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“The pose is right of the gray road.

The pose is below the dark-green 

parking.

The pose is right of a green 

sidewalk.”

Figure 1. We propose Text2Pos for city-scale position localization based on textual descriptions. Given a point cloud that represents our
surroundings and a query position description, Text2Pos provides the most-likely estimate of the described position within that map.

Abstract
Natural language-based communication with mobile de-

vices and home appliances is becoming increasingly popu-
lar and has the potential to become natural for communi-
cating with mobile robots in the future. Towards this goal,
we investigate cross-modal text-to-point-cloud localization
that will allow us to specify, for example, a vehicle pick-
up or goods delivery location. In particular, we propose
Text2Pos, a cross-modal localization module that learns to
align textual descriptions with localization cues in a coarse-
to-fine manner. Given a point cloud of the environment,
Text2Pos locates a position that is specified via a natural
language-based description of the immediate surroundings.
To train Text2Pos and study its performance, we construct
KITTI360Pose, the first dataset for this task based on the re-
cently introduced KITTI360 dataset. Our experiments show
that we can localize 65% of textual queries within 15m dis-
tance to query locations for top-10 retrieved locations. This
is a starting point that we hope will spark future develop-
ments towards language-based navigation.

“Alexa, hand me over my special delivery at the
sidewalk in front of the yellow building next to the
blue bus stop.”

Authors of this paper, the future. Hopefully.

1. Introduction

Future mobile robots, such as autonomous vehicles and
delivery drones, will need to cooperate with humans to co-
ordinate actions and plan their trajectories. In this paper we
tackle large scale position localization of the target position
based on natural-language-based position descriptions, as
needed for, e.g., for goods delivery or for vehicle pickup.

For self-localization within a map, mobile agents rely
on visual localization methods [4, 22, 35, 41, 56]. These
methods match observed images either to a database of geo-
tagged images [4, 16, 45] or point-cloud-based maps [33,
35, 39], often obtained using structure-from-motion tech-
niques [38, 40]. By contrast, in this paper, we study
language-based localization of any location, which, impor-
tantly, does not require the user to be physically present at
the target location. This would, for example, allow us to
explain the pick-up position or delivery location through
text/voice to a robo-taxi via natural language based com-
munication, that is preferable to humans. Our method can
also be seen as complementary to GPS localization meth-
ods, e.g., when a GPS tag is too coarse, unavailable, or
language-based communication is more convenient.

As the main contribution of this paper, we formalize
the task of language-based localization and provide the first
dataset and methods for this task. In this problem setting,
we assume an intelligent agent is given access to the map of
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the environment that comes in the form of a 3D point cloud
and object instance labels. While there are several ways
of acquiring point clouds, we rely on LiDAR point clouds,
readily available in modern automotive [8, 43, 52] and ur-
ban [26] datasets, On the query side, we assume a textual
description of the query position surroundings, such as the
one shown in Fig. 1. The task is then to provide the most
likely position estimate based on this query.

To study this challenging problem, we need a dataset
that (i) provides a point-cloud-based representation of the
environment and (ii) provides labels in the form of query
positions and their corresponding textual descriptions, ex-
tracted from their immediate surroundings. We build on
the recently proposed KITTI360 dataset [52], which pro-
vides nine scenes (city districts), covering 80 km of driv-
ing data. Importantly, this dataset provides semantic and
instance-level annotations of the point cloud, which we use
to automate the generation of query position descriptions.
We obtain the KITTI360Pose dataset by randomly sampling
query positions and by generating corresponding textual de-
scriptions. For each query position we automatically gener-
ate multiple descriptions based on a natural language tem-
plate that specifies spatial relations of surrounding instances
to the query position, together with their semantic classes
and appearance. We generate 43, 381 such descriptions for
14, 934 sampled positions, which we split by scene (repre-
senting a city district) to obtain our train/test splits.

We use this dataset to train and evaluate our proposed
Text2Pos model that performs coarse-to-fine localization.
In the coarse localization step, we retrieve sub-regions of
the map that likely contain our target position. To this end,
our network learns to align the encoded query with the point
clouds, representing these sub-regions. We finally refine the
position estimate within retrieved candidate regions using
our matching-based fine localization module. Our experi-
ments show that we can localize such randomly generated
positions within KITTI360 scenes with 65% recall for top-
10 queries, demonstrating that localizing positions based on
textual descriptions is feasible.

In summary, our main contributions are: we (i) intro-
duce and formalize the task of 3D point-cloud based local-
ization based on textual descriptions. To this end, we (ii)
provide KITTI360Pose, the first public dataset for this task,
based on the KITTI360 dataset, together with our method
for automated mining of positions and corresponding tex-
tual descriptions. We (iii) provide a coarse-to-fine baseline
model for the localization task, that learns to align objects
which are mentioned in the text with object instances in the
point cloud and thoroughly evaluate and ablate the perfor-
mance on this challenging new task. We believe this work
is the first step towards natural language-based communica-
tion with future mobile robots, such as delivery drones and
self-driving taxis.

2. Related work

Vision-based localization. Related to our problem is the
task of visual localization [4, 6, 16, 22, 32, 33, 35, 41, 45,
46, 56], which means estimating a precise pose based on
an observed image or image sequence. Existing meth-
ods commonly adopt a two-stage coarse-to-fine localization
pipeline [33, 35, 56]. Given the query image, a coarse step
firstly finds a subset of images with aligning views using
image retrieval techniques [4, 16, 45]. Then, the fine step
establishes 2D-2D correspondences between pixels of the
query and the retrieved images based on the visual descrip-
tors. These can further be used to obtain 2D-3D corre-
spondences between the query and a 3D map, usually ob-
tained using structure-from-motion techniques. Finally, the
camera poses can be computed using either a set of 2D-2D
correspondences [56] or 2D-3D correspondences [33, 35].
Our method follows the coarse-to-fine localization scheme
by first localizing a coarse cell, containing the objects de-
scribed by the query text, followed by a more precise pose
estimate within the coarse cell. Compared to matching be-
tween visual features, our method needs to implicitly learn
to align two different modalities: text and 3D point clouds.
By contrast to visual localization, commonly used for robot
self-localization, we tackle linguistic localization, intended
to specify an arbitrary target location.

2D vision and language. Vision and language under-
standing has been widely investigated in tasks such as im-
age captioning [20, 24, 47, 53], visual question answering
(VQA) [3,50] and visual grounding [18,21,25,54], the task
of localizing visual elements in the images that are linguisti-
cally described by the query text. Visual and linguistic per-
ceptions are combined to assist the task of robot navigation
from room to room under building-scale environments [2].
The ALFRED benchmark [42] was later released to encour-
age research on connecting language to a series of human
daily tasks in an interactive visual 3D environment. Closer
to our task is text-to-image retrieval [19, 27, 28, 48, 49],
where text descriptors are learned to match corresponding
image descriptors. This usually requires the model to rea-
son about the relationship between a set of words and im-
age regions and match a word to its corresponding image
region [28]. The main difference between our approach and
previous work is that we match from text to point clouds in-
stead of images. In the coarse localization stage, our method
first matches a sequence of texts to a cell which represents
a region in the scene and contains a set of objects that are
then matched to individual textual object hints.

3D vision and language. Motivated by the 3D world
we live in, recent work explores the potential of 3D vi-
sion and language understanding on the tasks of 3D shape
generation [11] and language grounding of 3D objects
[1, 10, 15, 30, 55]. The method by [30] embodies language
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grounding implicitly on 3D visual features and predicts 3D
bounding boxes for target objects of primitive shapes of
different colors. ScanRefer [10] localizes 3D objects re-
ferred by the query descriptions in real-life indoor scenes.
ReferIt3D [1] tackles a similar task, but assumes to be given
segmented object instances in a room and focuses on identi-
fying the referred object among instances of the same fine-
grained category. InstanceRefer [55] improves their per-
formance by using a 3D panoptic segmentation backbone,
guiding the model to capture multi-level visual context. Re-
cent work by [15] proposes several graph modules that aid
learning of the contextual information for both visual and
language domains.

Similar to our work, these methods localize regions in
3D point clouds based on textual queries. However, this is
different to our proposed city-scale text-based position lo-
calization task in several aspects: For 3D object reference,
a model needs to learn to align a natural-language descrip-
tor to one of the objects in the scene. Different to that, our
model needs to learn to interpret a composition of objects
as a location and distinguish it from other possible loca-
tions, since there is no explicit visual notion of a position.
Additional challenges stem from the fact that we are tar-
geting large (city) scale outdoor scene localization. This is
challenging due to memory constraints of modern GPUs,
which can fit only a very small portion of a city scale point
cloud. Furthermore, outdoor regions are less diverse in
terms of semantics compared to cluttered man-made indoor
environments [29], making it difficult to leverage semantic
instances to obtain a unique position signature. In summary,
our work serves as the first attempt to tackle this challenging
task and opens the door to natural language based localiza-
tion for the 3D vision and language community.

3. The KITTI360Pose dataset
To tackle language-based position localization in large-

scale environments such as urban cities, we (i) need a large-
scale dataset that provides point clouds representing real-
world cities and (ii) a large set of position-text pairs to train
and evaluate our models. To this date, no such dataset
exists, and hand-annotating textual queries would be pro-
hibitively expensive.

The recently introduced KITTI360 [52]1 dataset pro-
vides nine static scenes that represent different districts of
the city of Karlsruhe, covering in total over 80km of driving
distance. These scenes were obtained by registering LiDAR
scene scans using LiDAR SLAM methods (e.g., [5]). These
point clouds would be suitable for studying this problem;
however, the dataset does not provide textual descriptions
of positions. Luckily, KITTI360 provides object instance

1Available under Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 license. This dataset contains no personally identifiable
information or offensive content.

labels for static (e.g., building, traffic light, garage) and dy-
namic (e.g., person, car, bicycle) object instances and se-
mantic labels for the stuff classes (e.g., road, vegetation,
wall). In the following, we utilize these object instance and
semantic labels to automatize the generation of position-
description query pairs. We use these to train our mod-
els and to benchmark large-scale cross-modal localization
without manual annotation work.

In this study, we focus on point clouds, recorded by Li-
DAR sensors, readily available in modern automotive [8,
43, 52] and robotics [26] datasets. Our approach would
also be applicable to point clouds obtained using structure-
from-motion methods [38, 40] available in existing visual
localization datasets [22, 36]. However, such datasets cur-
rently do not contain appropriate instance annotations that
we could utilize to automatize the generation of query po-
sitions. Finally, we note that indoor RGB-D datasets, such
as [9, 12] do contain such object instance labels. However,
in this paper, we explicitly aim to study large-scale localiza-
tion, hence, focus on outdoor scenarios.

3.1. Dataset Generation

Object instances. Contrary to the majority of existing au-
tomotive datasets [8, 43], that focus on instance segmen-
tation of dynamic objects such as cars and pedestrians,
KITTI360 additionally provides object instance labels for
several static classes, such as buildings and traffic lights,
that provide a reliable cue for localization. In this work, we
leverage static object instances to generate position queries
and as cues for the position localization.

In addition to labeled instances, we also further split cer-
tain stuff classes and use the obtained clusters to generate
descriptions. For example, the class vegetation aggregates a
large set of separate trees and bushes which could be spec-
ified as localization cues into a single object that spreads
across the entire scene. In order to instead recover a set of
separate and therefore localizable instances, we cluster all
stuff classes, such as vegetation, fence and wall using the
DBSCAN [14] algorithm. We provide further details on the
clustering procedure in the supplementary material.

Query generation. The next step is position-query pair
generation. The aim here is to obtain a set of positions and
corresponding texts that describe each position qualitatively
based on the surrounding objects and their spatial relations
in an automated fashion. We start by sampling equidistant
locations along recorded vehicle trajectories, readily avail-
able with maps. In the vicinity of each sampled location, we
sample a fixed number of random locations (in practice, 4
or 8) to increase the number of positions. We describe adja-
cent objects to each position based on their relative position,
color and semantic class by generating textual descriptions
based on a simple sentence template, describing the position
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Coarse Localization Fine Localization

Hint-to-Instance Matching Position 
Estimation

Predicted PositionHints

...

Matched in-cell Instances 

Template-based Position Description

      : The pose is west of a green garage. 

      : The pose is south of a gray road.

      : The pose is west of a dark-green parking. 

      : The pose is west of a green sidewalk. 

      : The pose is west of a gray-green garage. 

...

Text-to-Cell Retrieval

Database of Cells Top-k Cells

Figure 2. Text2Pos. Coarse localization. Given a template-based query position description, we first identify a set of coarse candidate
locations (i.e., cells) that potentially contain the target position, which serves as the coarse localization of the query. This is achieved by
retrieving top-k nearest cells from our constructed database of cells using our text-to-cell retrieval model. Fine localization. we then refine
the pose within retrieved cells via our position refinement module.

in relation to adjacent objects. We extract the relative posi-
tion and object color tag in an automated fashion directly
from the point cloud. We detail the sentence generation in
the supplementary.

In the following, we refer to one such generated sentence
as a hint. A position description T is defined by a set of
hints {hi} describing a given position, i.e., T := {hi}Nh

i=1

where Nh is the number of hints per position description.
The set of objects to describe a position with is obtained by
selecting a set of k objects close to the sampled query po-
sition. We retain only positions with at least Nh objects in
their vicinity. The reason for such well-structured queries
is two-fold: (i) this allows us to investigate the problem
without costly human annotations, and (ii) enables us to rig-
orously study cross-modal localization in a well-controlled
setting based on explicit hint-to-object matching. We are
confident that more complex language queries can be en-
coded and understood by building on recent developments
in the field of natural language processing [7, 13].

KITTI360Pose dataset. Using the procedure described
above, we generate the KITTI360Pose dataset. In particu-
lar, we sample 14, 934 positions and generate up to three
descriptions for each, totaling in 43, 381 position-query
pairs. We use five scenes (districts) for training (cover-
ing in total 11.59km2), one for model validation, and three
for testing (covering in total 2.14km2). An average dis-
trict covers an area of 1.78km2. In contrast, the Cambridge
dataset [22] covers an area of 0.063km2, Oxford RobotCar
and CMU Seasons [36] cover 10km and 8.5km of driving
distance (respectively), and Tokyo 24/7 [45] covers the area
of 2.56km2. Descriptions of these positions are generated
based on objects that fall within a 15m radius for a sampled
position. We provide additional details in the supplemen-
tary.

4. Tex2Pos: A Baseline for Language-based
Localization

Given a textual position query, our goal is to localize an
agent within a given point-cloud-based (Sec. 3.1) map via

2D planar coordinates of its position w.r.t. the scene coor-
dinate system. To this end, we propose the first text-based
coarse-to-fine localization method, that we outline in Fig. 2.
Due to the large-scale nature of the problem, we follow a
coarse-to-fine framework, well studied and proven success-
ful in the field of large-scale visual localization [33,56]. We
first perform a coarse localization of the query where we
discretize the search region into rectangular cells and re-
trieve the top-k cells matched to the description from the
database (Fig. 2, left). To refine this estimate, we match the
visible 3D instances within a retrieved cell, to their corre-
sponding referring hints in the textual description (Fig. 2,
right). Finally, we obtain the position estimate from the set
of instances identified by the text (Sec. 4.2). We note that
the coarse retrieval could in the future be replaced by hints
such as street name or coarse address. This would require
establishing an additional alignment between the 3D point
cloud and city map, and remains our future work.

4.1. Coarse Localization

Image retrieval techniques [4,16,45] are commonly used
within visual localization pipelines to efficiently narrow
down the search space [33, 44, 56] or even provide a direct
coarse position estimate [37] of the query image [36]. Given
a query image, its learned global descriptor is matched
against the global descriptors extracted from a database of
reference images to obtain its top-k nearest reference im-
ages based on their descriptor distances. We follow this
general approach in our text-to-cell cross-modal retrieval
method. With this step, we aim to efficiently locate can-
didate regions within the map that could potentially contain
our target position.

Database construction. As a pre-processing step, we di-
vide point clouds, representing city districts, into rectangu-
lar cells. We sample cells by sliding a W × W window
with a stride of S horizontally and vertically over the scene,
where the cell size W should be large enough to contain a
certain number of instances, that can be used to describe a
position. The stride size S is picked to be smaller than the
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Text-to-Cell Retrieval
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... ...

Figure 3. (top) Query text encoder and cell encoder architecture,
(bottom) instance encoder architecture.

cell size to cover the whole scene area and to allow partially
overlapping cells. We consider an instance pi to be inside a
cell C if at least a third of its points lie within the cell, or if
a minimal number of points (250 in practice) overlap with
the cell – this criterion is important for stuff classes, such as
tree or building. We name those instances in-cell instances
of that cell, i.e., C := {pi}

Np

i=1 where Np is the number of
in-cell instances per cell and varies for different cells.

Text-to-cell retrieval. Given a position description, the
task of our retrieval model is to identify its top-k candi-
date cells that are likely to contain the described position
location. Compared to image-to-image retrieval, the model
needs to learn to extract descriptors for inputs from two dif-
ferent modalities, i.e., text and point clouds, such that the
two can be directly compared using Euclidean distance in
the embedding space.

As shown in Fig. 3 (top), our retrieval network has two
encoding branches to process a query position description T
and a candidate cell C. The complete position description T
is encoded into a global text descriptor FT using a bidirec-
tional LSTM cell [17]. On the cell encoding side, we first
extract a descriptor Fpi

for each in-cell instance pi ∈ C.
We aggregate in-cell instance descriptors {Fpi}

Np

i=1 into a
global cell descriptor FC using an EdgeConv layer [51] fol-
lowed by a max pooling operation.

Instance encoder. Each instance Pi is represented by
a point cloud where each point contains three spatial and
three color (RGB) coordinates, yielding 6D input features
(Fig. 3 bottom). We encode such a point cloud using a
PointNet++ [31] backbone, which gives us a semantic em-
bedding. In addition, we explicitly obtain a color embed-
ding of it by encoding its RGB coordinates using our color
encoder and a positional embedding of it by encoding its
instance center P̄i, i.e., the mean value of its coordinates,
using our positional encoder. Each of the color encoder and
positional encoder takes form of a 3-layer multi-layer per-
ceptron (MLP), whose output dimension is the same as the
semantic embedding dimension. The semantic, color and
positional embeddings are fused by concatenation and fed

Hint-to-instance Matching + Position Estimation

Translation 
Regressor

OT 
Matcher

Instance 
Encoder

Embedding 
+  

LSTM

Hints

...

Hint Descs.

...

Translation Vectors

Position Estimation 

Partial
Assignment 

...

...

in-cell   
Instances

...

Instance
Descs.

...

...

Figure 4. Fine localization. In the fine localization, for each
candidate cell, we first establish the correspondences between the
query hints and its in-cell instances, which allows us to filter out
noisy signals that are not useful for position estimation from both
domains. We then predict a vector for each matched instance that
translates its instance center to a position estimate via a translation
regressor. The final position is the average of the position esti-
mates by all matched instances.

into a projection layer (another 3-layer MLP) which outputs
a final instance embedding Fpi

∈ RDp .

4.2. Fine Localization

Given a set of retrieved candidate cells, we now find cues
that allow us to refine the position among those cells based
on the query description. In classical visual localization,
such a fine localization step normally relies on establishing
2D pixel correspondences between the query image and re-
trieved top-k database images [33, 56]. These images have
geo-information attached and provide cues to compute an
accurate camera position for the query. Inspired by this
idea, we propose to compute the refined position by estab-
lishing hint-to-instance correspondences between a position
description and its top-k retrieved cells.

Hint-to-instance matching. Given a position description
T and a candidate cell C, we first establish hint-to-instance
correspondences with our cross-modal matching module
(Fig. 4). As explained in Sec. 3, a position description con-
sists of a series of hints {hj}Nh

j=1, where each hint describes
a single instance about its attributes and relation to the po-
sition. We use our instance encoder to extract a descriptor
Fpi

for each in-cell instance pi ∈ C and our text encoder to
extract a descriptor Fhj per hint.

We then use a matching module (inspired by Super-
Glue [34]) to perform a partial matching between the set
of instances and the set of sentences. The matching module
first uses several blocks of self-attention layers and cross-
attention layers to propagate contextual information. The
pair-wise similarity scores are computed from the two sets
of aggregated descriptors as the cost matrix to an optimal
transport (OT) matching layer. We adopt the same OT
setup as in [34]. Finally, we obtain the partial assignment
from hints to instances by picking matches with confidence
scores above the certain threshold (0.2 in practice).

Translation-based refinement. For each identified match
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Stride # Cells Localization Recall (ϵ < 5/10/15m)
k = 1 k = 5 k = 10

S = 10m 1434 0.14/0.25/0.31 0.36/0.55/0.61 0.48/0.68/0.74
S = 15m 629 0.10/0.19/0.25 0.26/0.47/0.56 0.35/0.61/0.70
S = 20m 362 0.07/0.15/0.19 0.18/0.36/0.45 0.25/0.50/0.60

Table 1. Ablation on varying sampling stride for cell database
construction.

(pi, hj) of the instance pi and the hint hj , we addition-
ally learn a translation vector ti that transforms the instance
center p̄i to the target position. Each translation predic-
tion ti then leads to a position estimate that is defined as
ỹi = p̄i + ti. To predict such a translation vector, we train
an additional 3-layer MLP translation regressor that takes a
hint descriptor Fhj as the input, and outputs a translation
vector ti. The final position of the query text is computed
by taking the average of the set of estimates {ỹi} predicted
from all hint-to-instance matches. We show in our ablation
(Sec. 5.1) that our learned translation leads to a more ac-
curate position prediction compared to simple averaging of
the matched instance positions.

4.3. Losses

Coarse loss. Given an input batch of cell descriptors
{F i

C}
Nb
i=1 and matching text descriptors {F i

T }
Nb
i=1 where Nb

is the batch size, we train the network for cross-domain re-
trieval with the pairwise ranking loss [23]:

Lcoarse =

Nb∑
i

Nb∑
j ̸=i

[α− ⟨F i
C ,F i

T ⟩+ ⟨F i
C ,F

j
T ⟩]+

+

Nb∑
i

Nb∑
j ̸=i

[α− ⟨F i
T ,F i

C⟩+ ⟨F i
T ,F

j
C⟩]+ ,

(1)

where [•]+ equals max(0, •) and α is the margin hyper pa-
rameter. This loss enforces that each cell descriptor F i

C is
closer to its matching text descriptor F i

T than it is to non-
matching text descriptors F j

T in the batch by a margin. The
same is also enforced when matching from a text descriptor
F i

T to a cell descriptor.

Fine loss. To train our matching module, we adopt the
matching loss used in [34], which maximizes the scores at
ground truth (GT) match locations in the predicted assign-
ment matrix. We train this model separately from the coarse
module. To train the translation regressor, we minimize
the mean square error between the predicted and the GT
translation. Matching module and the regressor are jointly
trained with the sum of the matching loss and regression
loss. We provide implementation details of model training
in our supplementary material.

Train Infer Localization Recall (ϵ < 5/10/15m)
k = 1 k = 5 k = 10

4 6 0.12/0.21/0.27 0.30/0.48/0.55 0.41/0.61/0.67
6 6 0.13/0.25/0.30 0.36/0.54/0.60 0.47/0.67/0.73
10 6 0.14/0.25/0.30 0.36/0.51/0.57 0.47/0.64/0.70
12 6 0.11/0.21/0.25 0.30/0.45/0.51 0.41/0.58/0.64

6 4 0.09/0.17/0.22 0.26/0.42/0.48 0.35/0.55/0.61
6 6 0.13/0.25/0.30 0.36/0.54/0.60 0.47/0.67/0.73
6 10 0.20/0.34/0.40 0.47/0.68/0.73 0.61/0.80/0.84
6 12 0.23/0.36/0.41 0.50/0.69/0.74 0.63/0.80/0.84

Table 2. Ablation on the number of hints in a query description.

5. Experimental Evaluation
In this section, we discuss the performance of our model

(Sec. 4) on the proposed KITTI360Pose dataset. We report
results on our validation split for ablation studies (Sec. 5.1)
and on our test split for a final evaluation of our best per-
forming models (Sec. 5.2). For details on the dataset and
splits, we refer to our supplementary.

Evaluation metrics. We perform the evaluation w.r.t.the
top k retrieved candidates (k ∈ {1, 5, 10}) and report lo-
calization recall, i.e., the ratio of successfully localized
queries if its error is below specific error thresholds, i.e.,
ϵ < 5/10/15m by default.

5.1. Model Ablations

Database construction. The coarse localization module
(as explained in Sec. 4.1) retrieves the top-k candidate cells.
To study its performance w.r.t. the localization task, we use
the center of a cell as a coarse position estimate and measure
its accuracy. As our first ablation, we study the impact of
the cell sampling stride S on localization performance.

As shown in Tab. 1, the retrieval performance on cells
sampled with S = 10m performs better than other stride
settings across different k values. As the smaller stride im-
plies more overlap between consecutively sampled cells, it
helps our model to learn more discriminative descriptors
that can be used to distinguish the content of close-by cells.
While decreasing the stride allows for more accurate local-
ization, it increases the computation demand in terms of
memory and runtime in quadratic order. We present results
for denser sampling using S = 1/3/5m in the supplemen-
tary. Considering the trade-off between accuracy and com-
putational efficiency, we use S = 10m to train and evaluate
our models in the following experiments.

Ablation on number of localization cues. To evaluate
how the number of specified object cues influences local-
ization recall, we vary the number of hints Nh from four to
12 either during training or inference, as shown in Tab. 2.
The results show that alternating the number of hints be-
low or above 6 during training decreases the recall in most
metrics. Furthermore, we show that our model trained on
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Model Localization Recall (ϵ < 2/5/10m)

Center of Cell: 0.14/0.77/0.99
Mean of Matched Instance: 0.15/0.62/0.97
Matched Instance + Translation (Text2Pos): 0.24/0.76/0.99

Matching Oracle: 0.34/0.91/1.00
Translation Oracle: 0.55/0.90/0.99
Both Oracles: 1.00/1.00/1.00

Table 3. Ablation on fine localization components. This ablation
study on the fine localization module requires narrower localiza-
tion thresholds compared to Tab. 1 to reveal differences in local-
ization precision.

Nh = 6 hints is robust to varying Nh during inference and
that performance even rises by up to 16 points for Nh = 12,
which is to be expected as additional hints help to resolve
some of the ambiguity in cross-modal localization.

Fine localization module. In this ablation, we provide
insights into design decisions for the fine localization mod-
ule (Sec. 4.2). To make the evaluation independent of the
retrieval module performance, we use a retrieval oracle in
the following experiments to provide the model with the
database cell that is closest to the GT position.

Firstly, we study the performance of the hints-to-
instance matching module, by measuring precision and re-
call of the predicted matches given the GT matches. Our
matching model can achieve 78% and 76% for both recall
and precision, respectively.

Next, we show the benefit of our translation regressor by
comparing the following three different variants for posi-
tion estimation: (i) we take the cell-center as the estimated
position (no refinements); (ii) we compute the mean of the
instances matched by query hints, and (iii) we use the mean
of the position estimates computed by using the predicted
translation vectors. Due to the use of a retrieval oracle,
we report their localization recall with stricter error thresh-
olds ϵ < 2/5/10m. As shown in Tab. 3 (top), all three
variants can localize queries within 10m errors with almost
100% recall. The difference between model performance
becomes more evident when using the smaller error thresh-
old ϵ = 2m, where we see the simple cell-center baseline
performs poorly to localize only 14% of queries. This only
improves marginally by 1% if we take the mean center of
matched instances. Additionally, we even see the opposite
results for a moderate error of ϵ = 5m where the cell-center
baseline outperforms the instance-mean baseline by 15%.
The results thus suggest that naively assuming either the
position to be at the center of the cell or between the de-
scribed instances is not sufficient. Instead of making such
manual assumptions, we learn where to expect the position
given an instance of a specific object class in a data-driven
manner. We show that our learned translation leads to 24%
localization recall on the smallest threshold, outperforming
the other two variants by up to 10% and confirming its po-
tential efficacy for fine-grained localization.

Finally, we replace parts of the fine model by oracles
to understand the limitations of individual components of
our method. As shown in Tab. 3 (bottom), using GT as-
sociations (matching oracle) instead of performing hint-to-
instance matching using our model, we localize (10%/15%)
more queries within 2/5m errors. Purely replacing pre-
dicted translation with GT translations (translation oracle)
leads to 31% more queries localized within 2m, suggesting
room for improvements by predicting more accurate trans-
lation vectors. Both oracles combined yield perfect local-
ization as expected.

Pipeline-level oracle ablation. While the previous exper-
iments used a coarse oracle to evaluate fine localization in
isolation, we now replace first our coarse and then our fine
module by oracles, in order to understand their limitations
of the full system. The results are shown in Tab. 4. With
coarse oracle, we replace the retrieval component with a re-
trieval oracle (as in the previous fine module ablation). As
can be seen, identifying cells reliably localizes all queries
within 15m distance to the query position, and with 98%
accuracy within 10m threshold. This clearly shows signifi-
cant potential in improving the retrieval module, which can
be achieved potentially with additional information (such
as nearby landmarks or street names) to reduce the inherent
cell ambiguity. This remains our future work. With fine or-
acle, we then measure the localization performance of our
learned retrieval model + GT matching association + GT
translation prediction. We show that perfect fine localiza-
tion improves the baseline by 11%/29%/31% at the smallest
thresholds for k = 1/5/10 candidate cells, which indicates
further potential in improving the refinement module. Fi-
nally, using both oracles, we can localize all queries within
5m distance from the query position. For the lower part of
Tab. 4, we also replace our coarse and fine modules with
random choice to highlight their importance. Compared to
our baseline, a random coarse retrieval leads to near-zero lo-
calization recall, while a random matching in the fine mod-
ule leads to localizing up to 34 % less queries.

Comparison to visual localization While Text2Pos is not
intended as a competitor against visual localization, we do
provide a comparison in localization recall through a two-
step experiment (Tab. 5). Visual localization has to be per-
formed on rendered images in order to be applicable on our
dataset, so we first show a comparison between real and
rendered images from identical locations, confirming that
rendered images do not significantly reduce retrieval perfor-
mance. Then, we compare visual retrieval (NetVLAD [4]2)
to our cross-modal retrieval by rendering images at each cell
and query pose of our validation set, resulting in 5736 and
3187 images on the database and query side, respectively.

The results indicate that visual retrieval shows superior

2We use the pretrained NetVLAD obtained from here
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Model Localization Recall (ϵ < 5/10/15m)
k = 1 k = 5 k = 10

Text2Pos 0.14/0.25/0.31 0.36/0.55/0.61 0.48/0.68/0.74

Coarse Oracle 0.68/0.98/1.00 - -
Fine Oracle 0.35/0.37/0.38 0.65/0.67/0.68 0.77/0.78/0.80
Both Oracles 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00

Coarse random 0.00/0.01/0.01 0.01/0.02/0.03 0.02/0.04/0.06
Fine random 0.03/0.10/0.20 0.09/0.30/0.49 0.14/0.40/0.62

Table 4. Ablation on localization oracle. Note that the line 2 re-
sults differ from Tab. 3 line 3 due to different experimental setups.

Model Localization Recall (ϵ < 5/10/15m)
k = 1 k = 5 k = 10

NetVLAD (real) 0.11/0.51/0.79 0.11/0.59/0.95 0.11/0.60/0.96
NetVLAD (rendered) 0.10/0.49/0.74 0.11/0.59/0.93 0.11/0.59/0.95

Text2Pos (w/o fine loc.) 0.10/0.23/0.30 0.27/0.52/0.60 0.37/0.65/0.72
NetVLAD [4] 0.18/0.33/0.43 0.29/0.50/0.61 0.34/0.59/0.69

Table 5. Comparison with visual localization. A pre-trained
NetVLAD model for visual retrieval is compared between real and
rendered images (top rows) and against our novel cross-modal re-
trieval.

Model Localization Recall (ϵ < 5/10/15m)
k = 1 k = 5 k = 10

Text2Pos (full) 0.13/0.21/0.25 0.33/0.48/0.52 0.43/0.61/0.65
Text2Pos (w/o trans. offs.) 0.10/0.20/0.25 0.26/0.46/0.52 0.35/0.58/0.65
Text2Pos (w/o fine loc.) 0.10/0.20/0.25 0.27/0.46/0.52 0.35/0.59/0.65

Table 6. Model evaluation on the test set.

accuracy for smaller top-k values with up to 13 percentage
points at k = 1 and ϵ = 15m, but also lags behind cross-
modal retrieval with up to 6 percentage points in k = 10
and ϵ = 10m. We note that for simplicity, this comparison
considers retrieval only without refinement and that more
advanced visual localization pipelines are available. Never-
theless, we take this as a first indication that equally strong
advancements in cross-modal localization might approach
the accuracy of state-of-the-art visual pipelines.

5.2. Evaluation on the Test Set

As can be seen in Tab. 6, for top-1 retrieval, we can
successfully localize up to 25% of queries up to 15m dis-
tance threshold and 20% of queries up to a distance of 10m.
When considering top-5 queries, we can already success-
fully localize 52% of all queries and go up to 65% success-
fully localized queries when considering top-10 cell candi-
dates. As can be seen, based on purely textual descriptions,
we can already localize the target position quite accurately
(i.e., 10m radius). However, to get to a good localization
recall, we need to consider top-10 cell candidates. This
suggests that our model is rather uncertain which cell con-
tains the query position. This is not surprising, as many of
the query descriptions could refer to several locations in the
city. Additional hints such as a nearby address, nearby street

names, or landmarks should help in the future to further nar-
row down the search space and resolve this ambiguity and
provide a good direction for future research.

Finally, as can be seen in Tab. 6, the full localization
variant using translation prediction outperforms the variant
using naive matched-instances position averaging by local-
izing 3% more queries within 5m errors considering top-1
retrieved cell. This improvement increases to 8% when con-
sidering top-10 candidates.

6. Broader Impact and Limitations

Our work on text-based localization opens a new front
of research on natural-language-based action coordination
with future mobile systems, to which we may need to spec-
ify our current or a target location. Usage scenarios include
autonomous goods delivery (e.g., food or packages), order-
ing autonomous vehicle pick-up, or sending vehicles to re-
mote locations in case of emergency. These use-cases will
play an important role in the automation of tasks that can
be considered unsafe (due to a high number of traffic acci-
dents) and currently require a human operator. Automation
of these tasks can also improve the weight and utilization of
delivery vehicles and, consequentially, the carbon footprint.

However, to devise a first feasible solution, we rely on
the following assumptions: (i) we assume our maps contain
labeled instances of objects used as anchor points for lo-
calization; (ii) we rely on simplistic, template-based local-
ization instructions for training and evaluation. Generaliza-
tion to arbitrary, unlabeled point clouds and more realistic,
human-generated textual queries remains our future work.

7. Conclusion

We presented Text2Pos and KITTI360Pose, the first
method and dataset for text-based position localization
within a 3D environment. As such language-based com-
munication is natural to human beings, we foresee it will be
an integral part of future mobile agents that will require lo-
cation instructions, such as goods delivery or vehicle pick-
up positions. We demonstrated that our coarse-to-fine ap-
proach can localize 65% of textual queries within 15m dis-
tance to query locations when considering top-10 retrieved
locations. We believe we can further improve localization
precision by using street names and visual landmarks as
cues for coarse localization, which we leave for future work.
This work is the first step in the direction of language-based
localization, showing its great potential, and hopefully in-
spiring researchers to further make this technology a reality.
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