative positional embedding has shown to outperform ab-
solute positional embedding in modelling relation-aware in-
teractions, it is not applicable to linear-complexity trans-
formers as they do not explicitly compute the quadratic-
complexity attention matrix. To this end, we employ ro-
tary positional embedding (RoPE) [48] and extend it to be
applicable on our 4D correlation map input.

RoPE aims to make the interaction of query and key (in-
ner product for vanilla transformers) encode the position
information only in the relative form. Their proposed at-
tention matrix computation with RoPE in vanilla quadratic-
complexity transformers can be formulated as follows:

Q(h)
m,:K

(h)>
n,: = (Xm,:W

(h)
Q R(Θ,m))(Xn,:W

(h)
K R(Θ,n))

>

(8)

= Xm,:W
(h)
Q R(Θ,n−m)W

(h)>
K X>n,:, (9)

where R(Θ,∗) ∈ RDh×Dh is the rotary matrix which is for
rotating the key or query vectors by amount of angle in mul-
tiples of their position indices to incorporate relative posi-
tional embedding. We guide the readers to the supplemen-
tary for detailed explanations.

RoPE can be applied to linear-complexity transformers
as well [48]. In our work, we achieve this by by using Eq.
(5) to calculate global context-aware query-key interactions,
but with K = XWKR(Θ,∗) and Q = XWQR(Θ,∗).
Single-channel refined correlation computation. In a
nutshell, our match-to-match module takes as input a noisy

4D correlation map to refine it using match-to-match in-
teractions, outputting a refined correlation map for robust
image matching. This process is repeated N times, pro-
viding a tensor in RL×HWHW . The output from the final
match-to-match attention module is linearly projected to a
single channel dimension, and is reshaped back to 4D cor-
relation map i.e. RL×HWHW → R

H×W×H×W , for reli-
able keypoint transfer. For precise transfer, we perform a
4-dimensional upsampling function on the 4D correlation
map, and denote the tensor as Cout ∈ RH̄×W̄×H̄×W̄ where
H̄ = 2H and W̄ = 2W which corresponds to 1

8 the size of
the original image. We illustrate the outline of our match-
to-match attention module in Figure 4.

4.3. Flow field formation

The output correlation tensor Cout can be transformed
into a dense flow field by applying kernel soft-argmax [25].
We normalize the raw correlation outputs using softmax:

Cnorm =
exp(Gp

klC
out
ijkl)∑

(k′,l′)∈H̄×W̄ exp(Gp
k′l′C

out
ijk′l′)

, (10)

where Gp ∈ RH̄×W̄ is a 2-dimensional Gaussian kernel
centered on p = arg maxk,lC

out
i,j,k,l, which is applied to

smooth the potentially irregular correlation values. The nor-
malized correlation tensor Cnorm encodes a set of probabil-
ity simplexes, which we use to transfer all the coordinates
on the dense regular grid P ∈ RH̄×W̄×2 of source image
I to obtain their corresponding coordinates P̂′ ∈ RH̄×W̄×2

on target image Î: R̂′i,j =
∑

(k,l)∈H̄×W̄ Cnorm
i,j,k,lPk,l. We

then can construct a dense flow field at sub-pixel level us-
ing the set of estimated matches (P, P̂′).

4.4. Training objective

We assume that we are given a set of ground-truth coor-
dinate pairsM = {(km, k̂m)}Mm=1 for each training image
pair, whereM is the number of annotated keypoint matches.
We carry out keypoint transfer from the source to the tar-
get keypoints using the constructed dense flow field. For
a given keypoint k = (xk, yk), we define a soft sampler
W(k) ∈ RH̄×W̄ :

W
(k)
ij =

max(0, τ −
√

(xk − j)2 + (yk − i)2)∑
i′j′ max(0, τ −

√
(xk − j′)2 + (yk − i′)2)

,

(11)

where τ is a distance threshold, and
∑
ijW

(k)
ij = 1.

It can be seen that the soft sampler effectively samples
each transferred keypoint P̂′ij by assigning weights in-
versely proportional to the distance to k. Using this soft
sampler, we assign a match to the keypoint k as k̂′ =∑

(i,j)∈H̄×W̄ P̂′ij:W
(k)
ij , being able to achieve up to sub-

pixel-wise accurate keypoint matches. By applying this
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Method
SPair-71k PF-PASCAL PF-WILLOW

time
(ms)

memory
(GB)

FLOPs
(G)@αbbox @αimg @αbbox-kp @αbbox

0.1 (F) 0.1 (T) 0.05 (F) 0.1 (F) 0.1 (T) 0.1 (T)

NC-Net [45] 20.1 26.4 54.3 78.9 67.0 - 222 1.2 44.9
DCC-Net [16] - 26.7 55.6 82.3 73.8 - 567 2.7 47.1
DHPF [38] 27.7 28.5 56.1 82.1 74.1 80.2 58 1.6 2.0
PMD [28] 26.5 - - 81.2 74.7 - - - -

UCN [5] - 17.7 - 75.1 - - - - -
HPF [36] 28.2 - 60.1 84.8 74.4 - 63 - -
SCOT [30] 35.6 - 63.1 85.4 76.0 - 151 4.6 6.2
SCNet [14] - - 36.2 72.2 - 70.4 >1000 - -
DHPF [38] 37.3 27.4 75.7 90.7 71.0 77.6 58 1.6 2.0
DHPF† [38] 39.4 - - - - - 58 1.6 2.0
NC-Net* [45] - - - 81.9 - - 222 1.2 44.9
DCC-Net* [16] - - - 83.7 - - 567 2.7 47.1
ANC-Net [27] - 28.7 - 86.1 - - 216 0.9 44.9
PMD [28] 37.4 - - 90.7 75.6 - - - -
CHMNet [34] 46.3 30.1 80.1 91.6 69.6 79.4 54 1.6 19.6
PMNC [26] 50.4 - 82.4 90.6 - - - - -
MMNet [59] 40.9 - 77.6 89.1 - - 86 - -
CATs [3] 43.5 - - - - - 45 1.6 28.4
CATs† [3] 49.9 27.1 75.4 92.6 69.0 79.2 45 1.6 28.4

TransforMatcher (ours) 50.2 30.5 78.9 90.5 66.7 75.1 54 1.6 33.5
TransforMatcher† (ours) 53.7 30.1 80.8 91.8 65.3 76.0 54 1.6 33.5

Table 1. Performance on standard benchmarks of semantic matching. Higher PCK is better. All the results reported in the table
uses pretrained ResNet-101 model as the feature extractor. Methods in the first group were trained with weak supervision (image pair
annotations), while those in the second group were trained with strong supervision (sparse keypoint match annotations). Models with *
are retrained using keypoint annotations from ANC-Net [27]. † indicates the use of data augmentation during training. Numbers in bold
indicate the best performance, followed by the underlined numbers. Some results are from [34].

keypoint transfer method on the source keypoints, we obtain
the predicted keypoint pairs on image Î : {(km, k̂

′
m)}Mm=1

by assigning a match k̂′m to each keypoint km in the source
image. We formulate our training objective to minimize
the average Euclidean distance between the predicted target
keypoints and the ground-truth target keypoints as follows:

L =
1

M

M∑
m=1

‖k̂m − k̂′m‖22. (12)

5. Experiments
We evaluate our method on the semantic correspondence

task, which aims to match semantically similar parts be-
tween images of the same category but different instances.
Datasets. We report our results on standard benchmark
datasets of semantic correspondence: SPair-71k [37], PF-
PASCAL [13], and PF-WILLOW [12]. The SPair-71k
dataset has diverse variations in viewpoint and scale, with
53,340 / 5,384 / 12,234 image pairs for training, valida-
tion, and testing, respectively. The PF-PASCAL and PF-
WILLOW datasets are taken from four categories of the

PASCAL VOC dataset, having small viewpoint and scale
variations. The PF-PASCAL dataset contains 2,940 / 308
/ 299 image pairs for training, validation and testing, re-
spectively. The PF-WILLOW dataset contains 900 image
pairs for testing only. The SPair-71k dataset is significantly
larger than the other two datasets, and has more accurate
and richer annotations regarding different levels of diffi-
culty in occlusion, truncation, viewpoint and illumination.
Being the most challenging dataset, the results on SPair-71k
are less saturated in comparison.

Implementation details. Following recent methods [3,34],
we employ the ResNet-101 model pre-trained on the Ima-
geNet classification task [23] as the feature extraction net-
work. Note that the conv4 x and conv5 x layers in
ResNet-101 have 23 and 3 bottleneck layers respectively,
from which we extract feature maps to compute 26 layer-
wise correlations maps for each image pair. We set the
spatial size of the input image to 240 × 240, resulting in
H = W = 15 for feature maps used for correlation com-
putation, and H̄ = W̄ = 30. Each of our match-to-match
attention layers have 8 heads for multi-head self attention
(Nh = 8), with head dimension of 4 (Dh = Dv = 4).
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Augmentation Positional
Embedding

SPair-71k PF-PASCAL
@αbbox @αimg

0.05 0.1 0.05 0.1

Absolute [39] 29.9 48.7 74.5 89.4
X Absolute [39] 26.6 48.9 79.4 91.8

Rotary [48] 30.5 50.2 78.9 90.4

X Rotary [48] 32.4 53.7 80.8 91.8

Table 2. Ablation on augmentation and positional embedding.
The results show that using data augmentation and rotary positional
embedding gives the best results.

Architecture
SPair-71k

time
(ms)

memory
(GB)

FLOPs
(G)@αbbox

0.05 0.1

Transformer [55] - - Out-Of-Memory
Linformer [56] 0.34 1.3 36 1.7 33.4
Performer [4] 28.2 48.8 88 1.6 35.9

Additive Attn. 26.6 48.9 54 1.6 33.5

Table 3. Results of different transformer architectures. Vanilla
transformer could not be evaluated within memory capabilities. Ad-
ditive attention yields the most favorable results.

The overall pipeline of our method is implemented using
PyTorch [40], and is optimized using the Adam [21] opti-
mizer with a constant learning rate of 1e-3. We finetune the
feature extractor network at a lower learning rate of 1e-5.

Evaluation metric. We use the percentage of correct
keypoints (PCK) for evaluation, which is the standard
evaluation metric for category-level matching. Given a
pair of ground-truth and predicted target keypoints K =
{(k̂m, k̂′m)}Mm=1, PCK is measured by:

PCK(K) =
1

M

M∑
m=1

1[‖k̂m − k̂′m‖ ≤ ατ ·max(wτ , hτ )],

(13)

where wτ and hτ are the width and height of either
the entire image or the object bounding box, i.e., τ ∈
{img, bbox-kp, bbox}, and ατ is a tolerance factor.

5.1. Results and analysis.

TargetSource Result

Figure 5. Sample results on SPair-71k. Source images are TPS-
transformed [8] to target images using predicted correspondences.

For the SPair-71k dataset, we evaluate two versions for
our model: a finetuned model (F) trained on SPair-71k, and
a transferred model (T) trained on PF-PASCAL. On the PF-
PASCAL and PF-WILLOW datasets, we follow the com-
mon evaluation protocol to train our network on the training
split of PF-PASCAL and evaluate on the test splits of PF-
PASCAL and PF-WILLOW. The quantitative results are il-
lustrated in Table 1. Previous methods have been using two
different schemes, e.g., τ ∈ {bbox-kp, bbox}, when com-
puting the threshold for PF-WILLOW [35], so we report our
results using both thresholds.

We show that TransforMatcher finetuned on SPair-71k
sets a new state of the art. A notable observation is that
TransforMatcher finetuned on SPair-71k without data aug-
mentation outperforms CATs [3] trained with augmentation,
proving the efficacy of our 4D match-to-match attention
and multi-level correlation score features. Using data aug-
mentations leads to improved PCK on both SPair-71k and
PF-PASCAL datasets, but transformer-based models bene-
fit more from augmentations as seen from the lower PCK
increase in DHPF [3]. It is interesting that TransforMatcher
trained without data augmentations transfer slightly better
to SPair-71k and PF-WILLOW datasets than our model
trained with data augmentations, albeit its lower PCK per-
formance on PF-PASCAL. This potentially hints that while
data augmentations do help TransforMatcher to learn bet-
ter, it overfits more to the training data domain. Trans-
forMatcher also exhibits state-of-the-art performance when
transferred to the SPair-71k dataset, while being compa-
rable on the PF-PASCAL dataset. However, Transfor-
Matcher shows substandard results when transferred to the
PF-WILLOW dataset, unlike the SPair-71k dataset. This
evidences that the match-to-match interactions learned from
the PF-PASCAL dataset is better transferable to the SPair-
71k dataset, but is not as effective on the PF-WILLOW
dataset. Figure 5 visualizes example qualitative results on
SPair-71K using our model.

5.2. Ablation study and analysis

Effect of data augmentation during training. CATs
[3] found that using data augmentation for category-level
matching model is beneficial, especially for data-hungry
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transformer-based architectures. We study the effect of ap-
plying data augmentation to our model as well, following
the schemes used in CATs. The results in Table 2 show that
using data augmentation indeed gives consistent improve-
ments to the performance of our model.

Analysis on positional embedding. We investigate the ef-
fect of positional embedding used in our pipeline. As con-
ventional relative positional embedding requires an explicit
computation of the attention matrix, is not applicable to our
transformer architecture with the linear-complexity additive
attention. On the other hand, rotary positional embeddings
can be seamlessly applied to our model as an alternative
method to model relative positional embedding. The re-
sults in Table 2 show that using rotary positional embedding
results in significant gains over absolute positional embed-
ding, especially on the more challenging SPair-71k dataset.

Analysis on efficient transformer architecture. We try
replacing our match-to-match attention architecture with
other efficient transformer designs [4, 56], and also the
vanilla transformer [55] design to compare the perfor-
mances. We use absolute learnable positional embedding
in this experiment. The results in Table 3 show that the
additive attention architecture shows the most favorable re-
sults, with similarly high performance as Performer but
with lower latency. We found that the Linformer architec-
ture [56] failed to train, which we conjecture is due to the
low head dimension of our network, and the reliance of Lin-
former on kernel approximations which could lead to inac-
curate interactions between the position-sensitive matches.
Training with vanilla Transformers was infeasible due to its
large memory demands of the pair-wise attention matrices.
Analysis on nonlocality of match-to-match attention.
For an in-depth analysis, we investigate how nonlocally our
match-to-match attention layers operate in comparison to
convolutional counterparts [34, 45]. We define the measure
of nonlocality of an MHSA at layer l as the average of in-
teractions between attention scores and relative offsets:

Φl =
1

Z

∑
h∈[Nh]

∑
(q,k)∈X×X

A
(h)
q,k‖q− k‖2, (14)

where Z is normalization constant and X is a set of spatial
positions in C. Figure 6 plots distributions of nonlocality
values for high-dim convolutional layers and MHSA layers
in TransforMatcher; convolutional layers layers statically
transforms with fixed, local receptive fields (ΦKconv < 8)
regardless of input contents. In contrast, Transformatcher
layers can dynamically transform input contents by adap-
tively deciding regions of attention for effective transforma-
tion with global receptive fields (ΦlTM ≈ 12.5). To verify
the benefits of dynamic global match-to-match attention, we
measure sample-wise nonlocality (Φ =

∑L
l=1 Φl) for each

test image pair in the SPair-71k, assort them into 20 groups
with increasing nonlocality, and visualize the proportion of
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Figure 6. Nonlocality distributions of high-dim. conv kernels
(left) and TransforMatcher’s attention layers (right).
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Figure 7. Proportion of image pair difficulty w.r.t. nonlocality.

the difficulty levels for each group in Fig. 7. For all dif-
ficulty types, the proportion of hard/medium samples in-
crease with increasing nonlocality. This trend is especially
visible in types of truncation/occlusion; our model attends
larger contexts to better perceive truncated/occluded parts.
We guide the readers to the supplementary material for the
implementation details of this analysis, together with addi-
tional analyses and qualitative results of TransforMatcher.

6. Conclusion
In this paper, we have proposed the TransforMatcher, an

effective semantic matching learner. Our principal contri-
bution is the match-to-match attention mechanism, which
is, to the best of our knowledge, the first attempt to di-
rectly process a 4D input, i.e., correlation map, with ev-
ery spatial entry (match) as an element for attention using
a transformer-based network with global receptive fields.
This has been a challenging pursuit due to the quadratic
complexity of vanilla transformers in modeling global-
range interactions, which was addressed by additive atten-
tion with linear complexity. We further propose to treat
multi-level correlation scores as features to better exploit
the richer semantics in different levels of feature maps. The
proposed model outperforms state of the arts on the SPair-
71k dataset, while performing on par with the SOTA meth-
ods on the PF-PASCAL dataset. While the memory usage
of TransforMatcher increases quadratically with respect to
the number of pixels as in other dense matching methods,
we anticipate this work will motivate the use of transform-
ers with high-dimensional inputs in other domains.
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