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Abstract

The images captured by under-display cameras (UDCs)
are degraded by the screen in front of them. We model this
degradation in terms of a) diffraction by the pixel grid,
which attenuates high-spatial-frequency components of the
image; and b) diffuse intensity and color changes caused
by the multiple thin-film layers in an OLED, which modu-
late the low-spatial-frequency components of the image. We
introduce a deep neural network with two branches to re-
verse each type of degradation, which is more effective than
performing both restorations in a single forward network.
We also propose an affine transform connection to replace
the skip connection used in most existing DNNs for restor-
ing UDC images. Confining the solution space to the linear
transform domain reduces the blurring caused by convolu-
tion; and any gross color shift in the training images is elim-
inated by inverse color filtering. Trained on three datasets of
UDC images, our network outperformed existing methods
in terms of measures of distortion and of perceived image
quality.

1. Introduction

Under-display cameras (UDCs) are a key technology for
realizing full-screen smartphones. Unfortunately, the qual-
ity of the images captured by a UDC is considerably re-
duced by the light loss and diffraction introduced by the
display panel which is in front of it [8, 19, 40]. One way of
addressing this problem is to increase the proportion of the
panel which is transparent by reducing the pixel density in
the region of the display immediately above the camera, and
by modifying the layout of the RGB sub-pixels [26,32,37].
Increasing the transparent area reduces the resolution of the
screen, and therefore distortion of the light reaching the
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Figure 1. Physical model of the degradation of the image received
by a UDC, simplified by two degradation processes: (1) color fil-
tering and spatially variant attenuation Ψ by the thin-film layers
of the OLEDs, and (2) diffraction Φ by the pixel definition layer
(PDL), which can be represented by a point spread function (PSF).
A UDC image y can be simulated by compositing the effect of Ψ
and Φ on a latent image x.

UDC is unavoidable with a screen of any acceptable res-
olution; and the presence of the wires required to drive the
pixels make this distortion worse. The natural limits on the
extent to which an OLED display can be rearranged mean
that restoration is required to make the images received by
a UDC look like the images that would be received if the
display was not in front of the UDC. Methods have recently
been proposed based on paired image datasets [8, 21, 40]
and image restoration [8,16,19,27,29,33,36,39] which use
a learning approach with a neural network.

Image restoration methods using deep neural networks
(DNNs) have progressed substantially over the years: spe-
cific DNN architectures have been developed for many
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restoration tasks, such as super-resolution [22], deblur-
ring [18], dehazing [10], and deraining [20]. The UDC
presents a new image restoration task [39], which has re-
ceived considerable attention, but most of the methods in-
troduced so far use networks developed for other restoration
tasks. Some methods [8, 19] do consider the physical pro-
cesses that affect the image received by a UDC, in which the
angle of the incident light is included in the inference pro-
cess. However, in the same way that incorrect kernel estima-
tion produces a severe artifact in deblurring techniques [18],
errors in predicting the angle of incidence make this ap-
proach to restoring UDC images problematic.

In pioneering work on this topic [8, 19, 40], UDC degra-
dation was modeled in terms of the diffraction and reduced
intensity caused by display pixels. This model is effective in
addressing the process that dominates image degradation,
it only represents the reduction in high-spatial-frequency
components of the image by diffraction, and does not con-
sider the different transmission of wavelengths by the thin-
film layers of an OLED, and long-range degradation caused
by the non-uniformity of those layers, which is associated
with the modulation of low-spatial-frequency components
(see Fig. 1). We propose a physical model of UDC image
degradation which includes low-spatial-frequency degrada-
tion processes, such as color shifts and spatial attenuation,
and we introduce a DNN architecture to reverse the changes
in the image predicted by our model. Whereas existing
methods of UDC image restoration [8, 16, 19, 27, 29, 33, 36,
39] mainly involve a network performing a single deblur-
ring task, we separate this task into high- and low-spatial-
frequency reconstruction with two network branches. We
induce each branch to deal with a difference range of fre-
quencies. This branched network for UDC image restora-
tion (BNUDC) effectively removes high-spatial-frequency
noise such as ’flare’ [8] and degradation with low spatial
frequency, such as color shift. We also propose an affine
transform connection which reduces over-smoothing by the
convolution operation and preserves the structure of the im-
age by constraining the solution space to the linear trans-
form domain of the input image. In addition, we introduce
inverse color filtering, which is a pre-processing technique
that improves the color fidelity of the restoration of im-
ages with a severe color shift, such as those in the POLED
dataset [40]. Simplifying the effect of the stacked thin films
to that of a single color filter (see Fig. 1), allows inverse
color filtering to be performed easily by inverting in the CIE
XYZ color space. This is equivalent to the data normaliza-
tion processes widely used in deep learning.

Overall, our contributions can be summarized as follows:

• We present a new model of the UDC degradation found
in images captured by a UDC, which is specific to
the optical properties of OLEDs. The model includes
changes with a low spatial frequency, such as color

shift and spatially variant attenuation. We propose a
DNN architecture with one branch to restore high-
frequency component, and a second branch to restore
low-frequency components.

• We propose an affine transformation connection as an
alternative to residual learning [11], This connection is
specific to our model of image degradation. It removes
noise introduced by restoration while preserving the
structure of the image from the UDC.

• Our network achieves a-state-of-the-art performance
in terms of both numerical and perceptual distortion
metrics on three public datasets [8, 40]. Our network
does not require a point-spread function (PSF) as a
prior; but nevertheless it outperforms existing methods
which are conditioned by a PSF.

2. Related Work
2.1. Restoring UDC images

UDC degradation model Zhou et al. [40] established the
following model of the degradation of the image captured
by a UDC:

y = γ(x ∗ k) + e, (1)

where x is the latent clean image, and y is the degraded
image from the UDC, k is a blur kernel which represents the
PSF by the pixel grid of displays, γ is the factor by which
the intensity of the light is reduced, e is additive noise, and ∗
is the convolution operator. A similar model has been used
in subsequent work [8, 19], except that the PSF varies with
the incident angle of the light. Models of this sort represent
the degradation of an image from a UDC in the simplest
way, but a single scaling factor γ cannot model complicated
forms of degradation with low spatial frequency, such as the
spatial variation due to the OLED thin films. This requires
a 2D transformation and a color shift is expressed as a 3D
transformation in the color space.

Methods of restoring UDC images Supervised learning
is the technique used for most restoration of UDC images,
because datasets with paired observed and ground-truth im-
ages, either synthesized from a measured PSF [8] or cre-
ated by capturing the same scene with a UDC and a surface
mounted camera [40] are available. The first DNN archi-
tecture trained on such datasets was the scale-separated U-
net architecture proposed by Zhou et al. [40]. Subsequent
architectures include neural guided filter [29], latent im-
age inference in the wavelet domain [27], residual dense
networks [33], a weight-sharing multi-scale ResNet with
channel attention, and a camera shading estimation mod-
ule [39]. These methods use network modules commonly
employed for image reconstruction, which are not specifi-
cally designed for UDC images. Kwon et al. [19] and Feng
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et al. [8] noted that the profile of a long-tailed PSF varies
with the angle of the incident light. To deal with this, the
authors introduced a method of image restoration which can
cope with multiple PSFs by conditioning the corresponding
PSF on UDC images. The PSF prediction is a hard task,
therefore a restored image may still be of low quality due to
errors in predicting the PSF. We address this issue by get-
ting the network to infer the latent PSF implicitly from the
degraded image, rather than trying to predict it.

Separation of high- and low-frequency processes
Methods of interpreting and reconstructing an image in the
frequency domain are common in image processing [30].
In contrast, low-level machine vision algorithm, techniques
based on learning mainly operate in the intensity domain.
Methods which operate in the intensity domain, but on
a number of frequency bands, represent a compromise.
Examples of this approach include: multi-scale process-
ing [24] in which several degraded images of different reso-
lution are restored to approximate the same latent image.
The feature pyramid [7] and octave convolution [2] use
cross-frequency feature aggregation, which is another tech-
nique that operates in a ’pseudo frequency domain’. We take
a similar approach to the restoration of UDC images.

Per-pixel transformations The simplest per-pixel trans-
formation is residual learning using skip connections [11],
and per-pixel filtering in which a latent image is estimated
by filtering the observed image with a learned per-pixel ker-
nel. This approach is used in classification [31] and image
deblurring [38]. In per-pixel filtering, the DNN estimates
a pseudo inverse kernel for each pixel, which allows it to
deal with spatially variant blur. This method searches the
dependencies of adjacent pixel, but this is unnecessary in
the UDC image problem, because the PDL pattern is not
spatially variant. We therefore propose a per-pixel affine
transformation to deal with the coexisting high- and low-
frequency degradation which is formed in a UDC image.

3. Method

3.1. Modeling the Degradation in UDC Images

We now put forward a model of the degradation of the
image captured by a UDC in terms of the optical proper-
ties of the OLED display in front of the camera. As shown
in Fig. 1, the layers of an OLED cell include transparent
electrodes, the injection and transport layers of the hole and
electron, and a light-emission layer which contains organic
materials. Current OLED screens designed to accommodate
for UDCs have a relatively large transparent area in which
light loss is reduced [8,32], but all the layers are still present
in the transparent area, except the organic materials which

emit light, and the spectrum of the incident light is modu-
lated by these layers. In addition, there are metal wires for
electrical signals which are covered by black regions of the
pixel definition layer (PDL). The PDL has a repeating pat-
tern and causes diffraction. We model the spectrum modu-
lation and diffraction separately. The effect of the thin-film
layers, excluding PDL, is simplified to a single spatially
variant color filter. Its effect is expressed as follows:

icfl(m,n, λ) = iorg(m,n, λ)ϕ(m,n, λ), (2)

where iorg(m,n, λ) is the spectrum of the incident light at
the location (m,n) on the sensor of the UDC, ϕ(m,n, λ) is
the transmittance of wavelength λ by the color filter layer,
and icfl(m,n, λ) is the spectrum of the light transmitted
through the color filter in the simplified model of the dis-
play layers. Secondly, the diffraction of light depends on the
PSF which is determined by the pattern of the PDL [32,37].
Assuming that the PSF does not change with wavelength, it
can be expressed as the convolution of the spectral intensity
and a kernel representing the PSF:

ipdl(m,n, λ) =

∫∫
icfl(m−τ1, n−τ2, λ)ψ(τ1, τ2)dτ1dτ2,

(3)
where ipdl(·) is the spectrum of the light transmitted
through the PDL, and ψ(·) is a 2D kernel representing the
PSF. The spectrum of the light passing through the display
is converted to the CIE XYZ color space [6] as follows:

X(m,n) =

∫
ipdl(m,n, λ)SX(λ)dλ,

Y (m,n) =

∫
ipdl(m,n, λ)SY (λ)dλ,

Z(m,n) =

∫
ipdl(m,n, λ)SZ(λ)dλ,

(4)

where X,Y, Z(m,n) are the color coordinates in the XYZ
color space corresponding the pixel (m,n), and SX , SY and
SZ are color-matching functions [6]. The expected RGB
color coordinates at each pixel of the image y(m,n) cap-
tured by the camera can now be obtained using the lin-
ear transformation matrix M ∈ R3×3 [15] as y(m,n) =
M[X,Y, Z]Tm,n.

We can now formulate a simplified model of the degra-
dation processes described above as y = (Φ ◦ Ψ)(x) + e,
where x is the latent clean image, the function Ψ(·) repre-
sents equation (2), the function Φ(·) expresses the cumu-
lative effect of equations (3)-(4). Given a degraded image
y, the problem of finding an estimated latent clean image x̂
requires the inversion of Ψ and Φ, as follows:

x̂ = (Ψ−1 ◦ Φ−1)(y). (5)

We will now examine the nature of Ψ−1 and Φ−1, and in-
troduce a neural network architecture to approximate them.
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Figure 2. The proposed BNUDC is composed of (1) a branch FH that reverses high-spatial-frequency degradation by the PDL layer Φ and
(2) a branch FL that reverses low-spatial-frequency degradation by other thin films Ψ . The two networks are connected in series by the
affine transformation connection.

3.2. The Inverse Transformation Functions

The transform Φ in (5) can be regarded as the blurring of
an original image by a long-tailed PSF; thus the computa-
tion of Φ−1 is effectively a deblurring problem. Deblurring
is ill-posed and the reconstruction of sharp edges and high-
frequency components in the Fourier domain is challeng-
ing [18]. The transformation Ψ can be regarded as a color
filtering operation, thus Ψ−1 is an inverse color filter. If the
filter function Ψ is spatially uniform, then inverse filtering
is trivial. However, Ψ is spatially variant due to the non-
uniform color of the display. This non-uniform degradation
of color can be viewed as a corruption of the low-spatial-
frequency components of the image.

3.3. Branched Network Architecture

Our BNUDC approximate Ψ−1 ◦ Φ−1 in (5) by means
of two branches: a high-frequency reconstruction (HFR)
branch FH models Φ−1, and a low-frequency reconstruc-
tion (LFR) branch FL models Ψ−1. The branches FH and
FL are cascaded as follows:

x̂ = FL(y,FH(y)). (6)

Connecting the LFR and HFR networks in series, as repre-
sented by x̂ = FL(FH(y)), is the most straightforward and
direct implementation of (5). However, in this formulation,
the outer function FL does not receive the input image y,
but an intermediate image from the inner function FH. This
does not allow the LFR network used to realize the outer
function FL to operate on low spatial frequencies. More-
over, such an architecture makes it difficult to ensure that
the HFR network deals with high-frequency components of

the image, and the LFR network deals with low-frequency
components because this architecture is eventually a feed-
forward network with a single branch. This is one source
of the poor performance often associated with sequentially
connected networks. To avoid this pitfall, we arranged for
both of the parallel network branches to receive the input
image. The outputs of these networks are then connected
in series to realize the sequential process described by (5).
Fig. 2 shows this branched network, and its components are
presented in more detail in the Supplementary material.

High-frequency reconstruction branch Reconstructing
UDC images degraded by diffraction in the PDL requires
a network that concentrates on the sharp edges remain-
ing in the degraded image. To preserve the edge informa-
tion in the degraded image, we use the flat network which
maintains the resolution of the input image in the feature
space [34] instead of using a bottleneck architecture such
as that used for encoder-decoders, which down-scales the
resolution of feature maps. The implementation of this ar-
chitecture as a full-sized network would place a large com-
putational burden on memory during training and inference.
A pixel shuffle scheme [28] is therefore used to reduce the
spatial dimension which reduces the use of memory with-
out a loss of input information. As in the super-resolution
process in which the restoration of sharp edges is the main
task, the high-frequency network requires a wide receptive
field. We therefore use a parallel dilated convolution resid-
ual block [1, 29].

A CNN with a large number of layers, performing a long
series of convolution operations, which is likely to cause
blurring of edge features. When this occurs at the beginning
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Table 1. Average PSNR, SSIM, LPIPS, and DISTS for the images in the POLED dataset: the best and second-best result for each metric is
highlighted in blue and red respectively. Up-arrows mean that higher values are better, and down-arrow means the opposite.

POLED PARAM IT(s) TEST SET VALIDATION SET

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓

MSUNET [40] 8.9M 0.08 29.17 0.9393 0.2239 0.1746 29.96 0.9343 0.2281 0.1774

DAGF [29] 1.1M 1.12 32.29 0.9509 0.2163 0.1913 33.79 0.9580 0.2250 0.1942

PDCRN [27] 4.7M 0.08 32.99 0.9578 0.2102 0.2075 33.58 0.9593 0.2188 0.2121

BNUDC 4.6M 0.08 33.39 0.9610 0.1748 0.1511 34.39 0.9634 0.1871 0.1612

Table 2. Average PSNR, SSIM, LPIPS, and DISTS for the images in the TOLED dataset: the best and second-best result for each metric is
highlighted in blue and red respectively. Up-arrows mean that higher values are better, and down-arrow means the opposite. The † symbol
indicates that the figure quoted is the number of parameters that we required to reproduce the scores reported in the original paper.

TOLED PARAM IT(s) TEST SET VALIDATION SET

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓

MSUNET [40] 8.9M 0.08 37.40 0.9756 0.1093 0.1052 38.25 0.9772 0.1174 0.1155

IPIUer [39] 24.7M† 0.10 38.18 0.9796 0.1128 0.1050 39.03 0.9813 0.1210 0.1145

BAIDU [39] 20.0M† 0.18 38.23 0.9803 0.1026 0.0966 39.06 0.9812 0.1108 0.1057

BNUDC 4.6M 0.08 38.22 0.9798 0.0988 0.0964 39.09 0.9814 0.1072 0.1052

BNUDC-1D 4.6M 0.08 38.26 0.9800 0.1007 0.0942 39.12 0.9814 0.1086 0.1034

Table 3. Average PSNR, SSIM, LPIPS, and DISTS for synthetic
images in SYNTH dataset. BNUDC-S is a version of our BNUDC
with fewer parameters, to permit a more direct comparison with
SFTMD and DISC.

SYNTH PARAM
TEST SET

PSNR↑ SSIM↑ LPIPS↓ DISTS↓

SFTMD [9] 3.9M 42.35 0.9863 0.0123 -

DISC (w/ PSF) [8] 3.8M 43.27 0.9877 0.0108 0.0182

DISC (w/o PSF) - 42.77 0.9870 - -

BNUDC (w/o PSF) 4.6M 45.78 0.9942 0.0106 0.0150

BNUDC-S 3.5M 45.33 0.9939 0.0108 0.0158

of training, it is difficult to obtain a sharp image. We there-
fore introduce a pixel-wise affine transform connection. The
HFR network can now be expressed as follows:

α, β = U−1(NH(U(y))), (7)

where y ∈ Rh×w×3 is a UDC image in the RGB color space
which has h×w resolution. α ∈ Rh×w×3 and β ∈ Rh×w×3

are the element-wise gain and bias inferred by the HFR
network NH(·). The functions U(·) and U−1(·) express a
unpixel shuffle [28] and its inverse. The 1D affine trans-
form AFF1D is expressed by the following pixel-wise lin-
ear transform: x̂h = AFF1D(y, α, β) = y · α + β, where
x̂h ∈ Rh×w×3 is an intermediate result from the HFR
branch, and · is element-wise multiplication. The HFR net-
work NH infers pixel-wise gain and bias, and the output im-
age is estimated by a pixel-wise linear transformation of the
degraded image y using these gain and bias values.

Low-frequency reconstruction branch FL is a data
pipeline that reverses low-frequency degradation. It con-
sists of an encoder-decoder network which has a bottle-
neck structure so that it only compresses the relevant low-
frequency features. First, the UDC image y is down-scaled
by a factor of four to remove high-frequency features.
High-frequency components that remain in this reduced-
resolution image are further removed by blurring with a
3x3 box filter. The resulting image y′ lacks edges and other
high-frequency components, allowing the network to fo-
cus on the remaining low-frequency features. The proposed
LFR network NL is shown in Fig. 2, and its effect can be
expressed as follows:

γ, δ = NL(y
′) ↑, (8)

where γ ∈ Rh×w×9 and δ ∈ Rh×w×3 are inferred pixel-
wise matrix elements and translator for 3D affine transform,
and the up-arrow expresses up-scaling. A 3D affine trans-
from of the intermediate result x̂h with γ and δ is performed
to correct color shift and other low-frequency degradation
as x̂ = AFF3D(x̂h, γ, δ), where x̂ is the transformed im-
age, and the 3D affine transform AFF3D is expressed by
pixel-wise matrix-vector multiplication and translation, as
follows: x̂m,n = Gm,nxm,n + dm,n, where xm,n ∈ R3 and
x̂m,n ∈ R3 are color vectors in RGB space correspond-
ing to the pixel (m,n), in the image x̂h and x̂ respectively.
Gm,n ∈ R3×3 is a 3x3 matrix which is a rearrangement of
γ(m,n, :) ∈ R9, and dm,n ∈ R3 is a vector of δ(m,n, :).
This transformation can be viewed as a regularizer which
induces the network to perform the color reconstruction.
Experimental results are presented in the ablation study.
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GTUDC image MSUNET PDCRN BNUDC (Ours)DAGF

Figure 3. Two example images from the POLED dataset restored by four different networks. The first column contains the original UDC
images. The next four columns shows the reconstructed images obtained using MSUNET [40], DAGF [29], PDCRN [27] and our BNUDC.
The last column contains the ground truth images.

GTUDC image MSUNET BAIDU BNUDC (Ours)IPIUer

Figure 4. Two example images from the TOLED dataset restored by four networks. The first column contains the UDC images. Subsequent
columns shows the reconstructed images obtained using MSUNET [40], IPIUer [39], BAIDU [39] and our BNUDC.

Considering high-frequency information in terms of in-
tensity alone makes it more likely that the HFR network
will produce an accurate reconstruction of that information.
The LFR network takes a ’broad-brush’ low-frequency ap-
proach to restoring the chrominance information. This sepa-
ration accords with the relative sensitivity of the human eye
to intensity and color [4, 13].

4. Experiments

4.1. Datasets

We evaluated the performance of our network after train-
ing on three public datasets: POLED and TOLED [40],
which are realistic datasets captured using an RGBG
PenTile [5] and a transparent OLED respectively, and
SYNTH [8] which is a set of synthetic images generated by
blur kernels based on the measured PSFs of a commercial
UDC smartphone. The UDC images in the SYNTH dataset
are labeled with ground-truth PSFs. Therefore DISCnet [8]
trained on this dataset uses the PSFs as an external prior,
whereas our network does not require a PSF prior to make
it robust against PSF prediction errors. The images in the
SYNTH dataset are degraded only based on the measured

PSFs, without color shifts but with other low-frequency
degradation, therefore we use this dataset to test the LFR
branch in such a case.

Image pre-processing The severe color shift found in the
POLED dataset can be normalized by a uniform inverse fil-
ter ηxyz, which can be obtained by comparing the average
of the UDC and ground-truth images in XYZ space. This
pre-processing can be expressed by

ηxyz =
1

N

N∑
i=1

yixyz
xixyz

, ỹixyz =
yixyz
ηxyz

, (9)

where
{
xixyz, y

i
xyz

}N

i=1
are pairs of training images in XYZ

color space, and ỹixyz is the ith pre-processed image. This
global color filtering can reverse a significant color distor-
tion: the average PSNR of images in the training dataset is
improved from 15.59dB to 20.02dB. Example images are
shown in the first row in Fig. 6. Refer to the Supplementary
material for more details.

4.2. Training Procedure

Data augmentation is performed by random horizontal
and vertical flipping and Gaussian noise with a standard de-
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GTObservation DISCnet Ours

Figure 5. Three example images from the SYNTH dataset. The
first column contains the original UDC images. The next two
columns show the reconstructed images restored using DISC-
net [8] and our BNUDC.

yo : Original UDC image y : Inverse filtered

GT

AFF3D

3D

(y, γ, δ)

AFF3D(AFF1D(y, α, β), γ, δ)

AFF1D

1D

(y, α, β)

Figure 6. Visualizations of intermediate images from the HFR and
LFR branches on an example from the POLED dataset. The top
row shows the captured image (left) and the same image after pre-
processing (right); the second row show the results from the HFR
(left) and the LFR network (right); and the last row contains the
ground-truth image (left) and the restored image (right).

viation of 1 × 10−3. Flipping is not applied to the SYNTH
dataset to preserve the variance of the PSF. The logarithm
of squared error is used as the loss function for the POLED
and TOLED datasets to penalize small errors, and L1 with
perceptual loss [14] is used for the SYNTH dataset. For
training we used the Adam optimizer [17] with β1 set to
0.9 and β2 set to 0.999, and with an initial learning-rate of
2×10−4, which is reduced to 1×10−6 using gradual warm-
up cosine annealing [23]. All the networks were trained on

y GT

AFF3D(y, γ, δ) AFF3D(AFF1D(y, α, β), γ, δ)AFF1D(y, α, β)

Figure 7. Visualizations of intermediate images from the HFR and
LFR branches on SYNTH dataset. The top row shows the UDC
image (left) and the ground-truth image (right), the second row
contains the results from the HFR (left), the LFR network (mid-
dle), and the restored image (right).

patches taken from full-resolution images with a batch size
of 2 over 3× 105 iterations. We implemented our BNUDC
in the PyTorch framework [25] and trained the model using
two NVIDIA V100 GPUs.

4.3. Results

We used PSNR to measure pixel-wise distance and
SSIM to measure structural similarity [12]. We also used
LPIPS [35] and DISTS [3] to measure perceptual dif-
ference. We performed comparative experiments using
the publicly available DAGF [29], DISCnet [8] codes,
and re-implemented models for PDCRN [27], IPIUer,
and BAIDU [39], which are not publicly available. The
MSUNET [40] used images of 16-bit color depth to train,
but the images in the public dataset have a color depth of 8
bits. We therefore implemented a network model which can
use the 8bits images.

POLED dataset Table 1 compares the performance of
four trained networks on the restoration of 2k resolution im-
ages from this dataset. Our network outperforms the other
those, especially in terms of perceptual quality, as illustrated
by Fig. 3. Fig. 6 shows intermediate results from the HFR
and LFR branches. As expected (see Section 3.3), the HFR
branch restores the edges, largely in terms of luminance,
while the LFR network restores color in a more general
fashion. The 1D and 3D affine transforms that we use differ
from those in a standard CNN architecture; but any increase
in computation time is insignificant due to the parallel ten-
sor processing using the GPUs.
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Figure 8. Task separability. The first column is the UDC image, the second shows images obtained with a skip connection in the LFR
branch (corresponding to the third row in Table 4); the third shows images obtained using a 1D affine transform (corresponding to the
fourth row in Table 4); and the fourth shows images obtained using a 3D affine transform (corresponding to the fifth row in Table 4).

Table 4. Results of the ablation study: the first row shows PSNR,
SSIM, LPIPS and DISTS values for a single-branch network with
a skip connection. This is then augmented by a 1D affine trans-
form, with the results shown in the second row. The third row
shows results for a dual-branch network with a skip connection
for the LFR and a 1D affine transform in the HFR branch. This is
then augmented by a 1D affine transform or by a 3D affine trans-
form for the LFR branch, with the results shown in the fourth and
fifth rows. The final row shows results for the dual-branch and 3D
affine transform configuration with inverse color filtering of the
images in the training dataset.

POLED
TEST SET

PSNR↑ SSIM↑ LPIPS↓ DISTS↓

Single Branch (skip) 32.68 0.9530 0.1961 0.1857

+ 1D Affine (NH) 32.70 0.9546 0.1932 0.1815

Dual Branch (skip) 33.19 0.9606 0.1773 0.1571

+ 1D Affine (NL) 33.27 0.9608 0.1767 0.1547

+ 3D Affine (NL) 33.32 0.9608 0.1752 0.1531

+ Inverse color filter 33.39 0.9610 0.1748 0.1511

TOLED dataset Table 2 compares the performance of
four trained networks on the restoration of 2k resolution im-
ages from this dataset. The performance of the BNUDC-1D
network which uses a 1D affine transform in its LFR branch
is slightly better than that of the basic BNUDC network in
terms of image distortion. This can be attributed to a smaller
color shift in the TOLED images compared to those from
POLED images.

SYNTH dataset The images in this dataset have no color
shift because they have been synthesized with PSFs consid-
ering only luminances. However, these images do exhibit
flare, which is a significant issue with UDCs, because high-
frequency noise is typically introduced during its elimina-
tion. Our network is effective on this task, because the LFR
branch is able to compensate for the noise introduced by
the HFR brach, resulting in perceptually pleasing images.
Quantitative results are presented in Table 3 and example
images are shown in Fig. 5. Fig. 7 shows intermediate re-
sults on images from the SYNTH dataset. In this case, the
LFR branch does not seem to try to match the color as it
does on POLED images, Instead, the LFR network elim-

inates the effect of over-estimation of the flare artifact by
the HFR branch. Our network does not need prior PSFs and
thus potential errors in predicting the PSFs are eliminated.

4.4. Ablation

We analyzed the effectiveness of each component in the
BNUDC against a baseline configuration of a single branch
network with a skip connection (1st row in Table 4). In the
single branch networks, the inter-feature depth is increased
so that it has a similar number of parameters to the dual
branch network. The dual-branch network increases PSNR
by +0.49dB and the 3D affine transformation adds a further
+0.23dB. As shown in Fig. 8, the use of a 3D affine trans-
form produces more accurate colors in the LFR branch. This
suggests that the use of a 3D affine transform in the LFR
branch allows the two branches to play more distinct roles.
Based on these results, either a 1D or 3D affine transform
could be used in the LFR branch, depending on the color
shift produced by the display panel.

5. Conclusions
We have proposed a two-branch network that effectively

restores images captured by an under-display camera. This
branched neural network architecture achieves state-of-the-
art performance on this restoration task. Restoration of nat-
ural images from the SYNTH dataset produces result with
46dB of PSNR, so that the restored images cannot be visu-
ally distinguished from the ground-truth images. However,
high-frequency artifacts, which are perceptually annoying,
remain in restored images in which there is flare caused
by strong lights. Also, the restoration of images from the
POLED dataset, which exhibit large shift in colors and lu-
minance, lack detail. These problem images require further
work.
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