
Unsupervised Representation Learning for Binary Networks
by Joint Classifier Learning

Dahyun Kim1,2 Jonghyun Choi2,3,†

1Upstage AI Research 2NAVER AI Lab. 3Yonsei University
kdahyun@upstage.ai jc@yonsei.ac.kr

Abstract

Self-supervised learning is a promising unsupervised
learning framework that has achieved success with large
floating point networks. But such networks are not read-
ily deployable to edge devices. To accelerate deployment
of models with the benefit of unsupervised representation
learning to such resource limited devices for various down-
stream tasks, we propose a self-supervised learning method
for binary networks that uses a moving target network. In
particular, we propose to jointly train a randomly initialized
classifier, attached to a pretrained floating point feature ex-
tractor, with a binary network. Additionally, we propose a
feature similarity loss, a dynamic loss balancing and mod-
ified multi-stage training to further improve the accuracy,
and call our method BURN. Our empirical validations over
five downstream tasks using seven datasets show that BURN
outperforms self-supervised baselines for binary networks
and sometimes outperforms supervised pretraining. Code
is availabe at https://github.com/naver-ai/burn.

1. Introduction
Self-supervised learning (SSL) has achieved great suc-

cess with floating point (FP) networks in recent years [4,
5, 7, 9, 13, 14, 16, 18, 20, 28, 41, 42, 44, 50]. Models learned
by SSL methods perform on par with or even outperform
the ones learned by supervised pretraining by the help of
large scale unlabeled data in a number of downstream tasks
such as image classification [1, 5], semi-supervised fine-
tuning [5, 7, 18] and object detection [20]. While recent
works [5, 7, 18, 20] from resourceful research groups have
shown that the gains from SSL scale up with model size
and/or dataset size used for pretraining, there is little work
where the resulting pretrained models are small in size, i.e.,
quantized. SSL for such small models is important since it
could expedite the AI deployment for a wide range of appli-
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Figure 1. Comparison of various representation learning meth-
ods on multiple downstream tasks (pretrained with ImageNet).
‘Obj. Det.’ refers to object detection, ‘Lin. Eval’ refers to linear
evaluation, ’SS 1/10% refers to semi-supervised fine-tuning with
1 or 10% data respectively,‘FS K=1’ refers to few-shot learning
with 1 shot, and ‘Transfer (CUB)’ means transfer learning to the
CUB dataset. ‘Tuned MoCov2’ and ‘S2-BNN’ are SSL methods
from [39]. Proposed BURN outperforms all comparable methods
in various tasks, and even the Supervised Pre. in certain tasks.

cations onto models with high efficiency in computational
and memory costs, and energy consumption [12]. At the
extreme of resource constrained scenarios, binary networks
exhibit superior efficiency and the accuracy is being sig-
nificantly improved [2, 3, 23, 31–34, 38]. Thus, developing
an SSL method for binary networks could further acceler-
ate the deployment of models to edge devices for various
downstream tasks, yet is seldom explored.

Providing additional supervisory signals with a pre-
trained FP network by using the KL divergence loss be-
tween the softmax outputs from the classifiers of the FP tar-
get network and binary network, which we denote as ‘super-
vised KL div.’, has become a popular and effective method
for training binary networks [2, 3, 32, 34]. Recently, [39]
propose an unsupervised representation learning method for
binary networks based on the supervised KL div. method.
To extract meaningful softmax probabilities from the FP
network, they pretrain the classifier as well as the feature
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extractor using SSL. Then, the FP network is completely
frozen when used as the target network, which could lead to
stale targets [18] or be dependent on the pretraining dataset
used for the fixed FP network being similar to the dataset
used for training the binary network.

Thus, to avoid the potential pitfalls of a fixed target, we
are motivated to develop an SSL method for binary net-
works that uses a moving FP network as the target, similar
to other SSL methods [8, 9, 18, 20], and call our method
Binary Unsupervised RepresentatioN learning or BURN.
Specifically, we first construct the FP target network by
combining a fixed FP feature extractor pretrained in an SSL
manner and a randomly initialized FP classifier. We then
use the outputs of the randomly initialized FP classifier
as targets for the binary network and jointly optimize both
the FP classifier and the binary network, using the KL di-
vergence loss, to keep updating the FP network overtime.
But the gradients provided by the randomly initialized FP
classifier could have unexpectedly large magnitudes, espe-
cially during early training phase. To alleviate this problem,
we additionally propose to enforce feature similarity across
both precision, providing stable gradients that bypass the
randomly initialized classifier. As relative importance of
the feature similarity loss decreases as the FP classifier gets
jointly trained to provide less random targets, we further
propose to dynamically balance the KL divergence term and
the feature similarity term in the loss function. Finally, we
modify the multi-stage training scheme [34] for BURN to
further improve performance.

We conduct extensive empirical validations with a wide
variety of downstream tasks such as object detection on Pas-
cal VOC, linear evaluation on ImageNet, semi-supervised
fine-tuning on ImageNet with 1% and 10% labeled data,
SVM classification and few-shot SVM classification on
Pascal VOC07, and transfer learning to various datasets
such as CIFAR10, CIFAR100, CUB-200-2011, Birdsnap,
and Places205. In the validations, the binary networks
trained by our method outperforms other SSL methods by
large margins (see Fig. 1 and Sec. 4.1).

We summarize our contributions as follows:

• We propose a novel SSL method for binary networks that
uses a jointly trained FP classifier to obtain targets that
can adapt overtime to the current training scenario.

• We propose to use a feature similarity loss and dynamic
balancing with modified multi-stage training to signifi-
cantly improve the accuracy.

• Our BURN outperforms prior arts by large margins on a
wide variety of downstream tasks.

• We analyze our proposed BURN by in-depth investiga-
tions.

2. Related Work

2.1. Self-Supervised Representation Learning

To reduce the annotation cost for representation learning,
self-supervised representation learning (SSL) methods in-
cluding [6,7,9,16,20,42–44,50] and many more have been
shown to be effective, with the Info-NCE loss [36] being a
popular choice for many works. These methods use the in-
stance discrimination task as the pretext task which aims to
pull instances of the same image closer and push instances
of different images farther apart [36, 48]. Different to these
methods, [1, 5, 15, 18, 29, 47] use feature regression with
an EMA target [18], matching cluster assignments [5, 29],
or matching similarity score distributions [1, 15, 47] as the
pretext task. We compare with BYOL [18] and SWAV [5]
as they show high performance and have similarities with
other SSL methods [7, 9, 44]. However, while these meth-
ods show promising results for large FP models, they do
not consider resource constrained scenarios which are more
practical, e.g., quantized models with smaller complexity.

2.2. Binary Networks

At the extreme of quantized models, numerous works on
binary networks [2,3,19,23,24,30–35,37,38] have been pro-
posed. These include searching architectures for binary net-
works [2,22,23], using specialized activation functions [32],
and object detection using the information bottleneck prin-
ciple [46]. Note that previous works mostly focused on the
supervised training set-up.

Among many proposals, two stand out as the state-of-
the-art binary network backbones due to their strong empir-
ical performance: ReActNet [32] and High-Capacity Ex-
pert Binary Networks (HCEBN) [3]. [32] propose to learn
thresholds for binarization by the RSign and RPReLU ac-
tivation functions. [3] use multiple experts for conditional
computing and increase the representation capacity of bi-
nary networks without increasing the operation count.

Recently, both ‘supervised KL div.’ method and the
multi-stage training scheme [32, 34] have become popu-
lar for training binary networks. The supervised KL div.
method uses a pretrained FP network to provide targets for
the KL div. loss in training binary networks. The multi-
stage training scheme trains a binary network in multiple
stages, where more parts of the network are binarized. The
most related work is the recently published S2-BNN [39]
which utilize the supervised KL div. method to train binary
networks in an SSL manner. They use unlabeled data when
training the binary network with only the KL divergence
loss between the binary and the pretrained and frozen FP
networks. S2-BNN shows good performance but the frozen
FP network as a target may be limiting i.e., many works in
the SSL literature suggest that a changing target is effec-
tive [8, 9, 18, 20]. We extensively compare with S2-BNN.
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Figure 2. Illustrative comparison of Supervised KL div. method [32,34], S2-BNN [39] and proposed BURN, and linear evaluation accuracy
of ablated models on ImageNet. f is the FP network, hζ is the FP feature extractor, gθ is the trainable classifier, and kϕ, lϕ are the binary
feature extractor and classifier decoupled from the binary network bϕ. f and hζ are initialized with pretrained weights as indicated by the
dotted arrow. The ‘locked’ icons in f and hζ indicate they are not trained while the ‘unlocked’ icon in gθ indicates that it is trained. Our
baseline ( 1⃝) already achieves a relatively high top-1 accuracy of 57.33% on ImageNet and our proposed components provide noticeable
gains. For details, please see Sec. 3.1 for 1⃝, Sec. 3.2 for 2⃝, Sec. 3.3 for 3⃝, and Sec. 3.4 for 4⃝.

In contrast, we aim to develop an unsupervised represen-
tation learning method for binary networks which uses a FP
network that is changing as the target.

3. Approach
The supervised KL div. method is an effective method

to train binary networks [32, 34] that utilizes a FP network
pretrained with labeled data. But, as we are interested in
the self-supervised learning with no access to labeled data
at any time during training, the supervised KL div. is not ap-
plicable. Recently, S2-BNN [39] propose to use the super-
vised KL div. for unsupervised learning of binary networks.
They pretrain the classifier and the feature extractor of the
FP network to obtain meaningful softmax probabilities and
use a completely fixed FP network as the target. In con-
trast, we propose an unsupervised representation learning
method for binary networks that uses a changing FP net-
work as the target such that the FP network can adapt to
the current dataset and binary network to provide more use-
ful targets overtime. We illustrate the supervised KL div.
method [32, 34], S2-BNN [39], and our proposal in Fig. 2.

Specifically, instead of using softmax outputs from a
fixed pretrained FP network [39], we propose to use soft-
max outputs from a randomly initialized classifier attached
to a pretrained FP feature extractor, and jointly train the
classifier with the binary network using the KL divergence
loss. As the supervision from the untrained classifier makes
gradients with unexpectedly high magnitudes, we subdue
gradients by proposing an additional feature similarity loss
across precision. We propose to use a dynamic balancing
scheme between the loss terms to better balance the KL di-
vergence and feature similarity losses and employ a modi-
fied multi-stage training [34] to improve learning efficacy.

3.1. Joint Classifier Training as Moving Targets

Grill et al. [18] show that even when a randomly initial-
ized exponential moving average (EMA) network is used as

the target network, the online network improves by train-
ing with it. One possible reason for the improvement is
that the randomly initialized target network is also updated
in an EMA manner during training, improving it gradually.
Motivated by this, we conjecture whether a randomly ini-
tialized classifier combined with a pretrained FP feature ex-
tractor can be used as a moving target network for training
binary networks. To gradually improve the target network,
we jointly train the classifier of the target network and the
binary network. Note that training just the classifier can
improve the target network as is shown in the SSL litera-
ture [6, 7, 9, 16, 20, 42–44, 50]. We discuss other moving
targets, e.g., the EMA target [18] or the momentum en-
coder [20] for binary networks in Sec. 4.2.

The joint training of the randomly initialized classifier
is depicted in 1⃝ in Fig. 2-(b). Specifically, instead of a
fixed FP network f(·), the randomly initialized and train-
able classifier gθ(·) and the pretrained and fixed FP feature
extractor hζ(·) are combined to create the target network.
Then, we use the outputs of gθ(·) as targets for training the
binary network bϕ(·). Our objective is to minimize the KL
divergence between the outputs of gθ(·) and bϕ(·) as:

min
θ,ϕ

Ex∼D[LKL(gθ(hζ(x)), bϕ(x))], (1)

where x is a sample from the dataset D and LKL =
DKL(·, ·) is the KL divergence between the outputs of gθ(·)
and bϕ(·). However, the softmax outputs from the classifier
would be close to random early on. Thus, using the random
outputs as the only target for the binary network, especially
in early training, could result in noisy gradients.

3.2. Stabilize Gradients by Feature Similarity
Across Precision

To alleviate the issue of unreliable gradients from the
randomly initialized classifier being the only target, partic-
ularly in the early the training, we propose an additional
loss term that enforces feature similarity between the target
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Figure 3. Gradient magnitude for the binary classifier (a) and the
binary feature extractor (b) during early training with and without
LFS for pretraining on ImageNet. With only KL, the gradients of
the classifier is extremely large and this carries over to the feature
extractor. Additionally, we observe intermediate spikes for both
the classifier and the feature extractor. The addition of LFS sig-
nificantly lowers the gradient magnitudes of the classifier as well
as the feature extractor at early iterations. Additionally, the surges
in gradient magnitudes are also subdued.

and the binary network. Specifically, gθ(·) is largely up-
dated (due to the fixed feature extractor) in the early phase
of the joint training. As the binary classifier uses the quickly
changing gθ(·) as a target to transfer knowledge from, the
binary classifier might receive large gradients. To address
the potentially undesirably large gradients caused by using
the randomly initialized classifier as the only target, we pro-
pose to augment an additional loss term that bypasses the
classifier. We call it the feature similarity loss.

Specifically, we use the cosine distance between the fea-
ture vectors from the FP and binary feature extractors as the
feature similarity loss; LFS(v1, v2) = 1 − ⟨v1,v2⟩

∥v1∥2·∥v2∥2
for

smoothness and a bounded nature to prevent large gradients.
The cosine distance (or 1−the cosine similarity) is widely
used in representation learning [6,18,20,49] (discussion on
other choices for LFS is in Sec. 4.2).

Augmenting the cosine distance to the KL divergence
loss, we can write our new optimization problem as:

min
θ,ϕ

Ex∼D[(1− λ)LKL(gθ(hζ(x)), lϕ(kϕ(x)))

+λLFS(hζ(x), kϕ(x))],
(2)

where the binary network bϕ(·) is decoupled into kϕ(·) the
binary feature extractor and the classifier lϕ(·), λ is a static
balancing factor, and LFS(·, ·) is the feature similarity loss.

The new loss provides additional supervisory signals
from the feature extractor of the FP network. Since the
feature extractor of the FP network is pretrained and fixed,
it provides stationary and stable targets as opposed to the
randomly initialized classifier. Empirically, we observe the
gradient of the binary classifier and feature extractor with
and without LFS in Fig 3. Note that with only KL, the gra-
dients of the binary classifier are extremely large; it starts
at roughly 20, 000 then drops to roughly 3, 000 for some it-
erations and finally drops to a small value around roughly

9, 000 iterations. In addition, there is a surge in gradient
magnitude around 7, 500 iterations. The binary feature ex-
tractor also shows a similar trend where the gradients ex-
hibit a sudden spike at around 7, 500 iterations. Both very
high magnitudes of the gradients at the start and the sudden
spikes, occurring after some iterations, would harm training
stability [10,51]. However, as shown in the figures, addition
of the proposed LFS(·, ·) significantly reduces the gradient
magnitudes of the binary classifier and the feature extractor
at early iterations as well as the surges throughout the train-
ing, which leads to better training efficacy and accuracy.

3.3. Dynamic Balancing of λ

As gθ is gradually updated, it provides more meaning-
ful targets and LFS becomes less important. Thus, we pro-
pose a temporally dynamic balancing strategy to replace the
static balancing factor λ in Eq. 2 by a smooth cosine anneal-
ing similar to how [18] annealed the momentum value as:

λ(t) = λTmax
−(λTmax

−λ0)·(cos(πt/Tmax)+1)/2, (3)

where λ0 and λTmax
are the initial and final values of λ(t),

Tmax is the maximum training iteration and t is the current
training iteration. Thus, λ(t) will start at λ0 then gradually
decay to λTmax , emphasizing the cosine distance more at
the beginning and less as the learning progresses. Discus-
sion on other choices of λ(t) are in Sec. 4.2.

Finally, our optimization problem can be rewritten as:

min
θ,ϕ

Ex∼D[(1− λ(t))LKL(gθ(hζ(x)), lϕ(kϕ(x)))

+λ(t)LFS(hζ(x), kϕ(x))].
(4)

3.4. Modified Multi-Stage Training for BURN

The multi-stage training [2,32,34] is known to be effec-
tive in training binary networks. It trains the network with
only binarized activations in the first stage. Then, it uses the
trained weights of the partially binarized network as initial
values for training the fully binarized network, i.e., bina-
rized weights and activations, in the second stage. Unfor-
tunately, we cannot use this strategy as the binary networks
converge quickly thanks to the good initial values learned
in the first stage [34] whereas the randomly initialized FP
classifier gθ does not converge as quickly as the binary net-
work. This discrepancy in the convergence speeds of the
binary network and the FP classifier harms training efficacy.

To apply the multi-stage training to BURN, we modify it
to give good initial points to the FP classifier as well as the
binary network. Specifically, we initialize gθ in the second
stage with the weights of gθ obtained in the first stage, sim-
ilar to the binary network. As a result, gθ starts from a good
initial point and converges quickly to provide useful targets.

We describe the full algorithm of BURN in Alg. 1

9750



Algorithm 1 Binary Unsupervised RepresentatioN learning
(BURN)

1: function BURN(D, t, ζ, hζ , gθ, kϕ, lϕ)
2: θ, ϕ← Pretrain(D, t, ζ, hζ , gθ, kϕ, lϕ, STAGE1)
3: W ← {ζ}

⋃
{θ, ϕ}

4: θ, ϕ← Pretrain(D, t, W , hζ , gθ, kϕ, lϕ, STAGE2)
5: return kϕ
6: end function
7: function PRETRAIN(D, t, W , hζ , gθ, kϕ, lϕ, F)
8: if F is STAGE1 then
9: kϕ, lϕ ← Binarize Activations

10: hζ ←W ▷ Load pretrained weights
11: else
12: kϕ, lϕ ← Binarize Activations and Weights
13: hζ , gθ, kϕ, lϕ ←W ▷ Load pretrained weights
14: end if
15: x = RandomSelect(D) ▷ Sample x ∼ D
16: v1, v2 = hζ(x), kϕ(x) ▷ Feature vectors v1, v2
17: p1, p2 = gθ(v1), lϕ(v2) ▷ Softmax Probabilities p1, p2
18: Lζ,θ,ϕ = AugmentedLoss(v1, v2, p1, p2, t)
19: θ ← Optimizer(∇θLζ,θ,ϕ, η) ▷ Update θ

20: ϕ← Optimizer(∇ϕLζ,θ,ϕ, η) ▷ Update ϕ

21: return θ, ϕ
22: end function
23: function AUGMENTEDLOSS(v1, v2, p1, p2, t)
24: LKL = DKL(p2∥∥p1) ▷ KL Divergence

25: LFS = 1− ⟨v1,v2⟩
∥v1∥2·∥v2∥2

▷ Cosine Distance

26: λ(t) = λT − (λT −λ0) · (cos(πt/T )+1)/2 ▷ Eq. 3
27: L = (1− λ(t)) · LKL + λ(t) · Laug ▷ Eq. 4
28: return L
29: end function

4. Experiments

Experimental Details. Following [11, 21, 27, 45, 49, 52],
we use ImageNet [26] for pretraining. We use 1) object de-
tection, 2) linear evaluation, 3) semi-supervised fine-tuning,
4) full-shot and few-shot image classification using SVM,
and 5) transfer learning via linear evaluation for down-
stream tasks. We strictly follow the SSL evaluation pro-
tocols of the downstream tasks [6, 7, 17, 20]. Downstream
task and implementation details are in the supplement. Ex-
periments were partly based on NAVER Smart Machine
Learning (NSML) platform [25, 40]. Code is availabe at
https://github.com/naver-ai/burn.

Baselines. We pretrain the ReActNet-A backbone with
BYOL [18], SWAV [5], tuned MoCov2 [39], and S2-
BNN [39] as our SSL baselines. We also show supervised
pretraining, i.e., ‘Supervised Pre.’. More comparisons to
SimCLRv2 [7] and InfoMin [44] are in the supplement. We
pretrain the models for 200 epochs in all methods.

Method mAP (%) AP50 (%) AP75 (%)

Supervised Pre. 38.22 68.53 37.65

SWAV [5] 37.22 67.47 35.91
BYOL [18] 36.92 67.13 35.65

Tuned MoCov2 [39] 37.42 67.30 36.37
S2-BNN [39] 39.50 70.09 39.15
BURN (Ours) 41.00 70.91 41.45

Table 1. Object detection (mAP, AP50 and AP75) on Pascal VOC
after pretraining. BURN outperforms all the compared methods
including supervised pretraining (‘Supervised Pre.’).

4.1. Results on Downstream Tasks

We evaluate our method along with prior arts in various
downstream tasks. We denote the best results except for
supervised pretraining in each table in bold.

Object Detection. We first conduct object detection
(mAP (%), AP50 (%) and AP75 (%)) on Pascal VOC and
summarize the results in Table 1. Once the feature extrac-
tor is pretrained, we use the pretrained weights as initial
weights for fine-tuning a detection pipeline. BURN out-
performs all other methods, including supervised pretrain-
ing, in all three metrics. We believe one of the reasons for
the performance of BURN is that it utilizes a FP network
trained in an SSL manner that mostly learned low- and mid-
level features [52] which would help object detection.

Linear Evaluation. We then conduct linear evaluation
(top-1) on ImageNet and summarize the results in Table 2.
Once the binary feature extractor is pretrained, it is frozen
and only the attached classifier is trained for classification.
As shown in the table, BURN outperforms other SSL meth-
ods by up to +13.04% top-1 accuracy, possibly because it
utilizes the knowledge from the FP network. Interestingly,
BURN even outperforms past supervised ImageNet classi-
fication by binary networks e.g., XNOR-Net (51.20%) [38].

Semi-Supervised Fine-Tuning. We now conduct semi-
supervised fine-tuning (top-1 and top-5) and summarize the
results in Table 2. We fine-tune the entire network on the
labeled subset (1% or 10%) from ImageNet. BURN outper-
forms other SSL baselines by large margins across all met-
rics; at least +3.67% top-1 accuracy and +5.30% top-5 ac-
curacy on the 1% labels setting and +3.98% top-1 accuracy
and +4.41% top-5 accuracy on the 10% labels setting, re-
spectively. Interestingly, BURN seems to outperform other
SSL methods by larger amounts in this task than the linear
evaluation, implying that BURN may be more beneficial in
tasks with limited supervision as also discussed by [16].

SVM Image Classification. We conduct SVM classifica-
tion (mAP (%)) and summarize results for both the few-shot
and full-shot (‘Full’) settings on VOC07 in Table 3. For the
few-shot results, the results are averaged over 5 runs. The
number of shots k is varied from 1 to 96.
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Method
Linear Eval. Semi-Supervised Fine-tuning

1% Labels 10% Labels

Top-1 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Supervised Pre. 64.10 42.96 69.10 53.07 77.40

SWAV 49.41 24.66 46.57 33.83 57.81
BYOL 49.25 23.05 43.90 34.66 58.78

Tuned MoCov2 52.50 22.96 45.12 31.18 55.64
S2-BNN 61.50 36.08 61.83 45.98 71.11

BURN (Ours) 62.29 39.75 67.13 49.96 75.52

Table 2. Linear evaluation (top-1) and semi-supervised fine-tuning (1% labels or 10% labels) on ImageNet after pretraining. BURN
outperforms all other SSL methods by large margins across for both the linear evaluation and semi-supervised fine-tuning.

Method k = 1 k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 96 Full

Supervised Pre. 29.28± 0.94 36.46± 2.97 49.67± 1.20 56.99± 0.67 64.68±0.89 70.08± 0.58 73.49± 0.53 74.96± 0.17 77.47

SWAV 22.97 ± 1.21 27.91± 2.37 37.91±1.11 44.5± 1.51 52.79± 0.81 59.15± 0.62 64.38± 0.59 66.72± 0.19 71.23
BYOL 23.45 ± 0.76 28.04± 2.40 38.09± 1.07 44.69± 1.66 51.5± 0.90 57.44±0.24 62.07± 0.28 64.37± 0.13 69.16

Tuned MoCov2 22.12 ± 0.74 27.45 ± 2.06 36.81 ± 0.82 43.19 ±1.4 51.93 ±0.84 57.95 ± 0.62 63.07 ± 0.43 65.15 ±0.05 69.73
S2-BNN 27.00±1.54 33.39 ± 2.72 46.31 ± 2.11 54.14 ±1.32 61.86 ± 1.14 68.01 ± 0.41 71.89 ± 0.44 73.55± 0.29 76.49

BURN (Ours) 29.20±1.51 36.14 ±2.15 48.49 ± 1.08 55.12 ± 1.59 62.36 ± 1.01 68.10 ± 0.3 72.1 ± 0.39 74.06 ± 0.18 77.49

Table 3. SVM classification (mAP) for the few-shot and full-shot settings on VOC07 after pretraining. BURN outperforms all other SSL
methods by large margins and performs on par with supervised pretraining on both settings. The number of shots (k) is varied from 1 to
96. We report the averaged performance over 5 runs with the standard deviation.

Method Object-Centric Scene-Centric

CIFAR10 CIFAR100 CUB-200-2011 Birdsnap Places205

Supervised Pre. 78.30 57.82 54.64 36.90 46.38

SWAV 75.78 56.78 36.11 25.54 46.90
BYOL 76.68 58.18 38.80 27.11 44.62

Tuned MoCov2 78.29 57.56 33.79 23.37 44.90
S2-BNN 82.70 61.90 47.50 34.10 46.58

BURN (Ours) 84.60 61.99 49.62 34.48 47.22

Table 4. Transfer learning (top-1) on either object-centric or scene-centric datasets after pretraining. CIFAR10, CIFAR100, CUB-200-
2011, and Birdsnap are used as the object-centric datasets while Places205 is used as the scene-centric dataset. BURN outperforms all
other SSL baselines on the object-centric datasets and on Places205.

For the few-shot setting, BURN outperforms all other
SSL methods by roughly +1% to +10% mAP depending
the number of shots. Noticeably, BURN performs very
close to the supervised pretraining regardless of the num-
ber of shots. This is consistent with the semi-supervised
fine-tuning results; BURN shows strong performance in
tasks with limited supervision such as the few-shot classi-
fication [16]. In the full-shot setting, BURN outperforms
other SSL methods by up to +8.33% mAP and performs
very similarly to supervised pretraining. In both settings,
representations learned with ImageNet by BURN is still ef-
fective on a different dataset such as VOC07, potentially
due to BURN using a FP network to obtain targets that are
generally useful i.e., low to mid level representations [52].

Transfer Learning. While [39] use VOC07, we use
Places205 instead of VOC07 to show more diverse trans-
fer scenarios as we already show transfer learning results

to VOC07 using SVM in Table 3. Given that we use Ima-
geNet (object-centric) for pretraining, to evaluate the trans-
ferability of learned representations across domains, we use
two types of datasets for the transferability experiments,
i.e., object-centric and scene-centric datasets. Specifically,
we use CIFAR10, CIFAR100, CUB-200-2011 and Birdsnap
as the ‘object-centric datasets’, and use Places205 as the
scene-centric dataset. Once we pretrain the binary feature
extractor with ImageNet, the feature extractor is frozen and
only the attached classifier is trained on the target datasets.

As shown in the table, BURN outperforms all SSL
methods on the object-centric datasets with large mar-
gins in CIFAR10, CUB-200-2011 and Birdsnap. It im-
plies that the representations learned using BURN transfers
well across multiple object-centric datasets. For the scene-
centric dataset (Places205), we observed that the transfer
learning results for methods vary less. It is quite expected
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Method 1⃝ Rand. Init. Cls. 2⃝ Feat. Sim. Loss 3⃝ Dyn. Bal. 4⃝Multi-Stage Top-1 (%)

1⃝ ✓ ✗ ✗ ✗ 57.33
1⃝+ 2⃝ ✓ ✓ ✗ ✗ 59.53
1⃝+ 2⃝+ 3⃝ ✓ ✓ ✓ ✗ 61.43
1⃝+ 2⃝+ 3⃝+ 4⃝ (=BURN) ✓ ✓ ✓ ✓ 62.29

Table 5. Ablation studies on the proposed components of BURN using linear evaluation (top-1) on ImageNet. 1⃝ refers to using a randomly
initialized classifier as targets. 2⃝ ‘Feat. Sim.’ refers to feature similarity loss (Eq. 2). 3⃝ ‘Dyn. Bal.’ refers to using the dynamic balancing.
4⃝ refers to using the modified multi-stage training. Each step of improving BURN contribute to a non-trivial performance gain as the

evaluation is done with the ImageNet dataset. Also, using only 1⃝ already outperforms all other SSL baselines except S2-BNN [39].

since ImageNet is object-centric, thus transferring knowl-
edge to a scene-centric dataset may suffer from domain gap
and performance marginally differ across methods.

4.2. Further Analyses

We further investigate our method using linear evalua-
tion (top-1) on ImageNet for detailed analyses.
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Figure 4. Training time and
linear evaluation accuracy.

Training Time. A com-
parison of the training
time vs. linear evaluation
on ImageNet is shown in
Fig. 4. Without multi-stage
(‘MST’), BURN shows
much higher accuracy than
other baselines with similar
or less training time. With
MST, BURN shows higher
accuracy than S2-BNN but
comparable training time.

Ablation Study. We ablate the model and summarize the
results in Table 5. We number each components, follow-
ing the convention in Fig. 2. Our baseline method ( 1⃝)
alone achieves 57.33% top-accuracy, which is higher than
all other SSL baselines except S2-BNN (see Table 2). In
addition, every component in BURN contributes to non-
trivial gains. In particular, both the feature similarity loss
and dynamic balancing provide noticeable improvements.
We believe the reason is that the addition of LFS stabi-
lizes the gradients (see Sec. 3.2) and a dynamic balancing of
LFS captures the changing importance of LFS stabilizing
the gradients even more effectively, resulting in improved
performance. The modified multi-stage training also con-
tributes to the accuracy by a non-trivial margin.

Choice of Moving Targets for Binary Networks. Note
that the downstream task performance of BYOL [18] and
Tuned MoCov2 [39], which use the EMA target and mo-
mentum encoder respectively, are worse than BURN (see
Sec. 4.1), which uses jointly trained classifier as moving tar-
gets. In addition to the above quantitative comparison, we
provide intuition for why the EMA target or the momentum
encoder may be less effective choices as the moving target
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Figure 5. The L2 distance between the Backbone and Target vec-
tors averaged over 10 independent runs. The shaded areas denote
the region of 1 std. The L2 distance is larger and has higher vari-
ance in the binary case, indicating that the the EMA target is more
different from the backbone i.e., less effective as targets.

for binary networks. The EMA target and the momentum
encoder are both based on momentum or EMA updates of
the target network and incur differences between the target
and the backbone networks. We conjecture that EMA up-
dates may not be well-suited for binary networks because
the differences of the target and backbone network from the
EMA update could be amplified by the binarization process.

To elaborate our intuition, we design an experiment to
compare how different the backbone and EMA target net-
works are where the backbone and the EMA target are sim-
plified to 100-dimensional vectors denoted as Backbone and
Target, respectively. We then simulate the training of the
backbone and the EMA update of the target as:

Backbone← Backbone + η ·∆n,

Target← τ · Target + (1− τ) · Backbone,
(5)

where Backbone and Target are initialized with the same
random values, η is the learning rate set as 4.8 [18], ∆n is
a random perturbation drawn from a standard normal dis-
tribution, N (0,1), to simulate the gradient update, and τ
is the momentum used in the EMA update set as 0.99. We
perform the update described in Eq. 5 for 100 iterations.

We compare the L2 distance between the Backbone and
Target vectors in Fig. 5. The L2 distance between the
Backbone and Target is much larger with higher variance
for the binary case, indicating that the EMA target may dif-
fer heavily from the backbone with binary networks. Not
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LFS Bounded Top-1 (%)

L1 ✗ 51.46
L2 ✗ 50.28

Cosine ✓ 62.29

Table 6. L1, L2, and
the cosine distances are
compared. The cosine
distance is by far the
best choice amongst the
three, as is supported
by our intuition that
a bounded loss term
would be better as the
feature similarity loss.

λ(t) Top-1 (%)

Constant 55.83
Heaviside Step: H(−t+ Tmax/2) 55.60

Eq. 3 62.29

Table 7. Comparison of dynamic
balancing functions. Please refer
to the supplement for a plot com-
paring the choices of λ(t). The
Eq. 3 (smooth annealing) is the best
amongst the three choices. The
constant function does not capture
the dynamic nature of the balanc-
ing factor and the Heaviside step
function disrupts the training mid-
way due to the discontinuity.
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Figure 6. Gradient magnitude of (a) binary classifier and (b) the
binary feature extractor during early training for various choices
of LFS such as the cosine, L1, and L2 distances. Both L1 and L2

distances show very high gradients at the beginning in the classi-
fier, especially L2. Moreover, L1 and L2 distances exhibit poten-
tial gradient explosions in the feature extractor. Cosine distance
shows none of these trends that harm training efficacy.

only that, in the binary case, the L2 distance does not de-
crease over time. These results are in-line with our intuition
and empirical results that the EMA target could be more
different for binary networks and hence be less effective.

Choice of Feature Similarity Loss. We further investi-
gate the choices of the feature similarity loss (LFS in Eq. 4)
in Table 6. Besides the cosine distance, i.e., 1− ⟨v1,v2⟩

∥v1∥2·∥v2∥2
,

used in BURN, we compare the L1, i.e., ∥v1 − v2∥1, and
L2, i.e., ∥v1 − v2∥2, distances. We believe that as both the
L1 and L2 distances are not bounded, they may potentially
cause problems such as gradient explosion, leading to the
worse performance unlike the cosine distance.

Cosine distance outperforms L1 and L2 by large mar-
gins. In Fig. 6, we illustrate gradient magnitudes of both
the classifier and feature extractor when using cosine, L1,
or L2 distances as LFS . L1 and L2 distances show very
high gradients early on in the classifier, especially L2 where
the gradients start at 1 × 106. Even more importantly, L1

and L2 distances show signs of gradient explosions in the
feature extractor, i.e., the gradients keep increasing as the
iterations proceed, with L2 exhibiting more severe trends.
In contrast, cosine distance exhibits small and subdued gra-
dients for both the classifier and the feature extractor.

Choice of the Dynamic Balancing Function. We finally
investigate the choice of the dynamic balancing function.
Specifically, we consider (1) a constant function, λ(t) =
0.7, (2) a Heaviside step function that is shifted and horizon-
tally reflected, H(−t + Tmax/2), and (3) a smooth cosine
annealing function (Eq. 3) used in our BURN, and compare
their respective accuracy in Table 7.

The constant function fails to capture that the importance
of LFS may change as learning progresses, leading to poor
results. The Heaviside step function abruptly changes the
balancing factor mid-training. This disrupts the training and
leads to poor performance. In contrast, smooth annealing
(Eq. 3) captures the dynamic nature of the importance of the
feature similarity loss while smoothly varying the balancing
factor, resulting in the best performance among the options.

5. Conclusion

We propose BURN, an unsupervised representation
learning framework for binary networks that jointly trains
the FP classifier and the binary network. We propose a fea-
ture similarity loss, dynamic loss balancing, and a modified
multi-stage training to improve BURN. We conduct exten-
sive empirical validations with five downstream tasks and
seven datasets. In all downstream tasks, BURN consistently
outperforms existing SSL baselines by large margins and
sometimes even the supervised pretraining. We also pro-
vide detailed analysis on various aspects of BURN.

Limitations. One limitation of BURN is that it requires
a pretrained FP feature extractor. While using pretrained
FP networks is a commonly used approach for binary net-
works [2, 32, 34, 39], it would be more efficient to design a
framework that does not require a pretrained FP model.

Potential Negative Societal Impact. We aim to improve
the representation power learned by binary networks, which
would facilitate AI on edge devices with vision sensors.
Consequently, AI surveillance systems could become preva-
lent and may lead to the monitoring of mass populations for
private information and personal attributes. Although the
authors have no intention to allow such consequences, such
negative effects could manifest. Efforts to prevent such ef-
fects would include gating the code and pretrained models
behind security and ethical screenings.
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