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Abstract

Scanning Transmission Electron Microscopes (STEMs)
acquire 2D images of a 3D sample on the scale of individ-
ual cell components. Unfortunately, these 2D images can
be too noisy to be fused into a useful 3D structure and fa-
cilitating good denoisers is challenging due to the lack of
clean-noisy pairs. Additionally, representing detailed 3D
structure can be difficult even for clean data when using reg-
ular 3D grids. Addressing these two limitations, we suggest
a differentiable image formation model for STEM, allowing
to learn a joint model of 2D sensor noise in STEM together
with an implicit 3D model. We show, that the combination of
these models are able to successfully disentangle 3D signal
and noise without supervision and outperform at the same
time several baselines on synthetic and real data.

1. Introduction
STEMs enable the acquisition of 3D samples from 2D

images on the scale of cellular components [16, 20]. This
allows for addressing many important tasks in biology, that
rely on the spatial organization inside cells [31, 47].

In STEMs, the amount of electrons used to probe a sam-
ple needs to be low, in order to prevent sample damage as
well as to keep acquisition times at bay [28]. This, un-
fortunately, leads to 2D images that can be noisy. While
many sophisticated image denoisers exist, fusing noisy 2D
into consistent 3D structure poses its own challenge. Many
forms of fusing 2D information into 3D [54] assume that
the same world point has the same properties in all its 2D
projections. In the presence of noise, this assumption does
not hold. While this might be negligible in many instances
of fusing photographic-domain imagery taken under normal
lighting conditions, the noise in the electron domain is much
more intricate, i.e., it is, first, strong, and, second, does not
follow a simple Gaussian model. Thus, our first contribu-
tion is to model this 2D noise for STEMs using Normalizing
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Figure 1. Our approach enables learning of clean 3D structure
from very noisy 2D sensor readings as produces by STEM.

Flows [32, 50] in an unsupervised setup.
To establish a link between 2D observations and a 3D

model, a range of recent methods employ differentiable vol-
ume rendering [29, 57], which allow for changing 3D infor-
mation so that when rendered, it matches some input. For
these techniques, besides the difficulty of handling noise,
representing detailed 3D structures can be challenging even
for clean data, when using regular 3D grids. Fortunately,
implicit models like occupancy fields [15, 42, 52] or Neural
Radiance Fields (NeRF) [44] have recently shown great po-
tential to represent 3D structures from photographs. These
methods do not rely on a regular 3D grid, as they learn a 3D
function to represents the shape itself. The loss of this learn-
ing requires to project the 3D representation to 2D images
to be compared to the 2D observations. Our second con-
tribution is to unleash these methods for STEM reconstruc-
tion, by deriving the projection for STEM and a Maximum-
likelihood Estimation (MLE) loss to compare the outcome
to noisy observations. This does not introduce the blur aris-
ing from the L1 or L2 loss commonly used in NeRF.

We will apply both our contributions jointly and show
that this combination can successfully disentangle 3D sig-
nal and noise without supervision, and outperform at the
same time both standard reconstruction algorithms and all
variants of our setup where the noise is not modeled. We
make all our data, code and trained networks available 1.

1https://github.com/HannahKniesel/Implicit-Electron-Tomography.git

20762



2. Previous Work
Inverse problems: 3D reconstruction from STEM images
is an instance of an inverse problem. Inverse problems
aim to recover a signal from indirect measurements where
the process to obtain such measurements is known. This
is modeled using a forward operator F transforming the
signal x, which we aim to recover, into the observations,
o = F (x). Additionally, these observations are usually af-
fected by noise.

A set of well established algorithms to solve these prob-
lems are Back Projection algorithms [18, 49]. However,
such methods greatly suffer from artifacts when the num-
ber of observations is limited, which is usually the case in
STEM. Other algorithms have tried to solve the problem of
limited observations using iterative algorithms [7, 23] with
regularizers to enforce continuity on the reconstructed data
such as L2, L1, or Total Variation (TV). These problems
have been studied on different fields, such as reconstruc-
tion from electron microscope images [5, 39, 46, 58], X-
Ray computed tomography (CT) [6, 10, 17, 62], or visible
light tomography [61]. However, 3D reconstruction from
STEM poses additional challenges such as the low num-
ber of observations, the missing wedge problem due to the
limited angle range used, and the large image sizes which
translate to large memory requirements. For a more thor-
ough review of these 3D reconstruction methods for differ-
ent electron microscope modalities we refer the reader to
surveys by Sorzano et al. [53] and Frank [20].

In the last years, a new set of data-driven methods
have been proposed to solve inverse problems for CT and
MRI data. These methods have addressed the problem
by pre-processing the observations [8], post-processing the
reconstruction [37, 59], learning the reconstruction pro-
cess [26, 66], by using iterative approaches [6], or by over-
fitting a neural network to a single reconstruction [10, 62].
Unfortunately, these methods have assumed a simplified
noise model using a Poisson-Gaussian distribution [2].

In the field of Electron Microscopy (EM), deep learn-
ing has been recently applied to single-particle reconstruc-
tion from Cryo-EM images. Gupta et al. [24, 25] proposed
a 3D reconstruction using a volumetric representation and
trained it using a GAN objective. Zhong et al. [64, 65] re-
cently proposed a method to represented the 3D reconstruc-
tion in Hartley space using a neural network and optimized
the reconstruction and the pose information of each image
together. However, those methods rely on a large number of
images covering all possible view directions for the recon-
struction, and also assume a simple noise model. Recently,
a new deep learning approach has been suggested to im-
prove reconstruction based on STEM images [1]. However,
this method is composed of a denoiser network and a super-
resolution module to improve the reconstructed volume ob-
tained with standard algorithms. In this work instead, we

represent the 3D reconstruction with neural networks and
learn it with a limited number of observations while simul-
taneously modelling the observed noise in an end-to-end
framework not requiring supervision by clean images.
Implicit reconstruction: Recently, representing a 3D
scene implicitly using neural network has gained a lot of
attention [41, 43, 45]. These neural networks receive as
input 3D coordinates of a point in space and output the
signed distance to the surface of the object. This con-
cept was later extended using localized neural representa-
tions to only store information in the occupied parts of the
scene [21, 22, 55, 56]. Further work extended these ideas
and use such representations for 3D scene reconstruction
from multiple images [44]. They proposed a neural network
to encode not only the occupancy in the scene, but also the
radiance at each 3D location and output direction. Thanks
to transforming input coordinates and view direction using
positional encoding, they were able to achieve high quality
reconstructions. Several works have followed up and pro-
posed different improvements [11, 27, 60]. Recent work
have also used similar ideas for 3D reconstruction from dif-
ferent image modalities [9].
Noise modelling: Image noise is an undesired perturba-
tion of the measured intensity of a pixel generated by er-
rors in the image acquisition process. The most common
noise models used in image denoising algorithms assume
an additive white Gaussian noise [65], a Poisson-Gaussian
model [2, 19, 63], or a Gaussian distribution with pixel de-
pendent variance [36]. Recent works have also suggested
to train neural networks to denoise images in an unsuper-
vised setting by imposing certain restrictions on the type of
noise model [12, 13, 14, 34, 35]. Unfortunately, these sim-
ple models and strict constrains are not able to cover certain
noise sources arising during the process of image generation
in EM data [20]. In another line of research, Abdelhamed et
al. [3] have used Normalizing Flows to model the noise dis-
tribution from data in a supervised setting, without making
any assumption of the underlying noise model. In our work,
we use Normalizing Flows to model the noise but we learn
it in an unsupervised fashion thanks to the spatial constrains
introduced by the 3D reconstruction process.

3. Our Approach
3.1. Overview

We will first present an overview of our approach
(Sec. 3.1) before describing the STEM image formation
(Sec. 3.2), an implicit 3D representation of the result
(Sec. 3.3) and a noise model (Sec. 3.4) for STEM. We con-
clude on details of the loss used (Sec. 3.5).

Our system is modeled after NeRF but with two impor-
tant generalizations (Fig. 2): First, where NeRF is mod-
elling an emission-absorption model for photons [44], we
consider a model for electrons. Second, we do not map from
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Figure 2. Overview of our approach. Given a set of n observa-
tions, Êi, we optimze the parameters of two tunable mappings.
The first is an implicit 3D model (MLP, pink box) that represents
the geometry as a continuous implicit density field. The second is
a mapping from clean values of accumulate density, i.e. opacity, to
noisy sensor readings (Noise model, pink circle). 3D and 2D are
linked by a fixed image formation model (blue circle) and com-
pared using a loss capable to compare distributions (MLE, green).

a 3D solution to a single 2D image, but to a distribution of
images, including the noise. This prevents converging to the
mean of the noise, which is not the correct value. We will
explain both parts in the next sections.

3.2. Image formation model
Our image formation is comprised of a ray-marching

variant suitable for noisy and out-of-focus electron beams.
Acquisition setup: The image acquisition process in
STEM uses an electron beam that is focused at a point
within the sample as it is illustrated in Fig. 3, a. Electrons
that pass through the specimen from the top are then cap-
tured by the detector. This process is repeated for all pixels
in the image by displacing the sample by a certain distance,
ps as seen in Fig. 3, b. Once the image is complete, the sam-
ple is tilted by α degrees and the spatial scan is repeated
until the desired number of images is captured. Common
existing hardware allows for a tilt of up to ±72 degrees [20].
Raymarching for electrons: We here adopt the pinhole
emission-absorption model now often used in differentiable
volume rendering [29, 44] to electron beams.

In an absorption-only model [40], the fraction of elec-
trons lost

dE(r(t))

dt
= −σ(r(t))E(r(t)) (1)

for an infinitesimal step dt at distance t along a ray r(x+ t ·
ω) from position x in direction ω is proportional to the den-
sity σ(r(t)) of the medium at that position along the ray.
Electrons, technically, are not absorbed but scattered into
many different forms of secondary emissions, we ignore
here as the detector is small compared to the distance to
the sample, and almost all scattered electrons will not arrive
at the detector. Also, all electrons have the same energy in

STEM, and hence density does not depend on what would
be wavelength or color for photons in the optical regime.
This equation has the solution [40]

E(r) = exp

(
−
∫ t

0

σ(r(t))dt

)
. (2)

The inner integral can be solved by numeric quadrature, i.e.
as a sum or using Monte Carlo estimation.
Defocus: Above considerations assume an infinitely
small ray, while in reality, the contribution to the readings
of a detector pixel is the confound effect of a bundle of rays.
Hence the electron beam is not a double-cone but a double-
wedge as seen in Fig. 3, c. A system is in focus, if the ratio
ps/ds between the pixel distance and the width of the elec-
tron beam is larger than 1. The example in Fig. 3, b/c is in
focus, as ps > ds and so is the setup used in our results with
ps/ds = 1.86 for a tilt angle of α = 0.

If the sample is tilted however (Fig. 3, d), locations at
distance from the tilt axis move out of the focal plane, re-
sulting in out-of-focus blur. While the hardware accounts
for the angle of the tilt α, there is always a small error in
angle, resulting in a residual angle β. Not accounting for
this aspect will result in a system which learns the blur or a
mix of blurry and sharp observations when seeing one world
point under different (residual) tilt angles.

The full out-of-focus image formation could be solved
via Monte-Carlo integrating not only the path integral from
Eq. 2, but also an integral over an area of all sensor locations
A and a set of directions Ω for a pixel P

E(P ) =

∫
A

∫
Ω

exp

(
−
∫ t

0

σ(r(x, t))dt

)
dωdx. (3)

To solve this integration problem effectively, we seek in-
spiration from Computer Graphics approaches for realistic
simulation of lenses [48], in particular screen space meth-
ods [51]. These represent the 5D double integral in Eq. 3 as
a 2D integral in image space instead. This integral then be-
comes a spatially-varying convolution of per-pixel radiance
E(r) with a Point-spread Function (PSF) of the optical sys-
tem. The action can be described by the convolution

E(P ) = κ(β, d) ∗ E(r) (4)
κ(x)(α, d) = exp(−||x|| · tan(α) · d) (5)

with a single blur kernel κ that depends on the tilt angle β
and the image-space distance d from the tilt axis. While
the true PSF of STEM might have a different shape, the
qualitative low-pass is reproduced by this Gaussian which
is fast to execute and well-differentiable.

3.3. 3D Representation
In EM, density distribution σ in 3D space is classically

modeled as a discrete grid. We follow the recent trend
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Figure 3. STEM imaging process: (a) Ideal double-cone set up of a single pixel. (b) Pixel distance and refocus. (c) Non-ideal double-
wedge setup and circle of confusion. (d) Non-ideal tilt and resulting variation in the circle of confusion. (e) Electron transport in a slab.

[15, 42, 44] to represent such 3D fields as an implicit func-
tion instead. We use an Multi-layer perceptron (MLP) σθ

that maps position to density. For details on the MLP archi-
tecture, we refer the reader to the supplementary material.
Notation: Shorthand, we will drop the dependency of
E(r) on r and will write E for the radiance of some ray. On
occasion, we will further write Eθ, to denote the radiance
resulting from tracing a certain ray through an implicit field
defined by an MLP chosing parameters θ.

3.4. Noise model
Unfortunately, we can only measure a noisy estimate of

the true number of electrons per unit space, time and solid
angle. This is, both because of the quantized nature of the
electron beam, resulting in Poisson-like noise, and due to
other sources of noise, in particular from the requirement
to turn the electron beam into light to be read by a photo-
sensitive A/D conversion.

Instead of observing E, we have to deal with samples
from p(Ē|E), stating the probability density of observing
Ē when the true value is E.

Were we given pairs of clean and noisy values Ē and
E it would be simple to train a generative noise model. In
the case of STEM however, it is difficult to acquire pairs of
clean and noisy sensor readings as the sensing process itself
changes the sample while at the same time depending on the
sample.

As a remedy, we train the noise model jointly with the
3D density field itself. The key insight here is that there is
multiple noisy observations of the same clean density field,
but under different rays.

We use Normalizing Flows [32, 50], as this can both:
compute the density p(Ē|E), the probability of Ē given E
(as required by our loss we describe next) and generate sam-
ples q(ξ|E) ∼ p where ξ is a random number. We will write
shorthand qϕ for an instance of the noise model with tunable
parameters ϕ.

In particular, we use eight 1D radial flow layers [50]
which transforms a Gaussian distribution into our desired
p(Ē|E) distribution. These layers apply radial contraction
and expansion around a reference point and are defined as:

f(z) = x+
β(z − z0)

α+ |z − z0|

where the learned parameters are z0 ∈ R, α ∈ R+,
and β ∈ R. To condition the noise distribution to the
real radiance, E, and therefore allow for modeling signal-
dependent noise, in the last four layers of our Normalizing
Flow model, the learned parameters {z0, α, β} are predicted
by a small MLP which takes as input E.

Recent work has suggested to use more complex Nor-
malizing Flow models to learn a noise distribution from
noise–clean pairs [3]. Such models use CNN layers to con-
dition the learned distribution on a region of the clean im-
age. Unfortunately, allowing the noise model to inspect the
image could allow the model to not only learn the noise dis-
tribution but also to fix artifacts and missing details that the
3D reconstruction was not able to recover. By conditioning
the model on a single pixel, our reconstruction framework
is able to separate the 3D signal from the noise.
Implementation: In this section we describe the target
probability density function as p(Ē|E). Instead, we learn
the distribution of differences between the true and the ob-
served radiance, p(Ē−E|E). This objective is equivalent to
the one described in this section. However, this distribution
allows for the gradients to propagate not only through the
flows’ conditioned layers, but also directly from the loss.

3.5. Loss
We are looking for a scalar density field σθ(x) ∈ R3 →

R as well as a noise model qϕ(ξ) ∈ R → R with tunable
parameters θ and ϕ, to explain the observed opacities Êi.
We can compute the clean solution for pixels in images as
we know their relative orientations, camera geometry and
hence, the ray ri of every pixel.
Clean case: With access to clean observations, we could
minimize the empirical risk

argmin
θ

Ei[L(Eθ
i , Êi)].

Recall, that clean samples E do not exist and we have
to work with noisy samples Ē, leading to the following
thought experiment:

Consider the case of a volume of constant density θ and
an optimization to find this density given multiple noisy ob-
servations of that volume Êi. If we were to minimize this
under the L2 loss, it was to produce the mean of all density
solutions explaining all observation. Under an L1, it would
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converge to the median of all density solutions. Importantly,
neither mean or median of the distribution of solutions is the
ground truth value θ of complex STEM noise.
Noisy case: The key to make this work, is to match
the entire distribution of noisy observations to a generative
model producing a distribution of radiances. The only com-
bination to explain those distribution pairs is a parameter
pair θ/ϕ: a clean 3D volume that, after ray-marching and
defocus blur, and after adding synthetic noise, produces the
observation distribution. Hence, we minimize

argminθ,ϕ Ei,ξ[LMLE(p
ϕ(Êi − Eθ

i |Eθ
i ))].

Note, that the distribution loss is defined on the differ-
ence of noisy observations in respect to the clean ones. This
allows for learning the correct solution up to an additive
constant. As most applications are not concerned with get-
ting the exact absolute value (such as a photo does not tell
the absolute radiance unless we know exposure, aperture
and ISO), this might be an acceptable limitation in most –
but not all– applications. Noteworthy, this is not a limitation
of knowing the exact physical parameters of the STEM but
a core limitation of our approach to denoising.

4. Results
We present results of our approach in different datasets,

for different methods according to different metrics which
we will all explain next.
Data: We consider a SYNTHETIC and a REAL data set.
The main motivation is, that to our knowledge no ground
truth data for a quantitative evaluation of real STEM ac-
quisitions is available. Recall, that training proceeds from
scratch for every data set. For every data set we have a cer-
tain number of noisy 2D images available, that is split into
test, train and validation.

The SYNTHETIC data set is comprised of random ar-
rangements of ellipsoidal shells of a random density and
a density model of the ZIKV (i.e., Zika) virion at 15Å by
Long et al. [38]. As we know the clean analytic solution,
this data set can be used for quantitative evaluation. As it
resembles the 3D structure of cells, it allows for qualitative
evaluation, too. We assume a 79-image tilt series ranging
from -59.5◦ to 59◦ with 1.5◦ steps. Additionally, we gen-
erate 14 projections for validation, and 20 for testing. All
projections are rendered in 1000×1000 pixels. To add noise
to the simulations we train a Normalizing Flow to match the
noise distribution of STEM images. We acquire the train-
ing data of the Normalizing Flow network by real STEM
data. During data acquisition, for each tilt step, two im-
ages are taken: One image with short exposure time and
one image with long exposure time, resulting in noisy and
less noisy image pairs. We make sure the image pairs are
aligned pixel-precise, by using the SIFT algorithm of the
ImageJ toolbox [4]. To retrieve an accurate alignment, we

Long

Noise from pairs

Short Diff.

Real data

Short

? ?

Diff.Long

Figure 4. To generate noisy synthetic data for evaluation, we ob-
tain noise samples with the difference between aligned short and
long exposure STEM images of a set of nanoparticles (left). We
also evaluate on real STEM images of cells infected with SARS-
CoV-2 where only short exposed images are available (right).

image simple structures of nanoparticles. Then we retrieve
the difference image which is now containing only the noise
of the short exposure STEM. See Fig. 4 for an illustration
of this process. We train the Normalizing Flow by condi-
tioning it on the less noisy tilt series to then match the noise
distribution of the noisy tilt series. By sampling from the
trained Normalizing Flow model, we are able to generate a
pair of tilt series, with clean and noisy projections.

The REAL images contain cells infected with SARS-
CoV-2 using short exposure times. The tilt series ranges
from -72◦ to 72◦, with a tilt step of 1.5◦ at a resolution of
900×900 pixels. Before reconstruction, we align the raw
tilt series with the IMOD software by Kremer et al. [33],
using fiducials. For validation we use a projection of the
training data. Without a way to capture ground truth for
such data, they are used only for qualitative evaluation.
Methods: Besides Ours, we consider commonly used
reconstruction algorithms for STEM images and several
variants of our method. The first methods are the weighted
back-projection (WBP) and the Simultaneous Iterative Re-
construction Technique (SIRT) method (SIRT) imple-
mented in the software package IMOD [33], a state-of-the-
art industry solution to tomographic reconstruction prob-
lems. Next, we explore using our implicit 3D representation
but training directly under and L2-loss, as done in NeRF,
for either the noisy data directly (L2Noisy) or the data de-
noised in 2D with a common denoiser, BM3D (L2Den).
We study a supervised variant of our approach, which
assumes the knowledge of the noise model (OursSup).
Lastly, L2Clean is the same setup as L2Noisy, but
trained on the clean projections instead. This is an upper
bound what the implicit 3D reconstruction can achieve for
this data if no noise is present in the observations.
Metric: We consider different metrics on different forms
of the results: The full 3D volume and random 2D pro-
jections. For 2D we can apply DSSIM, Peak Signal-to-
noise Ratio (PSNR) and Mean Squared Error (MSE), in
3D PSNR and MSE. The full 3D volume is discretized to
1000×1000×1000, images are rendered in 1000×1000.
Training Details: For training of the MLP we use an
ADAM optimizer with a learning rate of 5−5. For training
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Table 1. Main quantitative results of different methods (rows), reconstructing a known ground truth volume according to different metrics
(columns). The best method across all methods without access to clean ground truth are shown in bold.

Method Loss Imp. Clean. 2D 3D

PSNR MSE DSSIM PSNR MSE

WBP L2 ✕ ✕ 2.97 50.901 4.904 7.62 17.299
SIRT L2 ✕ ✕ 3.27 47.622 4.832 9.13 12.223
L2Noisy L2 ✓ ✕ 13.86 1.885 4.271 19.73 1.064
L2Den L2 ✓ ✕ 18.15 0.849 1.544 20.25 0.944
Ours LMLE ✓ ✕ 19.93 0.645 1.020 21.75 0.669

OursSup LMLE ✓ ✕ 20.07 0.636 0.991 20.64 0.864
L2Clean L2 ✓ ✓ 20.73 0.393 0.840 21.60 0.691

3D PSNR 3D MSE

2D PSNR 2D MSE 2D SSIM

L2
No

is
y

L2
De

n
Ou

rs
WB

P
SI

RT

Scene 1 Scene 2 Volume slice

Figure 5. Qualitative results of different methods (row) for different slices (column) of the REAL data set. Trends of the SYNTHETIC data
can be revisited on the REAL data, even though differences in the outcome of the learned approaches are less noticeable. Again, in the
presence of noise, WBP and SIRT cannot produce useful output. Training after denoising (L2Den) suppresses small details and results in
an overall smoother reconstruction. But differences on L2Noisy and Ours are hard to evaluate, specially without the knowledge of GT.

the Normalizing Flow we found that using the SGD opti-
mizer worked the best. For the REAL data set we use 512
neurons in the hidden layers of the 3D reconstruction mod-
ule, while we only use 256 neurons on the SYNTHETIC data
set. For training Normalizing Flow in a supervised manner
(OursSup) we used a learning rate of 5−7, whilst the train-

ing in an end-to-end fashion (Ours) required a larger learn-
ing rate of 5−5 in order to perform well. All networks were
trained for 400,000 iterations and validation error reported
every 10,000 iterations. The model with the best validation
error was chosen to compute test errors.
Outcome: Fig. 6 presents the qualitative results of the
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experiments on synthetic data. With the Inviwo soft-
ware [30], we created two volume renderings of the same
reconstruction, one with a cut through the middle of the vol-
ume and the second one with the complete volume. Further-
more, we show a single slice of the reconstructed volume.
For the volume renderings we manually selected the trans-
fer function on the ground truth volume to see all elements
of the volume, and used it on the other methods.

We can see from the results that standard algorithms,
WBP and SIRT, despite reconstructing the overall shape,
miss fine details in certain areas. The methods are not able
to cope with the noise and this results in a noisy 3D recon-
struction. In L2Noisy, the noise is incorporated around
the reconstructed shapes. However, the reconstruction is
over-smoothed and small details are not well recovered.
L2Den improves over L2Noisy and the noise around the
volume disappears. Unfortunately, the fine details are still
not recovered. When we look at both version of our method,
OursSup and Ours, we see that the noise surrounding the
volume disappears and the details are well reconstructed.
We can see that both are close to the result obtained if there
is no noise present on the observations, L2Clean. When
we compare OursSup and Ours we see that Ours per-
forms slightly better than the supervised version.

The main quantitative results are shown in Tab. 1. Here
we see similar results as observed in the qualitative evalua-
tion. WBP and SIRT obtain low performance in all metrics.
L2Noisy performs better than standard algorithms but
worse than L2Den. Ours achieves the best performance
on all metrics. When compared with the supervised ver-
sion of our method, OursSup, the latest achieves slightly
better performance on the 2D metrics but worse than Ours
in the 3D metrics. Lastly, the baseline L2Clean trained
in the absence of noise, as expected, achieves the highest
performance on almost all metrics. However, Ours obtains
a better MSE on the 3D volume even if it is trained in the
presence of noise. This indicates that our method is not only
able to model the noise, but also that the reconstruction ben-
efits from the unsupervised setup.

Lastly, we provide the results of the qualitative evalua-
tion on the REAL data in Fig. 5. Here, we follow a sim-
ilar procedure as in the SYNTHETIC data set and perform
a volume-based visualization and a visual analysis on the
slices of the reconstructed volume. We can see that the
two baselines, WBP and SIRT, as in the synthetic data,
incorporate the noise in the observation into the 3D vol-
ume, leading to reconstructions with low quality. On the
other hand, Ours is able to recover high detailed vol-
umes while L2Den generates an over-smoothed version as
when applied to synthetic data. However, when compared
to L2Noisy, even if Ours is able to better recover cer-
tain parts of the volume, the gap between these methods
is smaller. Unfortunately, the lack of a ground truth vol-

ume makes it difficult to quantitatively determine which re-
constructions is more accurate. Nevertheless, based on the
qualitative evaluation and the results on synthetic data, we
can conclude that Ours achieves a cleaner reconstruction.
Ablations: We evaluate how our framework performs
under limiting model capacity for the reconstruction net-
work. In this experiment, we reduce the number of fea-
tures in the MLP from 256 to 32 and compare L2Noisy
and Ours on our synthetic data set. We can observe that
when the model capacity is reduced, both methods obtain
a similar reconstruction. Ours achieved a MSE of 1.18 on
the 3D volume while L2Noisy obtained 1.07. When the
MSE is measure on the 2D images, we obtained 4.67 for
Ours and 5.40 for L2Noisy. That might be an indication
that the balance during training between 3D reconstruction
and noise model requires a careful selection of the different
hyper-parameters to separate 3D signal and noise.

Moreover, we evaluate the effect of accounting for the
defocus in our image formation module. We use a synthetic
dataset where we add a large defocus effect based on Eq. 5.
We observed that accounting for this effect in the recon-
struction process improves reconstruction accuracy, obtain-
ing 0.91 MSE in the 3D volume instead 0.97 MSE when we
do not account for it. For more detailed ablation studies we
refer the reader to the supplementary material.
Limitations: Based on the ablation studies, the main lim-
itation of our reconstruction algorithm is the careful selec-
tion of the hyper-parameters required to successfully sep-
arate 3D signal from noise. This problem might be tack-
led with computational resources as is done in other recon-
struction software. However, we acknowledge that a large-
scale evaluation of hyper-parameter selection on different
data sets should be a future research direction.

5. Conclusion
We have shown, that a combination of a noise model and

an implicit 3D shape representation can acquire 3D struc-
ture from noisy observations at a quality surpassing state
of the art. To our knowledge, before no noise model for
STEM was available and no implicit representation was fit
to STEM imagery, in particular not jointly. Our combina-
tion makes progress along the most relevant access in this
regime, the handling of noise and the representation of spa-
tial detail. We would hope this approach will lend itself
favourable to similar high-noise, non-photographic regimes
with specific noise and image formation models.
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Figure 6. Qualitative results of different methods (columns) for different slices of the SYNTHETIC data set (row triplets). In the presence
of noise, WBP and SIRT cannot produce useful output. Training L2 on noisy images (L2Noisy) results in blurry details (in the top triplet)
as well as strong constant bias over empty space. Training after denoising can remove this bias in empty space, but at the expense of spatial
detail where the spherical virus structures have disappeared. Our OursSup and Ours resolve structures more similar to the ground truth.
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