Abstract

Scanning Transmission Electron Microscopes (STEMs) acquire 2D images of a 3D sample on the scale of individual cell components. Unfortunately, these 2D images can be too noisy to be fused into a useful 3D structure and facilitating good denoisers is challenging due to the lack of clean-noisy pairs. Additionally, representing detailed 3D structure can be difficult even for clean data when using regular 3D grids. Addressing these two limitations, we suggest a differentiable image formation model for STEM, allowing to learn a joint model of 2D sensor noise in STEM together with an implicit 3D model. We show, that the combination of these models are able to successfully disentangle 3D signal and noise without supervision and outperform at the same time several baselines on synthetic and real data.

1. Introduction

STEMs enable the acquisition of 3D samples from 2D images on the scale of cellular components [16, 20]. This allows for addressing many important tasks in biology, that rely on the spatial organization inside cells [31, 47].

In STEMs, the amount of electrons used to probe a sample needs to be low, in order to prevent sample damage as well as to keep acquisition times at bay [28]. This, unfortunately, leads to 2D images that can be noisy. While many sophisticated image denoisers exist, fusing noisy 2D into consistent 3D structure poses its own challenge. Many forms of fusing 2D information into 3D [54] assume that the same world point has the same properties in all its 2D projections. In the presence of noise, this assumption does not hold. While this might be negligible in many instances of fusing photographic-domain imagery taken under normal lighting conditions, the noise in the electron domain is much more intricate, i.e., it is, first, strong, and, second, does not follow a simple Gaussian model. Thus, our first contribution is to model this 2D noise for STEMs using Normalizing Flows [32, 50] in an unsupervised setup.

To establish a link between 2D observations and a 3D model, a range of recent methods employ differentiable volume rendering [29, 57], which allow for changing 3D information so that when rendered, it matches some input. For these techniques, besides the difficulty of handling noise, representing detailed 3D structures can be challenging even for clean data, when using regular 3D grids. Fortunately, implicit models like occupancy fields [15, 42, 52] or Neural Radiance Fields (NeRF) [44] have recently shown great potential to represent 3D structures from photographs. These methods do not rely on a regular 3D grid, as they learn a 3D function to represents the shape itself. The loss of this learning requires to project the 3D representation to 2D images to be compared to the 2D observations. Our second contribution is to unleash these methods for STEM reconstruction, by deriving the projection for STEM and a Maximum-likelihood Estimation (MLE) loss to compare the outcome to noisy observations. This does not introduce the blur arising from the L1 or L2 loss commonly used in NeRF.

We will apply both our contributions jointly and show that this combination can successfully disentangle 3D signal and noise without supervision, and outperform at the same time both standard reconstruction algorithms and all variants of our setup where the noise is not modeled. We make all our data, code and trained networks available.

Corresponding author email address: hannah.kniesel@uni-ulm.de

1https://github.com/HannahKniesel/Implicit-Electron-Tomography.git
2. Previous Work

Inverse problems: 3D reconstruction from STEM images is an instance of an inverse problem. Inverse problems aim to recover a signal from indirect measurements where the process to obtain such measurements is known. This is modeled using a forward operator F transforming the signal x, which we aim to recover, into the observations, $o = F(x)$. Additionally, these observations are usually affected by noise.

A set of well established algorithms to solve these problems are Back Projection algorithms [18, 49]. However, such methods greatly suffer from artifacts when the number of observations is limited, which is usually the case in STEM. Other algorithms have tried to solve the problem of limited observations using iterative algorithms [7, 23] with regularizers to enforce continuity on the reconstructed data such as L2, L1, or Total Variation (TV). These problems have been studied on different fields, such as reconstruction from electron microscope images [5, 39, 46, 58], X-Ray computed tomography (CT) [6, 10, 17, 62], or visible light tomography [61]. However, 3D reconstruction from STEM poses additional challenges such as the low number of observations, the missing wedge problem due to the limited angle range used, and the large image sizes which translate to large memory requirements. For a more thorough review of these 3D reconstruction methods for different electron microscope modalities we refer the reader to surveys by Sorzano et al. [53] and Frank [20].

In the last years, a new set of data-driven methods have been proposed to solve inverse problems for CT and MRI data. These methods have addressed the problem by pre-processing the observations [8], post-processing the reconstruction [37, 59], learning the reconstruction process [26, 66], by using iterative approaches [6], or by over-fitting a neural network to a single reconstruction [10, 62]. Unfortunately, these methods have assumed a simplified noise model using a Poisson-Gaussian distribution [2].

In the field of Electron Microscopy (EM), deep learning has been recently applied to single-particle reconstruction from Cryo-EM images. Gupta et al. [24, 25] proposed a 3D reconstruction using a volumetric representation and trained it using a GAN objective. Zhong et al. [64, 65] recently proposed a method to represent the 3D reconstruction in Hartley space using a neural network and optimized the reconstruction and the pose information of each image together. However, those methods rely on a large number of images covering all possible view directions for the reconstruction, and also assume a simple noise model. Recently, a new deep learning approach has been suggested to improve reconstruction based on STEM images [1]. However, this method is composed of a denoiser network and a super-resolution module to improve the reconstructed volume obtained with standard algorithms. In this work instead, we represent the 3D reconstruction with neural networks and learn it with a limited number of observations while simultaneously modelling the observed noise in an end-to-end framework not requiring supervision by clean images.

Implicit reconstruction: Recently, representing a 3D scene implicitly using neural network has gained a lot of attention [41, 43, 45]. These neural networks receive as input 3D coordinates of a point in space and output the signed distance to the surface of the object. This concept was later extended using localized neural representations to only store information in the occupied parts of the scene [21, 22, 55, 56]. Further work extended these ideas and use such representations for 3D scene reconstruction from multiple images [44]. They proposed a neural network to encode not only the occupancy in the scene, but also the radiance at each 3D location and output direction. Thanks to transforming input coordinates and view direction using positional encoding, they were able to achieve high quality reconstructions. Several works have followed up and proposed different improvements [11, 27, 60]. Recent work have also used similar ideas for 3D reconstruction from different image modalities [9].

Noise modelling: Image noise is an undesired perturbation of the measured intensity of a pixel generated by errors in the image acquisition process. The most common noise models used in image denoising algorithms assume an additive white Gaussian noise [65], a Poisson-Gaussian model [2, 19, 63], or a Gaussian distribution with pixel dependent variance [36]. Recent works have also suggested to train neural networks to denoise images in an unsupervised setting by imposing certain restrictions on the type of noise model [12, 13, 14, 34, 35]. Unfortunately, these simple models and strict constrains are not able to cover certain noise sources arising during the process of image generation in EM data [20]. In another line of research, Abdelhamed et al. [3] have used Normalizing Flows to model the noise distribution from data in a supervised setting, without making any assumption of the underlying noise model. In our work, we use Normalizing Flows to model the noise but we learn it in an unsupervised fashion thanks to the spatial constrains introduced by the 3D reconstruction process.

3. Our Approach

3.1. Overview

We will first present an overview of our approach (Sec. 3.1) before describing the STEM image formation (Sec. 3.2), an implicit 3D representation of the result (Sec. 3.3) and a noise model (Sec. 3.4) for STEM. We conclude on details of the loss used (Sec. 3.5).

Our system is modeled after NeRF but with two important generalizations (Fig. 2): First, where NeRF is modelling an emission-absorption model for photons [44], we consider a model for electrons. Second, we do not map from
a 3D solution to a single 2D image, but to a distribution of images, including the noise. This prevents converging to the mean of the noise, which is not the correct value. We will explain both parts in the next sections.

3.2. Image formation model

Our image formation is comprised of a ray-marching variant suitable for noisy and out-of-focus electron beams.

Acquisition setup: The image acquisition process in STEM uses an electron beam that is focused at a point within the sample as it is illustrated in Fig. 3, a. Electrons that pass through the specimen from the top are then captured by the detector. This process is repeated for all pixels in the image by displacing the sample by a certain distance, p_s as seen in Fig. 3, b. Once the image is complete, the sample is tilted by α degrees and the spatial scan is repeated until the desired number of images is captured. Common existing hardware allows for a tilt of up to ± 72 degrees [20].

Raymarching for electrons: We here adopt the pinhole emission-absorption model now often used in differentiable volume rendering [29, 44] to electron beams.

In an absorption-only model [40], the fraction of electrons lost

$$\frac{dE(r(t))}{dt} = -\sigma(r(t))E(r(t))$$

(1)

for an infinitesimal step dt at distance t along a ray $r(x + t \cdot \omega)$ from position x in direction ω is proportional to the density $\sigma(r(t))$ of the medium at that position along the ray. Electrons, technically, are not absorbed but scattered into many different forms of secondary emissions, we ignore here as the detector is small compared to the distance to the sample, and almost all scattered electrons will not arrive at the detector. Also, all electrons have the same energy in STEM, and hence density does not depend on what would be wavelength or color for photons in the optical regime. This equation has the solution [40]

$$E(r) = \exp\left(- \int_0^t \sigma(r(t)) dt \right).$$

(2)

The inner integral can be solved by numeric quadrature, *i.e.* as a sum or using Monte Carlo estimation.

Defocus: Above considerations assume an infinitely small ray, while in reality, the contribution to the readings of a detector pixel is the confound effect of a bundle of rays. Hence the electron beam is not a double-cone but a double-wedge as seen in Fig. 3, c. A system is in focus, if the ratio p_s/d_s between the pixel distance and the width of the electron beam is larger than 1. The example in Fig. 3, b/c is in focus, as $p_s > d_s$ and so is the setup used in our results with $p_s/d_s = 1.86$ for a tilt angle of $\alpha = 0$.

If the sample is tilted however (Fig. 3, d), locations at distance from the tilt axis move out of the focal plane, resulting in out-of-focus blur. While the hardware accounts for the angle of the tilt α, there is always a small error in angle, resulting in a residual angle β. Not accounting for this aspect will result in a system which learns the blur or a mix of blurry and sharp observations when seeing one world point under different (residual) tilt angles.

The full out-of-focus image formation could be solved via Monte-Carlo integrating not only the path integral from Eq. 2, but also an integral over an area of all sensor locations A and a set of directions Ω for a pixel P

$$E(P) = \int_A \int_\Omega \exp\left(- \int_0^t \sigma(r(x, t)) dt \right) d\omega d\chi.$$

(3)

To solve this integration problem effectively, we seek inspiration from Computer Graphics approaches for realistic simulation of lenses [48], in particular screen space methods [51]. These represent the 5D double integral in Eq. 3 as a 2D integral in image space instead. This integral then becomes a spatially-varying convolution of per-pixel radiance $E(r)$ with a Point-spread Function (PSF) of the optical system. The action can be described by the convolution

$$E(P) = \kappa(\beta, d) * E(r)$$

(4)

$$\kappa(x|\alpha, d) = \exp(-||x|| \cdot \tan(\alpha) \cdot d)$$

(5)

with a single blur kernel κ that depends on the tilt angle β and the image-space distance d from the tilt axis. While the true PSF of STEM might have a different shape, the qualitative low-pass is reproduced by this Gaussian which is fast to execute and well-differentiable.

3.3. 3D Representation

In EM, density distribution σ in 3D space is classically modeled as a discrete grid. We follow the recent trend
[15, 42, 44] to represent such 3D fields as an implicit function instead. We use a Multi-layer perceptron (MLP) \(\sigma_0 \) that maps position to density. For details on the MLP architecture, we refer the reader to the supplementary material.

Notation: Shorthand, we will drop the dependency of \(E(r) \) on \(r \) and will write \(\bar{E} \) for the radiance of some ray. On occasion, we will further write \(E^\theta \), to denote the radiance resulting from tracing a certain ray through an implicit field defined by an MLP choosing parameters \(\theta \).

3.4. Noise model

Unfortunately, we can only measure a noisy estimate of the true number of electrons per unit space, time and solid angle. This is, both because of the quantized nature of the electron beam, resulting in Poisson-like noise, and due to other sources of noise, in particular from the requirement to turn the electron beam into light to be read by a photo-sensitive A/D conversion.

Instead of observing \(E \), we have to deal with samples from \(p(\bar{E}|E) \), stating the probability density of observing \(\bar{E} \) when the true value is \(E \).

Were we given pairs of clean and noisy values \(\bar{E} \) and \(E \) it would be simple to train a generative noise model. In the case of STEM however, it is difficult to acquire pairs of clean and noisy sensor readings as the sensing process itself changes the sample while at the same time depending on the sample.

As a remedy, we train the noise model jointly with the 3D density field itself. The key insight here is that there is multiple noisy observations of the same clean density field, but under different rays.

We use Normalizing Flows [32, 50], as this can both: compute the density \(p(\bar{E}|E) \), the probability of \(\bar{E} \) given \(E \) (as required by our loss we describe next) and generate samples \(q(\xi|E) \sim p \) where \(\xi \) is a random number. We will write shorthand \(q^\phi \) for an instance of the noise model with tunable parameters \(\phi \).

In particular, we use eight 1D radial flow layers [50] which transforms a Gaussian distribution into our desired \(p(\bar{E}|E) \) distribution. These layers apply radial contraction and expansion around a reference point and are defined as:

\[
f(z) = x + \frac{\beta(z - z_0)}{\alpha + |z - z_0|}
\]

where the learned parameters are \(z_0 \in \mathbb{R}, \alpha \in \mathbb{R}^+, \) and \(\beta \in \mathbb{R} \). To condition the noise distribution to the real radiance, \(E \), and therefore allow for modeling signal-dependent noise, in the last four layers of our Normalizing Flow model, the learned parameters \(\{z_0, \alpha, \beta\} \) are predicted by a small MLP which takes as input \(E \).

Recent work has suggested to use more complex Normalizing Flow models to learn a noise distribution from noise–clean pairs [3]. Such models use CNN layers to condition the learned distribution on a region of the clean image. Unfortunately, allowing the noise model to inspect the image could allow the model to not only learn the noise distribution but also to fix artifacts and missing details that the 3D reconstruction was not able to recover. By conditioning the model on a single pixel, our reconstruction framework is able to separate the 3D signal from the noise.

Implementation: In this section we describe the target probability density function as \(p(\bar{E}|E) \). Instead, we learn the distribution of differences between the true and the observed radiance, \(p(\bar{E} - E|E) \). This objective is equivalent to the one described in this section. However, this distribution allows for the gradients to propagate not only through the flows’ conditioned layers, but also directly from the loss.

3.5. Loss

We are looking for a scalar density field \(\sigma^\theta(x) \in \mathbb{R}^3 \rightarrow \mathbb{R} \) as well as a noise model \(q^\phi(\xi) \in \mathbb{R} \rightarrow \mathbb{R} \) with tunable parameters \(\theta \) and \(\phi \), to explain the observed opacities \(\bar{E}_i \).

We can compute the clean solution for pixels in images as we know their relative orientations, camera geometry and hence, the ray \(r_i \) of every pixel.

Clean case: With access to clean observations, we could minimize the empirical risk

\[
\arg\min_\theta \mathbb{E}_i [\mathcal{L}(\bar{E}^\theta_i, \bar{E}_i)].
\]

Recall, that clean samples \(E \) do not exist and we have to work with noisy samples \(\bar{E} \), leading to the following thought experiment:

Consider the case of a volume of constant density \(\theta \) and an optimization to find this density given multiple noisy observations of that volume \(\bar{E}_i \). If we were to minimize this under the \(\mathcal{L}_2 \) loss, it was to produce the mean of all density solutions explaining all observation. Under an \(\mathcal{L}_1 \), it would

Figure 3. STEM imaging process: (a) Ideal double-cone set up of a single pixel. (b) Pixel distance and refocus. (c) Non-ideal double-wedge setup and circle of confusion. (d) Non-ideal tilt and resulting variation in the circle of confusion. (e) Electron transport in a slab.
converge to the median of all density solutions. Importantly, neither mean or median of the distribution of solutions is the ground truth value θ of complex STEM noise.

Noisy case: The key to make this work, is to match the entire distribution of noisy observations to a generative model producing a distribution of radiances. The only combination to explain those distribution pairs is a parameter pair θ, ϕ: a clean 3D volume that, after ray-marching and defocus blur, and after adding synthetic noise, produces the observation distribution. Hence, we minimize

$$\arg\min_{\theta, \phi} \mathbb{E}_{i,\xi}[\mathcal{L}_{\text{MLE}}(p^{\phi}(\hat{E}_i - E_i^\theta|E_i^\theta))].$$

Note, that the distribution loss is defined on the difference of noisy observations in respect to the clean ones. This allows for learning the correct solution up to an additive constant. As most applications are not concerned with getting the exact absolute value (such as a photo does not tell the absolute radiance unless we know exposure, aperture and ISO), this might be an acceptable limitation in most – but not all – applications. Noteworthy, this is not a limitation of knowing the exact physical parameters of the STEM but a core limitation of our approach to denoising.

4. Results

We present results of our approach in different datasets, for different methods according to different metrics which we will all explain next.

Data: We consider a SYNTHETIC and a REAL data set. The main motivation is, that to our knowledge no ground truth data for a quantitative evaluation of real STEM acquisitions is available. Recall, that training proceeds from scratch for every data set. For every data set we have a certain number of noisy 2D images available, that is split into test, train and validation.

The SYNTHETIC data set is comprised of random arrangements of ellipsoidal shells of a random density and a density model of the ZIKV (i.e., Zika) virion at 15Å by Long et al. [38]. As we know the clean analytic solution, this data set can be used for quantitative evaluation. As it resembles the 3D structure of cells, it allows for qualitative evaluation, too. We assume a 79-image tilt series ranging from -59.5° to 59° with 1.5° steps. Additionally, we generate 14 projections for validation, and 20 for testing. All projections are rendered in 1000×1000 pixels. To add noise to the simulations we train a Normalizing Flow to match the distribution of the noisy tilt series. By sampling from the trained Normalizing Flow model, we are able to generate a pair of tilt series, with clean and noisy projections.

The REAL images contain cells infected with SARS-CoV-2 using short exposure times. The tilt series ranges from -72° to 72°, with a tilt step of 1.5° at a resolution of 900×900 pixels. Before reconstruction, we align the raw tilt series with the IMOD software by Kremer et al. [33], using fiducials. For validation we use a projection of the training data. Without a way to capture ground truth for such data, they are used only for qualitative evaluation.

Methods: Besides Ours, we consider commonly used reconstruction algorithms for STEM images and several variants of our method. The first methods are the weighted back-projection (WBP) and the Simultaneous Iterative Reconstruction Technique (SIRT) method (SIRT) implemented in the software package IMOD [33], a state-of-the-art industry solution to tomographic reconstruction problems. Next, we explore using our implicit 3D representation but training directly under and L_2-loss, as done in NeRF, for either the noisy data directly (L2Noisy) or the data denoised in 2D with a common denoiser, BM3D (L2Den).

We study a supervised variant of our approach, which assumes the knowledge of the noise model (OursSup). Lastly, L2Clean is the same setup as L2Noisy, but trained on the clean projections instead. This is an upper bound what the implicit 3D reconstruction can achieve for this data if no noise is present in the observations.

Metric: We consider different metrics on different forms of the results: The full 3D volume and random 2D projections. For 2D we can apply DSSIM, Peak Signal-to-noise Ratio (PSNR) and Mean Squared Error (MSE), in 3D PSNR and MSE. The full 3D volume is discretized to 1000×1000×1000, images are rendered in 1000×1000.

Training Details: For training of the MLP we use an ADAM optimizer with a learning rate of 5^{-5}. For training
Table 1. Main quantitative results of different methods (rows), reconstructing a known ground truth volume according to different metrics (columns). The best method across all methods without access to clean ground truth are shown in **bold**.

<table>
<thead>
<tr>
<th>Method</th>
<th>Loss</th>
<th>Imp.</th>
<th>Clean.</th>
<th>2D PSNR</th>
<th>2D MSE</th>
<th>2D DSSIM</th>
<th>3D PSNR</th>
<th>3D MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBP</td>
<td>\mathcal{L}_2</td>
<td>x</td>
<td>x</td>
<td>2.97</td>
<td>50.901</td>
<td>4.904</td>
<td>7.62</td>
<td>17.299</td>
</tr>
<tr>
<td>SIRT</td>
<td>\mathcal{L}_2</td>
<td>x</td>
<td>x</td>
<td>3.27</td>
<td>47.622</td>
<td>4.832</td>
<td>9.13</td>
<td>12.223</td>
</tr>
<tr>
<td>L2Noisy</td>
<td>\mathcal{L}_2</td>
<td>✓</td>
<td>x</td>
<td>13.86</td>
<td>1.885</td>
<td>4.271</td>
<td>19.73</td>
<td>1.064</td>
</tr>
<tr>
<td>L2Den</td>
<td>\mathcal{L}_2</td>
<td>✓</td>
<td>x</td>
<td>18.15</td>
<td>0.849</td>
<td>1.544</td>
<td>20.25</td>
<td>0.944</td>
</tr>
<tr>
<td>Ours</td>
<td>\mathcal{L}_{MLE}</td>
<td>✓</td>
<td>x</td>
<td>19.93</td>
<td>0.645</td>
<td>1.020</td>
<td>21.75</td>
<td>0.669</td>
</tr>
<tr>
<td>OursSup</td>
<td>\mathcal{L}_{MLE}</td>
<td>✓</td>
<td>x</td>
<td>20.07</td>
<td>0.636</td>
<td>0.991</td>
<td>20.64</td>
<td>0.864</td>
</tr>
<tr>
<td>L2Clean</td>
<td>\mathcal{L}_2</td>
<td>✓</td>
<td>✓</td>
<td>20.73</td>
<td>0.393</td>
<td>0.840</td>
<td>21.60</td>
<td>0.691</td>
</tr>
</tbody>
</table>

Figure 5. Qualitative results of different methods (row) for different slices (column) of the REAL data set. Trends of the SYNTHETIC data can be revisited on the REAL data, even though differences in the outcome of the learned approaches are less noticeable. Again, in the presence of noise, WBP and SIRT cannot produce useful output. Training after denoising (L2Den) suppresses small details and results in an overall smoother reconstruction. But differences on L2Noisy and Ours are hard to evaluate, specially without the knowledge of GT.

the Normalizing Flow we found that using the SGD optimizer worked the best. For the REAL data set we use 512 neurons in the hidden layers of the 3D reconstruction module, while we only use 256 neurons on the SYNTHETIC data set. For training Normalizing Flow in a supervised manner (OursSup) we used a learning rate of 5^{-7}, whilst the training in an end-to-end fashion (Ours) required a larger learning rate of 5^{-5} in order to perform well. All networks were trained for 400,000 iterations and validation error reported every 10,000 iterations. The model with the best validation error was chosen to compute test errors.

Outcome: Fig. 6 presents the qualitative results of the
experiments on synthetic data. With the Inviwo software [30], we created two volume renderings of the same reconstruction, one with a cut through the middle of the volume and the second one with the complete volume. Furthermore, we show a single slice of the reconstructed volume. For the volume renderings we manually selected the transfer function on the ground truth volume to see all elements of the volume, and used it on the other methods.

We can see from the results that standard algorithms, WBP and SIRT, despite reconstructing the overall shape, miss fine details in certain areas. The methods are not able to cope with the noise and this results in a noisy 3D reconstruction. In L2Noisy, the noise is incorporated around the reconstructed shapes. However, the reconstruction is over-smoothed and small details are not well recovered. L2Den improves over L2Noisy and the noise around the volume disappears. Unfortunately, the fine details are still not recovered. When we look at both version of our method, OursSup and Ours, we see that the noise surrounding the volume disappears and the details are well reconstructed. We can see that both are close to the result obtained if there is no noise present on the observations, L2Clean. When we compare OursSup and Ours we see that Ours performs slightly better than the supervised version.

The main quantitative results are shown in Tab. 1. Here we see similar results as observed in the qualitative evaluation. WBP and SIRT obtain low performance in all metrics. L2Noisy performs better than standard algorithms but worse than L2Den. Ours achieves the best performance on all metrics. When compared with the supervised version of our method, OursSup, the latest achieves slightly better performance on the 2D metrics but worse than Ours in the 3D metrics. Lastly, the baseline L2Clean trained in the absence of noise, as expected, achieves the highest performance on almost all metrics. However, Ours obtains a better MSE on the 3D volume even if it is trained in the presence of noise. This indicates that our method is not only able to model the noise, but also that the reconstruction benefits from the unsupervised setup.

Lastly, we provide the results of the qualitative evaluation on the REAL data in Fig. 5. Here, we follow a similar procedure as in the SYNTHETIC data set and perform a volume-based visualization and a visual analysis on the slices of the reconstructed volume. We can see that the two baselines, WBP and SIRT, as in the synthetic data, incorporate the noise in the observation into the 3D volume, leading to reconstructions with low quality. On the other hand, Ours is able to recover high detailed volumes while L2Den generates an over-smoothed version as when applied to synthetic data. However, when compared to L2Noisy, even if Ours is able to better recover certain parts of the volume, the gap between these methods is smaller. Unfortunately, the lack of a ground truth volume makes it difficult to quantitatively determine which reconstructions is more accurate. Nevertheless, based on the qualitative evaluation and the results on synthetic data, we can conclude that Ours achieves a cleaner reconstruction.

Ablations: We evaluate how our framework performs under limiting model capacity for the reconstruction network. In this experiment, we reduce the number of features in the MLP from 256 to 32 and compare L2Noisy and Ours on our synthetic data set. We can observe that when the model capacity is reduced, both methods obtain a similar reconstruction. Ours achieved a MSE of 1.18 on the 3D volume while L2Noisy obtained 1.07. When the MSE is measure on the 2D images, we obtained 4.67 for Ours and 5.40 for L2Noisy. That might be an indication that the balance during training between 3D reconstruction and noise model requires a careful selection of the different hyper-parameters to separate 3D signal and noise.

Moreover, we evaluate the effect of accounting for the defocus in our image formation module. We use a synthetic dataset where we add a large defocus effect based on Eq. 5. We observed that accounting for this effect in the reconstruction process improves reconstruction accuracy, obtaining 0.91 MSE in the 3D volume instead 0.97 MSE when we do not account for it. For more detailed ablation studies we refer the reader to the supplementary material.

Limitations: Based on the ablation studies, the main limitation of our reconstruction algorithm is the careful selection of the hyper-parameters required to successfully separate 3D signal from noise. This problem might be tackled with computational resources as is done in other reconstruction software. However, we acknowledge that a large-scale evaluation of hyper-parameter selection on different data sets should be a future research direction.

5. Conclusion

We have shown, that a combination of a noise model and an implicit 3D shape representation can acquire 3D structure from noisy observations at a quality surpassing state of the art. To our knowledge, before no noise model for STEM was available and no implicit representation was fit to STEM imagery, in particular not jointly. Our combination makes progress along the most relevant access in this regime, the handling of noise and the representation of spatial detail. We would hope this approach will lend itself favourable to similar high-noise, non-photographic regimes with specific noise and image formation models.

Acknowledgments

This work was financed by the Baden-Württemberg Stiftung (BWS) for the ABEM project under grant MET-ID12–ABEM.
Figure 6. Qualitative results of different methods (columns) for different slices of the SYNTHETIC data set (row triplets). In the presence of noise, WBP and SIRT cannot produce useful output. Training L2 on noisy images (L2Noisy) results in blurry details (in the top triplet) as well as strong constant bias over empty space. Training after denoising can remove this bias in empty space, but at the expense of spatial detail where the spherical virus structures have disappeared. Our OursSup and Ours resolve structures more similar to the ground truth.
References

[36] Xinhao Liu, Masayuki Tanaka, and Masatoshi Okutomi. Practical signal-dependent noise parameter estimation from

Roberto Marabini, Gabor T Herman, and José M Carazo. 3d reconstruction in electron microscopy using art with smooth spherically symmetric volume elements (blobs). *Ultramicroscopy*, 72(1-2):53–65, 1998. 2

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. PixelNeRF: Neural radiance fields from one or few images. In *CVPR*, 2021. 2

Yide Zhang, Yinzhao Zhu, Evan Nichols, Qingfei Wang, Siyuan Zhang, Cody Smith, and Scott Howard. A poisson-gaussian denoising dataset with real fluorescence microscopy images. In *CVPR*, 2019. 2
