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Abstract

Unsupervised image-to-image translation has gained
considerable attention due to recent impressive advances
in generative adversarial networks (GANs). This paper
presents a simple but effective regularization technique for
improving GAN-based image-to-image translation. To gen-
erate images with realistic local semantics and structures,
we propose an auxiliary self-supervision loss that enforces
point-wise consistency of the overlapping region between
a pair of patches cropped from a single real image dur-
ing training the discriminator of a GAN. Our experiment
shows that the proposed dense consistency regularization
improves performance substantially on various image-to-
image translation scenarios. It also leads to extra perfor-
mance gains through the combination with instance-level
regularization methods. Furthermore, we verify that the
proposed model captures domain-specific characteristics
more effectively with only a small fraction of training data.

1. Introduction
Generative adversarial network (GAN) [8] is an inno-

vative framework for generative modeling, i.e., generating
images that follow the same distribution as training data.
The performance of the state-of-the-art GAN models de-
pends highly on the quality of discriminators, which dis-
tinguish real images from fake ones while maintaining the
balance with matching generators for the joint optimization.
Since discriminators are prone to overfit the training dataset
and often lead to the mode collapse of generated outputs,
learning robust discriminators is critical to accomplish high-
performance generators.

To this end, self-supervised learning methods have been
actively used for regularizing discriminators in the GAN

*These authors contributed equally.
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Figure 1. Qualitative comparison of output feature maps given by
three different variation of the baseline mode, CUT [26], for an
example in the Horse → Zebra dataset. The activations from DCR
highlight foreground accurately while suppressing background ef-
fectively, which helps the image-to-image translation task focused
more on target objects.

framework [15, 16, 32, 34]. The goal of the regulariza-
tion is to obtain robust representations of images for better
discrimination of real and fake images [17]. The existing
methods often rely on contrastive learning in an instance-
level [3, 15, 16, 32], where a pair of augmented instances
from an image are encouraged to have consistent features
with respect to predefined global transforms while negative
images are optionally considered to achieve better repre-
sentation learning in discriminators. However, the regular-
ization based only on such global representations may be
limited to imposing loose constraints on discriminators and
may allow generators to deceive the discriminator despite
local structural or semantic inconsistency in output images.

To alleviate the drawback, we propose a dense consis-
tency regularization (DCR) approach applicable to the dis-
criminator of a GAN. DCR provides stronger constraints to
the learned representations given by discriminators through
their point-wise consistency between a pair of patches
cropped from the same image. Our work is motivated by the
hypothesis that image generation requires pixel-level pre-
diction [14] and a dense regularization of representations
is an effective way to improve the supervision quality of a
discriminator. The goal of the proposed dense consistency
regularization is to generate images with both semantic con-
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Figure 2. Illustration of the proposed DCR method. When updating a discriminator, two augmented views are randomly cropped from a
single real image. The two views are then processed by the intermediate feature extraction network D0, where D0 is the first part of he
discriminator while the remaining part is denoted by D1. Note that D1 is not used in our work. The DCR module is applied to one of the
branches, and a stop-gradient operation is employed in the other one. The loss LDCR is given by the similarity between the representations
of two branches over the overlapping region Ω while Ω̃ denotes the binary map indicating matching pairs of pixels.

sistency and visual harmony in spatial neighborhoods. This
is achieved if the discriminator focuses on important fea-
tures or regions for image-to-image translation instead of
the background, as shown in Figure 1. Our main idea is il-
lustrated in Figure 2, where the dense correspondence reg-
ularization is imposed on the intermediate layers of the dis-
criminator.

We evaluate the proposed approach on various image-to-
image translation scenarios such as CycleGAN [37], MU-
NIT [13], StarGANv2 [5], CUT [26], and FSeSim [36]. Ac-
cording to our experiments on the Horse → Zebra, Winter
→ Summer, Cat → Dog, and AFHQ datasets, the mod-
els with DCR consistently improve the FID scores com-
pared to the models without DCR, which confirms that DCR
indeed captures domain-specific characteristics effectively.
For example, we manage to improve the FID score of Cycle-
GAN [37] from 78.2 to 54.4, and that of MUNIT [13] from
102.3 to 59.9 on the Horse → Zebra dataset. Moreover, we
also find out that DCR is particularly powerful with a small
number of training data. Specifically, StarGANv2 [5] with
DCR achieves the best FID score of 17.15 even if only 10%
of a specific domain in the AFHQ dataset is used for train-
ing, while the best FID scores of StarGANv2 [5] are 22.63
and 17.86 with 10% and 100% of the examples in AFHQ.

We summarize our contributions as follows:

• We introduce a novel dense consistency regularization
technique, referred to as DCR, for the discriminators of
GANs, which facilitates high-fidelity image generation
and translation.

• We show that DCR is effective to maintain structural
and semantic consistency in the spatial neighborhoods
of generated images.

• We empirically demonstrate that DCR achieves out-
standing performance in various image-to-image trans-
lation scenarios.

In the rest of this paper, we first discuss closely related
works to our approach in Section 2, and present our algo-
rithm and implementation details in Section 3. Section 4
demonstrates the results from our experiments with their
analysis, and Section 5 concludes this paper.

2. Related Work
This section reviews existing regularization methods im-

posed on the discriminator of GANs and presents generic
dense representation learning techniques applicable to dis-
criminator regularization. We also discuss existing ap-
proaches in image-to-image translation, which is the pri-
mary target task of the proposed regularizer.

2.1. Regularization for Discriminator

GAN [8] is a well-known generative model particularly
effective for image generation and translation tasks. The
generator is trained to produce realistic images deceiving
the discriminator while the discriminator learns to distin-
guish between fake images obtained from the generator and
real ones sampled from training data. The great advance in
network architectures of GANs capacitates the generation
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of more realistic images, but GANs still suffer from inher-
ent stability issues in training, especially high sensitivity to
hyperparameters originated from the non-convexity of the
min-max objective function.

The issue has been address in various studies, which in-
clude integration of the normalization method [24] or regu-
larization via gradient penalization [10, 19, 29]. The reg-
ularization for discriminators turns out to stabilize train-
ing and improve performance [15, 16, 32, 34, 35]. We hy-
pothesize that the main reason for the improvement is good
representation in the discriminator side, which is crucial to
distinguish real images from fake ones and eventually in-
creases the quality of the generator. In particular, [34] intro-
duces a simple consistency regularization (CR) to discrimi-
nators, and obtains substantially enhanced quality of gener-
ated images with reduced computational cost compared to
gradient-based regularization techniques [10, 19, 29].

To learn more informative representations by optimizing
discriminators, self-supervised learning approaches have
been employed [3,15,16,32]. For instance, [3] incorporates
the auxiliary rotation loss for self-supervision, by which
both the real and generated images are classified into one
of the relevant rotation angles, {0◦, 90◦, 180◦, 270◦}. Con-
traD [15] distinguishes two independent real images as well
as a pair of real and fake images to mitigate the overfit-
ting problem in discriminators while learning more pow-
erful representations in them. The promising results from
these works imply that the learned representations in a dis-
criminator play a crucial role in improving the performance
of GANs in practice.

2.2. Dense Representation Learning

Image-level prediction tasks, e.g., image classification,
often achieve significant performance improvement by in-
corporating self-supervised visual representation learning
via instance discrimination, which maximizes the similarity
between two augmented images while optionally decreas-
ing the similarity between different ones [2, 4, 9, 11, 33].
However, such instance-level contrastive learning methods
may be suboptimal as a pretext task due to the lack of their
spatial sensitivity.

To address the limitation, dense self-supervised learning
approaches have been proposed, where they take into ac-
count the pixel-level similarity between two augmented im-
ages [27, 28, 30, 31]. View-Agnostic Dense Representation
(VADeR) [27] adopts the pretext task that pulls the features
at the overlapping locations of two different views cropped
from a single image, while making the features from the
non-overlapping regions apart from each other. However,
VADeR relies heavily on a large number of negative pairs
and consequently incurs high computational cost. On the
other hand, [31] proposes a pixel-to-propagation consis-
tency (PixPro) regularization without negative pairs, which

encourages the pixels in the spatial neighborhood to have
similar representations. Spatially Consistent Representa-
tion Learning (SCRL) [28] enforces the consistency of the
features corresponding to the same objects that are identi-
fied in two different views of a single image.

2.3. Image-to-Image Translation

Unpaired image-to-image translation techniques are di-
vided into two categories depending on the use of cycle con-
sistency loss, which facilitates learning an inverse mapping
from the target domain to the source domain [18, 37]. The
loss is defined in either the image domain [5, 18, 21, 37] or
the latent space [13, 22, 23] to preserve the key attributes
between input and output images. Although the learned
mapping with the cycle consistency is reliable enough to
provide high-quality outputs in image-to-image translation,
the translated images may contain too much information of
the input images for its effective reconstruction, resulting in
undesirable outputs.

To address this issue, distance-based loss [1] and geo-
metric consistency [7] have been adopted for the transla-
tion from the source to the target without using its inverse
mapping. The contrastive learning framework is adopted
to preserve the content of the original image in the trans-
lated image [26], where a patch-wise contrastive loss is pro-
posed to maintain the correspondence between the source
and target images. A structure consistency loss is employed
to enforce the self-similarity between the source and tar-
get images [36]. CUT [26] and F/LSeSim [36] deliver bet-
ter results than the algorithms with the cycle consistency
loss by taking advantage of cross-domain similarity func-
tions. However, these algorithms focus only on the com-
parison between the original and translated images with no
consideration about the representations in their discrimina-
tors. Since we believe that the discriminator representation
reflecting the target domain distribution accurately is a cru-
cial component to generate high-fidelity images in image-
to-image translation, we propose a dense consistency regu-
larization strategy via self-supervised learning.

3. Dense Consistency Regularization (DCR)
This section presents our main algorithm, especially the

technical details of dense consistency regularization mod-
ule. We also discuss several implementation issues of the
proposed approach.

3.1. Motivation

The role of the discriminator in GANs is to distinguish
real data from fake ones created by the generator and pro-
vide the generator with the proper feedback for producing
realistic images. Contrary to discriminative tasks such as
image classification, image generation requires pixel-level
predictions in its output. Hence, the discriminator should
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be able to capture the local context of an output image
for the high-fidelity to the target domain in the image-to-
image translation task. Spatial sensitivity in the representa-
tion learning has been introduced by [31], which measures
the consistency of spatially overlapping pixels for more dis-
criminative learning around object boundaries. To make the
discriminator have spatial sensitivity, we design a task for
the local feature similarity measure and discuss its details in
the rest of this section. To obtain mid-level local features,
we decompose a discriminator D into two subnetworks de-
noted by D0 and D1 such that

D = D1 ◦D0. (1)

As in most visual representation learning, we start by sam-
pling two augmented views x1 and x2 from an image x. The
two views are resized to a fixed resolution (e.g., 128× 128)
and passed through the shared feature extractor D0.

To verify our hypothesis, we visualize the output feature
map of the discriminator of CUT [26] in Figure 1, where
DCR focuses on the foreground area more effectively than
vanilla CUT [26] and CUT with CR [34] while suppressing
the activations in the background region. This result implies
that DCR is helpful to improve the quality of generated im-
ages, especially around object boundaries.

3.2. DCR Module

DCR is motivated by SimSiam [4], which utilizes only
positive pairs for contrastive learning and employs the stop-
gradient technique to prevent collapse to the trivial solution.
Note that, since image generation task needs to learn the
distribution of a target domain, sampling negative examples
from the target domain dataset is not straightforward. One
can introduce an additional dataset to obtain negative ex-
amples, but the selection of the negative dataset is tricky
because it requires sophisticated and comprehensive super-
vision to check various attributes of the dataset.

The proposed DCR module, denoted by R(·), consists of
two 1×1 convolutional layers and a LeakyReLU activation
between the convolutions. The output feature map size of
the DCR module is identical to that of its input (e.g., W ×
H × C) to maintain the spatial information. Suppose that
we have the intermediate representations of two augmented
images as r1 := R(D0(x1)) and z2 := D0(x2). Given the
overlapping region Ω of two views x1 and x2, we define the
negative cosine similarity of their corresponding features,
which is given by

simnc(r1, z2; Ω̃) ≡
∑

{(i,j)|Ω̃(i,j)=1}

− r1[i]

∥r1[i]∥2
· z2[j]

∥z2[j]∥2
, (2)

where Ω̃ is the binary map representing feature correspon-
dences, [·] is used to specify the index corresponding to a

particular location in a feature map, and ∥ · ∥2 indicates ℓ2-
norm. Following [4], the DCR loss is given by

LDCR =
1

2
simnc(r1, Fsg(z2)) +

1

2
simnc(r2, Fsg(z1)), (3)

where Fsg(·) is a stop-gradient layer1.
Since we expect the discriminator to extract more use-

ful information from images in the target domain, we ap-
ply DCR only to real images. Although the application of
DCR to generated images would be helpful for learning bet-
ter representations in the discriminator, we believe that this
regularization is not necessarily helpful for the better simu-
lation of the target domain distribution(Refer to Section C
in the supplementary).

3.3. Objective of Discriminator

The objective of the discriminator in the standard GAN
is given by

Ldisc = −Ex,y[logDy(x)]− Ex,y[log(1−Dy(G(x)))],

where Dy(·) denotes the output of the discriminator corre-
sponding to domain y. The proposed approach jointly min-
imizes the standard GAN loss and the DCR loss, which is
given by

LD = Ldisc + λ · LDCR, (4)

where λ is a hyperparameter set to 1 in our experiments.

3.4. Implementation Details

This subsection discusses a couple of crucial design is-
sues of our approach. We provide the further details about
our implementation in Section A of the supplementary file.

Location of dense representation We impose DCR to
the output of the final residual block or the input of the fi-
nal convolution layer in the discriminator. Since the per-
formance gain with the proposed DCR depends heavily on
the quality of dense representations, it is important to iden-
tify the proper levels of representations for the regulariza-
tion. We conduct ablation studies by varying the locations
for DCR within the network. More details about this issue
are discussed in Section 4.5.

DCR loss computation and positive pair selection We
measure the DCR loss, LDCR, in (3) based on two local fea-
tures D0(x1) and D0(x2) for the overlapping region. To
compute simnc(·, ·), we adopt the approach described in Pix-
Pro [31]. The position and scale of each pixel in the two
feature maps are first estimated and transformed to the orig-
inal image space. Then, we compute the distances between
all pairs of positions in the feature map and normalize the
distances considering the estimated scales.

1Fsg(z) means that z is frozen as a constant for backpropagation.
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Method Horse → Zebra Winter → Summer Cat → Dog (AFHQ) AFHQ
Metric FID↓ D&C ↑ FID↓ D&C↑ FID↓ D&C↑ FID↓

CycleGAN [37] − 78.2±1.0 0.56±0.14 / 0.73±0.12 80.9±4.6 0.88±0.03 / 0.82±0.06 85.9 0.54 / 0.48 −
DCR 54.4±3.3 0.72±0.01 / 0.89±0.00 74.6±1.7 0.91±0.00 / 0.82±0.06 71.0 0.55 / 0.46 −

CUT [26] − 43.2±2.3 0.73±0.06 / 0.87±0.02 77.8±0.5 0.56±0.12 / 0.51±0.24 76.2 0.38 / 0.41 −
DCR 34.0±0.4 0.96±0.10 / 0.90±0.0 73.2±0.5 0.89±0.15 / 0.65±0.24 68.4 0.54 / 0.48 −

FSeSim [36] 45.2±4.8 0.75±0.14 / 0.83±0.04 86.5±4.0 0.66±0.05 / 0.81±0.02 87.3 0.20 / 0.07 −
DCR 36.7±1.4 0.89±0.02 / 0.89±0.02 74.5±0.2 0.83±0.00 / 0.86±0.02 73.5 0.34 / 0.10 −

MUNIT [13] − 102.3±4.3 0.29±0.11 / 0.43±0.09 97.0±0.5 0.12±0.03 / 0.16±0.06 104.4 0.21 / 0.32 61.6
DCR 59.9±0.1 0.28±0.04 / 0.44±0.07 91.2±0.4 0.19±0.06 / 0.31±0.01 88.2 0.33 / 0.42 56.0

StarGANv2 [5] − 19.7 1.38 / 0.68 42.2 0.23 / 0.39 44.2 0.93 / 0.69 18.1 (16.2∗)
DCR 19.4 1.65 / 0.73 39.7 0.27 / 0.38 33.0 0.98 / 0.66 17.4

DRIT++ [22] − 88.5 0.21 / 0.35 93.1 0.24 / 0.37 110.9 0.25 / 0.19 −
DCR 67.1 0.29 / 0.44 82.6 0.28 / 0.44 107.8 0.19 / 0.20 −

Table 1. Quantitative comparison in terms of FID scores and D&C for various image-to-image translation models on the Horse → Zebra,
Winter → Summer, Cat → Dog, and AFHQ datasets. Standard deviations are calculated from two runs. For the StarGAN v2, due to the
inherent uncertainty of the model using the random latent codes, we present the average performance from our reproductions while the
reported score in [5] is 16.2 on the AFHQ dataset.

PixPro [31] proposes to select positive pairs based on
the fixed threshold for the distance in the whole batches.
However, DCR can be applied to any locations in the dense
representation map, we should consider feature map size
as an additional factor. Hence, the positive pairs for the
feature correspondence are identified by Ω̃, whose elements
are given values as follows:

Ω̃(i, j) =

{
1, if dist(i, j) ≤ τ · sf
0, otherwise

, (5)

where dist(·, ·) denotes the normalized distance between of
two locations within an image, and τ and sf indicate the
hyperparameters for the threshold value and the spatial res-
olution of the feature map, respectively. We set τ to 0.5 in
our experiment and present its impact on the accuracy in
Section 4.5.

4. Experiments
We verify the effectiveness of DCR in three different

aspects: (a) image-to-image translation performance with
one-sided and two-sided translation models, (b) benefit of
the proposed regularizer with limited availability of train-
ing data, and (c) applicability to unconditional GANs. We
also conduct a few ablation studies to show the robustness
of the proposed approach.

4.1. Experiment Setup

We analyze our method mainly on image-to-image trans-
lation since the verification of the desired properties in an
output image is more straightforward in conditional GAN
models. The image-to-image translation task typically in-
volves two distinct problems—shape deformations and tex-
ture changes, we evaluate the performance of the proposed

approach in both aspects. Since DCR is a generic con-
sistency regularization technique for the discriminator of a
GAN, we test its applicability to unconditional GAN mod-
els. Note that an unconditional GAN model maps the pre-
defined latent distribution to the distribution in the target
domain. Hence, we consider an unconditional GAN task
as a special case of a conditional GAN problem with a la-
tent source domain while the source domain of the image-
to-image translation is defined by the images in the corre-
sponding training dataset.

Tested models Existing unpaired image-to-image transla-
tion approaches belong to either the two-sided or one-sided
framework. The two-sided framework exploits both for-
ward and backward mappings between the source and target
domains. We apply DCR to CycleGAN [37], which is one
of the most representative works in the two-sided frame-
work. We also adopt MUNIT [13] and StarGANv2 [5],
which employ the cycle consistency loss at the feature level
and the pixel level, respectively. In addition, we apply
DCR to DRIT++ [22], which utilizes disentangled repre-
sentations for image-to-image translation. As the one-sided
baseline models, we employ CUT [26] based on the con-
trastive patch relation and FSeSim [36] based on the struc-
ture similarity. For unconditional GANs, we employ SND-
CGAN [24] as the baseline and also augment ContraD [15],
a recently proposed contrastive regularization method at the
instance level, to achieve additional performance boosting.

Datasets and metrics The datasets for image-to-image
translation tasks need to contain images with geometric de-
formations or texture changes across domains. We carry out
extensive experiments to verify the effectiveness of DCR on
three commonly used datasets for the image-to-image trans-
lation. The tasks related to texture changes are evaluated
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Figure 3. Qualitative comparison of image-to-image translation results on the Horse → Zebra, Winter → Summer, and Cat → Dog
datasets. CycleGAN [37], CUT [26], and FSeSim [36] are employed as the baseline models and the proposed DCR is integrated into those
models. The proposed DCR can add the appropriate patterns of the zebra on the horse and more realistic images compared to the baseline
algorithms.

on the Horse → Zebra and the Winter → Summer dataset.
The Cat → Dog dataset from AFHQ is employed to test
the shape deformations and geometric transformations.For
the image-to-image translation with multiple domains, we
also use the AFHQ dataset [5], high-quality animal faces
with large intra- and inter-class variations. For uncondi-
tional GANs, we utilize CIFAR-10 [20], which contains
60K 32 × 32 images with 10 labels, 50K for training and
10K for testing. We measure a Frechet Inception Distance
(FID) [12] as a quantitative metric to evaluate generation
quality and how accurate the target distribution is. We also
report the density and coverage (D&C) [25], which simulta-
neously calculate diversity and fidelity of generated results.

4.2. DCR for Image-to-Image Translation

For the evaluation of DCR with various existing image-
to-image translation models, we use the official implemen-
tation of each model and incorporate DCR into it. We em-
ploy Horse → Zebra, Winte → Summer, and Cat → Dog
(AFHQ) to evaluate the models for a single domain. Since
StarGANv2 [5] and MUNIT [13] can handle multiple do-
mains, they are also tested on the AFHQ dataset. We trained
three MUNIT [13] models for each direction and computed
the average of FIDs followed by [5].

Table 1 presents the comprehensive results and demon-
strates consistent improvements over all the baseline mod-
els on the tested datasets. For StarGANv2 [5] using AFHQ
dataset, we would like to note that we reported the average
of the best FID scores from 3 trials. There are some gaps

between the reproduced results and the reported ones in the
original paper [5]. This may come from the underlying ran-
domness due to the use of random vectors for latent guided
translation. Therefore, we compare the performance using
the reproduced results.

It is noteworthy that significantly improved FID scores
are achieved by the proposed DCR in the same setup with
the baseline models without modifying the hyperparame-
ters. The DCR loss turns out to be effective for shape defor-
mations, which is validated by consistently improved results
on the Cat → Dog dataset in terms of FID. As described in
Section 3.4, we apply DCR to the input of the last convolu-
tion layer, which is more advantageous for shape deforma-
tion tasks according to our analysis presented in Section 4.5.
We also employ the recently introduced metric, D&C [25],
and confirm consistently improved performance compared
to the base algorithms except few exceptions.

Figure 3 illustrates uni-modal image-to-image transla-
tion results using the baseline models, CycleGAN [37],
CUT [26], and FSeSim [36], and the ones with the DCR in-
tegration into these methods. It is worth mentioning that we
observe more realistic local semantics and structures in the
generated images with DCR compared to the baseline mod-
els. In the case of the Horse → Zebra dataset, CUT [26]
fails to provide an image with the desired zebra style while
the integration of DCR into CUT [26] is effective to gen-
erate a more zebra-like image from the given horse image.
Overall, DCR consistently provides better results for var-
ious datasets compared to the baseline models. Refer to
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StarGANv2 [5] StarGANv2 [5] + DCR

10 % 22.63 ± 3.70 17.15 ± 0.89
30 % 19.08 ± 4.88 16.88 ± 1.17
100 % 17.86 ± 0.54 16.72 ± 0.59

Table 2. Quantitative comparison of the best FID score for the
effect of DCR with few target data. We randomly selected 10%,
30%, and 100% of the wild domain of AFHQ dataset. The best
FID score is the average of the best FID score for cat-to-wild trans-
lation and the best FID score for dog-to-wild translation. We report
the mean and standard deviation of best FIDs across 3 trials.

Section B in the supplementary document for more qual-
itative results from uni-modal and multi-modal image-to-
image translation models.

4.3. DCR with Few Target Data

Although we achieved the FID improvement by apply-
ing DCR to various existing models, we wonder whether
the proposed DCR effectively reflects the local context of
target domain even under few data scenarios. To investi-
gate this, we randomly reduce the proportion of real data
from a specific domain in the training set to 30%, and 10%.
We perform experiments with the StarGANv2 [5] and the
AFHQ dataset, consisting of dog, cat, and wild domains,
as a baseline. We only reduce the wild domain, which has
various intra-variations (fox, cheetah, lion, and tiger). For a
fair comparison, we report the average performance across
three trials. Quantitative and qualitative results are shown
in Table 2 and Figure 4, respectively.

We observe that the FID score variance of Star-
GANv2 [5] is relatively large under few data scenarios.
Since data were randomly selected, the FID varied depend-
ing on the similarity of the selected data to the test data.
However, the proposed DCR shows less FID variance score
than baseline. This implies that the proposed method effec-
tively captures the local context of the target domain.

Figure 4 illustrates the reference-guided image-to-image
translation results for the AFHQ datset, where we only used
10% of the data for the wild domain, while we utilized
the overall data for other domains. It is worth mention-
ing that StarGAN v2 [5] with DCR provides significantly
better translated images compared to the baseline. In par-
ticular, due to the small amount of data in the wild domain,
the transformed images from the cat and dog images can-
not reflect the style of the cheetah image and became lion
images. However, the proposed DCR properly encoded the
style from the cheetah image, and translated into the ap-
propriate cheetah images. In addition, the proposed DCR
encourages the network to generate the translated images
while maintaining the geometry of the source images as
well. These results clearly confirm that the DCR is a pow-

Method CIFAR-10

SNDCGAN [24] 97.4
SNDCGAN+ContraD [15] 10.9
SNDCGAN+Our 8.6
SNDCGAN+ContraD+Our 7.7

Table 3. Quantitative comparison of the best FID score on uncon-
ditional image generation.

erful regularization for efficient training of small dataset as
well as for translation quality when combined with existing
algorithms for image-to-image translation task.

4.4. DCR with Unconditional GANs

Since our DCR regularizes consistency of the discrimi-
nator, it is natural to study for unconditional GAN. We take
SNDCGAN [24] as our baseline model and compare with
a recent ContraD [15] which is instance-level contrastive
learning based regularization method on CIFAR10 dataset
for simplicity.

The motivation of our work is the hypothesis that image
generation requires pixel-level prediction and the dense reg-
ularization of representations is appropriate. Table 3 shows
the quantitative results that DCR more improves FID than
instance-level method. Indeed, the results show the possi-
bility that dense and instance-level consistency regulariza-
tion technique can boost the each others performance by
fusing ContraD and DCR. However, the role of instance-
level and dense-level consistency regularization is still open
area and we believe it deserves further study.

4.5. Ablation Study

To better understand how the hyper-parameters of pro-
posed method affect performance, we conduct an ablation
study. We perform experiments on CycleGAN [37] model
with Horse→Zebra and Cat → Dog(ImageNet [6]) dataset.

Where to regularize One of important choices in our
algorithm is where to apply the proposed regularization.
We conduct experiments on two types of tasks that require
shape deformation task and texture translation with preser-
vation of the shape. We measure a FID when we integrate
DCR to different representation of CycleGAN’s discrimina-
tor. The results are shown in Table 4.

The quantitative result shows proposed DCR improves
the performance wherever applied to any representations.
However improvement gap shows different aspect of be-
haviour at two types of dataset. The texture translation task
shows better performance when representation is closer to
pixel-level. On the other hand, shape deformation task pro-
vides better performance with the higher level representa-
tion, because it requires more semantic information com-
pared to other tasks. In order to perform on overall tasks,
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Figure 4. Qualitative comparison of reference guided samples on StarGANv2 and ours. Dashed line at the right corner of the image shows
that the proposed DCR synthesizes more similar structure of the source image than baseline.

Horse → Zebra Cat → Dog∗

CycleGAN [37] 77.2 86.5
CycleGAN + DCR (layer2) 49.2 70.5
CycleGAN + DCR (layer3) 51.4 59.9
CycleGAN + DCR (layer4) 51.1 57.8

Table 4. Ablation study on the location of dense representation
for the proposed DCR method. The layer number indicates which
output of this layer is used as a dense representation. The asterisk
(*) denotes the experiment using the examples in ImageNet.

τ 0 0.3 0.5 0.7 0.9

FID 77.2 56.7 51.1 51.4 57.9

Table 5. Ablation study on distance threshold τ for the proposed
DCR method. We conducted the ablation study on CycleGAN [37]
model with Horse → Zebra dataset. τ = 0 indicates the baseline
model without the proposed DCR.

we select the representation either the output of final resid-
ual block or the input of final convolution layer.

How to identify positive pairs One of the major hyper-
parameters in DCR is the distance threshold τ in (5) to iden-
tify the positive pairs for the feature correspondence Ω̃. To
choose the optimal threshold value τ , we experimented with
various values τ ∈ {0.3, 0.5, 0.7, 0.9} on CycleGAN [37]
model with Horse→Zebra dataset. Table 5 reports the quan-
titative comparison of the performance at the various dis-
tance threshold τ .

The results in Table 5 shows a consistent improvement

over the baseline model (τ = 0). This verify the effec-
tiveness of the proposed DCR in providing better translated
images. As shown in Table. 5, we achieve the best result
when we set the distance threshold τ to 0.5. Therefore, the
distance threshold τ is set to 0.5 in all experiments.

The further investigation to analyze the performance
gain by the proposed DCR can be found in Supplementary
Section C. We conducted the ablation studies to understand
the effect of stop-gradient and the reason we apply the DCR
only to the cropped regions of generated images, not to the
entire images or real images.

5. Conclusion

We presented a novel regularization technique, referred
to as dense consistency regularization (DCR). The proposed
approach enforces the consistency between the representa-
tions of the overlapping regions in two different views from
the same image. DCR is suitable for the tasks that require
dense prediction and can be incorporated into various ex-
isting conditional and unconditional GAN models. Accord-
ing to our experiments for image-to-image translation and
unconditional image generation tasks, DCR achieved out-
standing performance consistently. Moreover, DCR cap-
tures a local context in the target domain effectively with
only a small fraction of data and it also leads to extra per-
formance gains through the combination with instance-level
regularization methods. Refer to Section E of the supple-
mentary document for discussions about potential negative
societal impacts and limitation.
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