
Robust Optimization as Data Augmentation for Large-scale Graphs

Kezhi Kong 1, Guohao Li 2, Mucong Ding 1, Zuxuan Wu 1, Chen Zhu 1,
Bernard Ghanem 2, Gavin Taylor 3, Tom Goldstein 1

1 University of Maryland, College Park
{kong, mcding, zxwu, chenzhu, tomg}@cs.umd.edu

2 King Abdullah University of Science and Technology
{guohao.li, bernard.ghanem}@kaust.edu.sa

3 US Naval Academy
taylor@usna.edu

Abstract

Data augmentation helps neural networks generalize
better by enlarging the training set, but it remains an open
question how to effectively augment graph data to enhance
the performance of GNNs (Graph Neural Networks). While
most existing graph regularizers focus on manipulating
graph topological structures by adding/removing edges, we
offer a method to augment node features for better perfor-
mance. We propose FLAG (Free Large-scale Adversarial
Augmentation on Graphs), which iteratively augments node
features with gradient-based adversarial perturbations dur-
ing training. By making the model invariant to small fluctu-
ations in input data, our method helps models generalize to
out-of-distribution samples and boosts model performance
at test time. FLAG is a general-purpose approach for graph
data, which universally works in node classification, link
prediction, and graph classification tasks. FLAG is also
highly flexible and scalable, and is deployable with arbi-
trary GNN backbones and large-scale datasets. We demon-
strate the efficacy and stability of our method through ex-
tensive experiments and ablation studies. We also provide
intuitive observations for a deeper understanding of our
method. We open source our implementation at https:
//github.com/devnkong/FLAG.

1. Introduction

Graph Neural Networks (GNNs) have emerged as pow-
erful architectures for learning and analyzing graph repre-
sentations. The Graph Convolutional Network (GCN) [21]
and its variants have been applied to a wide range of tasks,
including visual recognition [33], meta-learning [11], social
analysis [23,29], and recommender systems [41]. However,
the training of GNNs on large-scale datasets usually suffers

from overfitting, and realistic graph datasets often involve
a high volume of out-of-distribution test nodes [17], posing
significant challenges for prediction problems.

One promising solution to combat overfitting in deep
neural networks is data augmentation [22], which is com-
monplace in computer vision tasks. Data augmentations
apply label-preserving transformations to the inputs, such
as translations and reflections for images. As a result, data
augmentation effectively enlarges the training set while in-
curring negligible computational overhead. However, it re-
mains an open problem how to effectively generalize the
notion of data augmentation to GNNs. Transformations on
images rely heavily on image structures [3], and it is chal-
lenging to design low-cost transformations that preserve se-
mantic meaning for non-visual tasks like natural language
processing [38] and graph learning. Generally speaking,
graph data for machine learning comes with graph struc-
ture (or edge features) and node features. In the limited
cases where data augmentation can be done on graphs,
it generally focuses exclusively on the graph structure by
adding/removing edges [13, 14, 16, 30, 37, 42].

In the meantime, adversarial data augmentation, which
applies small perturbations in the input feature space to
maximially alter model outputs, is known to boost neural
network robustness and promote resistance to adversarially
chosen inputs [15, 26]. Despite the wide belief that adver-
sarial training harms standard generalization and leads to
worse accuracy [1, 35], recently a growing amount of at-
tention has been paid to using adversarial perturbations to
augment datasets and ultimately alleviate overfitting. For
example, [36] and [34] showed adversarial data augmenta-
tion is a data-dependent regularization that could help gen-
eralize to out-of-distribution samples, and its efficacy has
been verified in domains including computer vision [40],
language understanding [19,27,44], and visual question an-
swering [10]. Despite the success of adversarial augmenta-

60

0 20 40 60 80 100
epoch

0.300

0.325

0.350

0.375

0.400

0.425

0.450

va
lid

at
io

n
lo

ss
Node Classification

Baseline
+FLAG

0 50 100 150 200
epoch

0.50

0.55

0.60

0.65

0.70

va
lid

at
io

n
hi

ts
@

20

Link Prediction
Baseline
+FLAG

0 5 10 15 20 25
epoch

0.05

0.06

0.07

0.08

0.09

0.10

va
lid

at
io

n
lo

ss

Graph Classification
Baseline
+FLAG

Figure 1. Generalization performance of FLAG on all three tasks. Left: node classification with GAT as baseline on ogbn-products;
Middle: link prediction with hits@20 as metric (the higher the better) and GraphSAGE as baseline on ogbl-ddi; Right: graph classifica-
tion with GIN as baseline on ogbg-molhiv. Plotted lines are attained by smoothing the original lines (the shallow ones), where smooth
weights are 0.75, 0.75, and 0.5 respectively.

tion in language and vision, it remains unclear how to effec-
tively and efficiently improve GNNs’ clean accuracy using
adversarial augmentation.

Present work. We propose FLAG, Free Large-scale
Adversarial Augmentation on Graphs, to tackle the over-
fitting problem. While existing literature focuses on mod-
ifying graph structures to augment datasets, FLAG works
purely in the node feature space by adding adversarial per-
turbations (generated by gradient-based robust optimization
algorithms), to the input node features with graph structures
unchanged. FLAG leverages “free” adversarial training
methods [31] to conduct efficient adversarial training so that
it is highly scalable to large datasets. The method also takes
advantage of multi-scale adversarial augmentation to make
the model fully generalized in the input feature space. We
verify the effectiveness of our method on the Open Graph
Benchmark (OGB) [17], which is a collection of large-scale,
realistic, and diverse graph datasets for node, link, and
graph property prediction tasks. We conduct extensive ex-
periments across OGB datasets by applying FLAG to com-
petitive GNN baselines and show that FLAG brings non-
trivial improvements in most cases. For example, FLAG
lifts the test accuracy of GAT on ogbn-products by
an absolute value of 2.31%. FLAG is simple (easy to
implement with a dozen lines of code in PyTorch), gen-
eral (model-free and task-free), and efficient (able to bring
salient improvement at tractable or even no extra cost). Our
main contributions are summarized as follows:

• Method: To the best of our knowledge, our work is
the first general-purpose feature-based data augmenta-
tion method on graph data, which is complementary to
other regularizers (e.g., dropout) and topological aug-
mentations. The novel method incorporates “free” and
multi-scale techniques to craft feature augmentations
more effectively.

• Experiments: We show the efficacy and scalability of
our method through extensive experiments and abla-

tion studies on large-scale datasets across node, link,
and graph property prediction tasks. We validate that
FLAG is superior to existing adversarial augmentation
methods.

• Analysis: We provide observations and analysis to sup-
port our conjecture that the discrete vs. continuous
distribution discrepancy of input features is the key to
different effects (beneficial vs. harmful) of adversarial
augmentations on model accuracy.

2. Preliminaries and Related Work
Graph Neural Networks (GNNs). We denote a graph

as G(V, E) with initial node features xv for v ∈ V and
edge features euv for (u, v) ∈ E . GNNs are built on graph
structures to learn representation vectors hv for every node
v ∈ V and a vector hG for the entire graph G. Follow-
ing [18], formally the k-th iteration of message passing, or
the k-th layer of GNN forward path is defined as:

msg
(k)
v = AGGREGATE(k)

θ

({(
h
(k−1)
v , h

(k−1)
u , euv

)
, ∀u ∈ N (v)

})
h
(k)
v = COMBINE(k)

ϕ

(
h
(k−1)
v ,msg

(k)
v

)
,

(1)

where h(k)
v is the embedding of node v at the k-th layer, euv

is the feature vector of the edge between node u and v, N (v)

is node v’s neighbor set, and h
(0)
v = xv . AGGREGATE(·)

and COMBINE(·) functions are parameterized by neural
networks.

To obtain the representation of the entire graph hG , the
permutation-invariant READOUT(·) function pools node
features from the final iteration K as:

hG = READOUT
({

h(K)
v | v ∈ V

})
, (2)

Existing graph regularizers mainly focus on augmenting
graph structures by modifying edges [2, 16, 30]. GraphAT
[8], BVAT [5], and LAT [20] are three semi-supervised
methods on the node classification task. GraphAT promotes

61

local smoothness by reinforcing the similarity between the
predictions of perturbed nodes and their neighbors. BVAT
proposed two graph VAT schemes to enhance the output
smoothness of GCN; LAT virtually perturbed the first-layer
embedding of a GCN classifier. The usage scenario of these
methods is limited to node classification, while data aug-
mentation should function regardless of tasks. Besides, the
formulation of VAT [28] utilized by these works involves
both supervised clean and adversarial robust losses simul-
taneously. Practically this will consume at least twice the
GPU memory as the baseline, making them not scalable to
large-scale datasets. Overall, no work so far has consid-
ered general-purpose feature-based data augmentations for
large-scale graphs.

3. Proposed Method
In this work, we investigate how to effectively improve

the generalization of GNNs through a feature-based aug-
mentation. Graph node features are usually constructed as
discrete embeddings, such as binary bag-of-words vectors
or categorical variables. As a result, standard hand-crafted
augmentations, like flipping and cropping transforms used
in computer vision, are not applicable to graphs node fea-
tures.

By hunting for and stamping out small perturbations that
cause the classifier to fail, one may hope that adversarial
training could benefit standard accuracy [15, 28, 35]. It is
widely observed that when the data distribution is sparse
and discrete, the beneficial effect of adversarial perturba-
tions on generalization takes over [10, 35]. [36] viewed ad-
versarial perturbation as a data-dependent regularization,
which could intuitively generalize to out-of-distribution
samples. Highlighted by [17], the out-of-distribution phe-
nomenon of data is salient in the graph domain, and also
considering the sparsity of labeled node samples in the
semi-supervised node classification task, we view adversar-
ial perturbation as a strong candidate method for input fea-
ture augmentation.

Min-Max Optimization. Adversarial training is the
process of crafting adversarial data points, and then inject-
ing them intro training data. This process is often formu-
lated as the following min-max problem:

min
θ

E(x,y)∼D

[
max
∥δ∥p≤ϵ

L (fθ(x+ δ), y)

]
, (3)

where D is the data distribution, y is the label, ∥ ·∥p is some
ℓp-norm distance metric, ϵ is the perturbation budget, and L
is the objective function. [26] showed that this saddle-point
optimization problem could be reliably tackled by Stochas-
tic Gradient Descent (SGD) for the outer minimization and
Projected Gradient Descent (PGD) for the inner maximiza-
tion. In practice, the typical approximation of the inner
maximization under an l∞-norm constraint is as follows,

0.005 0.010 0.015 0.020 0.025 0.030 0.035
l2 distance of augmentations

0

500

1000

1500

2000

2500

3000

de
ns

ity

FLAG
PGD

Figure 2. Augmentation distance distributions of FLAG and PGD.
We run the test on ogbn-arxiv with GCN as backbone. Ascent
steps are both set to 3.

δt+1 = Π∥δ∥∞≤ϵ (δt + α · sign (∇δL (fθ(x+ δt), y))) , (4)

where the perturbation δ is updated iteratively, and
Π∥δ∥∞≤ϵ performs projection onto the ϵ-ball in the l∞-
norm. For maximum robustness, this iterative updating pro-
cedure usually loops M times to craft the worst-case noise,
which requires M forward and backward passes end-to-end.
Afterwards the most vicious noise δM is applied to the in-
put feature, on which the model weight is optimized. The
algorithm above is called PGD.

Multi-scale Augmentation. On visual tasks, [3] high-
lighted the importance of using diverse types of data aug-
mentations such as random cropping, color distortion, and
Gaussian blur. The authors showed that a single transfor-
mation is not sufficient to learn good representations. To
fully exploit the generalizing ability and enhance the diver-
sity and quality of adversarial perturbations, we propose to
craft multi-scale augmentations. To realize this goal, we
leverage the techniques below.

“Free” training. We leverage “free” adversarial train-
ing [31] to craft adversarial data augmentations. PGD is a
powerful yet inefficient way of solving the min-max opti-
mization. It runs M full forward and backward passes to
craft a refined perturbation δ1:M , but the model weights θ
only get updated once using the final δM . This process
makes model training M times slower. In contrast, while
computing the gradient for the perturbation δ, “free” train-
ing simultaneously produces the model parameter θ on the
same backward pass. This enables a parameter update to
be computed in parallel with a perturbation update at vir-
tually no additional cost. The authors proposed to train on
the same minibatch M times in a row to simulate the in-
ner maximization in Eq. (3), while compensating by per-
forming M times fewer epochs of training. The resulting
algorithm yields accuracy and robustness competitive with
standard adversarial training, but with the same runtime as
clean training.

62

Besides the efficiency, the “free” method achieves our
idea of optimizing θ with multi-scale augmentations. Note
that X is augmented with additive perturbations δ1:M ,
of which each can have a maximum scale of mα,m ∈
{1, · · · ,M}, in contrast to PGD whose perturbation is a
single δM with an Mα scaling. This greatly adds to the
diversity of our augmentations. However, the “free” al-
gorithm is suboptimal in terms of min-max optimization
in that during the batch-replay process, the approximated
perturbation computed to maximize the objective on θt is
used to robustly optimize θt+1 rather than θt. To tackle
this problem, instead of directly updating θ using the “by-
product” gradient attained from the gradient ascent step on
δ, we accumulate the gradients ∇θL, and apply them to the
model parameters all at once later. Formally, the optimiza-
tion step is

θi+1 = θi −
τ

M

M∑
t=1

∇θL (fθ(x+ δt), y) , (5)

where τ is learning rate and δ1 is uniform noise. Note that
the gradients in Eq.(5) are restored when crafting perturba-
tion in Eq.(4). We save one backward pass and M times
extra GPU memory through accumulating gradients (which
is fully supported by PyTorch) during the batch replay pro-
cess. Figure 2 depicts the effects of our design. We can see
that PGD inevitably produces concentrated augmentations
in terms of the magnitude, whereas our method produces
perturbations with a broader range of sizes, which adds to
the diversity and quality of the augmentations.

Moreover on the node classification task, we propose to
augment labeled vs. unlabeled nodes with diverse magni-
tudes of perturbations during training time to further diver-
sify the augmentations. We call it Weighted perturbation.
When classifying one target node, messages from the whole
k-hop neighborhood are aggregated and combined into its
embedding. It is natural to believe that a further neighbor
should have lower impact, i.e. higher smoothness, on the
final decision of the target node, which can also be intu-
itively reflected by the recursive message passing procedure
of GNNs in Eq.(1). In practice we find that a larger pertur-
bation for unlabeled nodes can be beneficial to the perfor-
mance. Algorithm 1 summarizes the pseudo code of our
method on node classification task. Figure 1 illustrates the
generalization ability of our proposed method.

4. Experiments
In this section, we conduct extensive experiments to fully

reveal the efficacy of our method.
Datasets. We demonstrate FLAG’s effectiveness

through extensive experiments on the Open Graph Bench-
mark (OGB), which consists of a wide range of challeng-
ing large-scale datasets. [32], [7], and [6] showed that tradi-

Algorithm 1 FLAG: Free Large-scale Adversarial Aug-
mentation on Graphs (Node Classification Task)
Require: Graph G = (V, E), Vl is the labeled node set;
learning rate τ ; ascent steps M ; ascent step size αv for la-
beled node, αu for unlabeled, we assume the neighbors of
labeled nodes are all unlabeled ones; L(·) as objective func-
tion; A(·) and C(·) denote the AGGREGATE and COM-
BINE functions in Eq.(1). The backward function at line
12 refers to back-propagation gradient computation for both
model weights and noises.

1: Initialize (θ, ϕ)
2: for v ∈ Vl do
3: δ(0)v ← U(−αv, αv)

4: δ(0)u ← U(−αu, αu)
5: for t = 1 . . .M do
6: h(0)

v ← xv + δ(t−1)
v

7: h(0)
u ← xu + δ(t−1)

u
8: for k = 1 . . . K do
9: msg(k)

v ← A(k)
θ

({(
h(k−1)
v , h(k−1)

u , euv

)
, ∀u ∈ N (v)

})
10: h(k)

v ← C(k)
ϕ

(
h(k−1)
v ,msg(k)

v

)
11: end for
12: L

(
h(K)
v , y

)
.backward()

13: g
(t)
θ,ϕ ← g

(t−1)
θ,ϕ + 1

M · grad(θ, ϕ)

14: δ(t)v ← δ(t−1)
v + αv · sign (grad (δv))

15: δ(t)u ← δ(t−1)
u + αu · sign (grad (δu))

16: end for
17: (θ, ϕ)← (θ, ϕ)− τ · g(M)

θ,ϕ

18: end for

tional graph datasets suffered from problems such as unreal-
istic and arbitrary data splits, highly limited data sizes, non-
rigorous evaluation metrics, and common neglect of valida-
tion set, etc. In order to empirically study FLAG’s effects in
a fair and reliable manner, we conduct experiments on the
OGB [17] datasets, which have tackled those major issues
and brought more realistic challenges to the graph research
community.

Setup. FLAG drops the projection step when perform-
ing the inner maximization, in light of the positive effect
of large perturbations on generalization [36], and also to
simplify hyperparameter search. Usually on images, the in-
ner maximization has a norm constraint on the perturba-
tion; the largest perturbation one can add is bounded by
the hyperparameter ϵ, typically 8/255 under the l∞-norm.
This ϵ encourages the visual imperceptibility of the pertur-
bations, thus making defenses realistic and practical. How-
ever, graph node features or language word embeddings do
not have an established distance threshold for impercepti-
bility, which makes the selection of ϵ highly heuristic. Note
that, although the perturbation is no longer bounded by an
explicit ϵ in FLAG, it is still implicitly bounded in the fur-
thest distance that δ can reach, i.e. the step size α times the
number of ascending steps M .

Also unless otherwise stated, all of the baseline test
statistics come from the official OGB leaderboard website,
and we conduct all of our experiments using publicly re-

63

ogbn-products ogbn-proteins ogbn-arxiv
Backbone Test Acc Test ROC-AUC Test Acc

GCN - 72.51±0.35 71.74±0.29
+FLAG - 71.71±0.50 72.04±0.20
GraphSAGE 78.70±0.36 77.68±0.20 71.49±0.27
+FLAG 79.36±0.57 76.57±0.75 72.19±0.21
GAT 79.45±0.59 - 73.65±0.11
+FLAG 81.76±0.45 - 73.71±0.13
DeeperGCN 80.98±0.20 85.80±0.17 71.92±0.16
+FLAG 81.93±0.31 85.96±0.27 72.14±0.19

Table 1. Node property prediction test performance on
ogbn-products, ogbn-proteins, and ogbn-arxiv
datasets. Blank denotes no statistics on the leaderboard.

leased implementations without touching the original model
architecture or training setup for fair comparisons. We re-
port mean and standard deviations from 10 runs with dif-
ferent random seeds. Following common practice on this
benchmark, we report the test performance associated with
the best validation result. We choose GCN, GraphSAGE,
GAT, and GIN as our baseline models. In addition, we ap-
ply FLAG to the DeeperGCN model to demonstrate its ef-
fectiveness on the GNNs with significantly deeper depth.
Our implementation always uses M = 3 ascent steps for
simplicity. Following [15, 26], we use sign(·) for gradient
normalization.

Large-scale Node Property Prediction. We summa-
rize the results of node classification in Table 1. Notably,
FLAG yields a 2.31% test accuracy lift for GAT, making
GAT competitive on the ogbn-products dataset. Con-
sidering the specialty of not having input node features in
ogbn-proteins, we provide detailed discussions on the
effect of different node feature constructions in Section 5.
ogbn-mag is a heterogeneous network where only “paper”
nodes come with node features. We use the neighbor sam-
pling mini-batch algorithm to train R-GCN and report its
results in the Table 2. Surprisingly, FLAG can also directly
bring nontrivial accuracy improvement without special de-
signs for heterogeneous graphs, which demonstrates its ver-
satility.

ogbn-mag
Backbone Test Acc

R-GCN 46.78±0.67
+FLAG 47.37±0.48

Table 2. Test performance on the heterogeneous OGB node prop-
erty prediction dataset ogbn-mag.

Large-scale Link Property Prediction. We evaluate
our method on two OGB link prediction datasets, which are
ogbl-ddi and ogbl-collab. The authors of OGB se-
lected Hits@K as the official evaluation metric. We study
the performance of FLAG with GCN and GraphSAGE as
backbone on this task. We follow the practice of the base-
lines to train the models in the full-batch manner. Re-

ogbl-ddi ogbl-collab
Backbone Hits@20 Hits@50

GCN 37.07 ±5.07 44.75±1.07
+FLAG 51.41±3.76 46.22±0.81
GraphSAGE 53.90 ±4.74 48.10 ±0.81
+FLAG 63.31±6.06 48.44±0.40

Table 3. Link property prediction test performance on ogbl-ddi
and ogbl-collab datasets.

sults are reported in Table 3. We highlight that FLAG
brings a salient boost to both GCN and GraphSAGE on the
ogbl-ddi dataset.

Large-scale Graph Property Prediction. Table 4 sum-
marizes the test scores of GCN, GIN, and DeeperGCN on
all four OGB graph property prediction datasets. “Vir-
tual” means the model is augmented with virtual nodes
[13, 17, 25]. As adversarial perturbations are crafted by
gradient ascent, it would be unnatural and suboptimal to
add noises to discrete input node features [45]. We firstly
project discrete node features into the continuous space and
then adversarially augment the hidden embeddings. On
ogbg-molhiv, FLAG yields notable improvements, but
when GCN has already been hurt by virtual nodes, FLAG
appears to exaggerate the harm. On ogbg-molpcba,
GIN-Virtual with FLAG receives an absolute value 1.31%
test AP value increase. Besides node classification and link
prediction, FLAG’s strong effects on graph classification
prove its high versatility.

5. Ablation Studies and Discussions
Compatibility with graph structure regularizers. As

our augmentation manipulates the input features, it is highly
complementary to structure-based regularizers. We validate
this point through the experiments below. We mainly fo-
cus on two widely-used topological augmentation methods
to illustrate 1: (i) Neighbor sampling [16] randomly sam-
ples neighbors for information aggregation. It not only con-
tributes to GNN scalability but also acts as a structure regu-
larizer. A full-batch GraphSAGE reaches 78.50 ± 0.14%
test accuracy on ogbn-products, and neighbor sam-
pling alone generalizes the model to 78.70± 0.36%. When
FLAG is also used, the test accuracy is increased to 79.36±
0.57%. (ii) Virtual node [13] adds one synthetic node that
connects to all existing nodes. Nearly all the numbers from
Table 4 supports that our method works well with virtual
node to generalize GNNs further. Here We highlight one
representative group of experiments on ogbg-ppa with
GIN as baseline. Vanilla GIN gets 68.92±1.00% test accu-
racy. By adding virtual node alone, it goes to 70.37±1.07%.
When FLAG is further deployed, test accuracy reaches

1We also tried DropEdge [30] but it failed to yield performance gain in
the first place.

64

ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code
Backbone Test ROC-AUC Test AP Test Acc Test F1

GCN 76.06±0.97 20.20±0.24 68.39±0.34 31.63±0.18
+FLAG 76.83±1.02 21.16±0.17 68.38±0.47 32.09±0.19
GCN-Virtual 75.99±1.19 24.24±0.34 68.57±0.61 32.63±0.13
+FLAG 75.45±1.58 24.83±0.37 69.44±0.52 33.16±0.25
GIN 75.58±1.40 22.66±0.28 68.92±1.00 31.63±0.20
+FLAG 76.54±1.14 23.95±0.40 69.05±0.92 32.41±0.40
GIN-Virtual 77.07±1.49 27.03±0.23 70.37±1.07 32.04±0.18
+FLAG 77.48±0.96 28.34±0.38 72.45±1.14 32.96±0.36
DeeperGCN 78.58±1.17 27.81♮±0.38 77.12±0.71 -
+FLAG 79.42±1.20 28.42♮±0.43 77.52±0.69 -

Table 4. Graph property test performance on ogbg-molhiv, ogbg-molpcba, ogbg-ppa, and ogbg-code datasets. ♮ denotes the
existence of virtual nodes; blank denotes no statistics on the leaderboard.

Method GCN GraphSAGE

w/o BN 71.09±0.22 69.58±0.76
w/ BN 71.74±0.29 71.49±0.27
w/ BN +FLAG 72.04±0.20 72.19±0.21
w/ Dual BN +FLAG 72.11±0.23 72.21±0.20

Table 5. Test Accuracy on the ogbn-arxiv dataset with differ-
ent BN methods.

ogbn-products ogbl-ddi ogbg-molhiv
Test Acc Hits@20 Test ROC-AUC

Baseline 79.45±0.59 53.90±4.74 75.58±1.40
+PGD 80.96±0.41 62.02±6.56 76.14±1.62
+“Free” 79.42±0.84 58.61±6.0 74.93±1.29
+FLAG 81.76±0.45 63.31±6.06 76.54±1.14
+FLAG (fast) 80.64±0.74 - -

Table 6. Test performances on different datasets trained with
different adversarial augmentations. Baselines are GAT, Graph-
SAGE, and GIN respectively. FLAG (fast) means the training
epoch number is decreased to make our method trained as fast as
the baseline.

72.45± 1.14%.
Compatibility with batch norm. Batch norm is ap-

pearing more and more frequently in top-performing GNNs.
[40] argued that there was a potential risk, that adversarial
examples could distort BN parameters away from natural
distribution so to cause the adversarially trained model to
fail on clean samples. The authors proposed to use dual
batch norms (one for adversaries and the other for clean
ones) at training time to better exploit the generalization
ability of adversarial augmentations. To test the dual batch
norm method on graph data, we run experiments as sum-
marized in Table 5. We find that the utilization of dual BN
can produce a slight performance gain. As there is growing
attention on using batch norms on GNNs, it will be interest-
ing to see how to better synergize adversarial augmentation
with batch norms in future research.

Comparison with other robust optimization methods.
Table 6 shows performances with different adversarial aug-
mentations. For PGD and “free”, we compute 8 ascent

Backbone Test Acc

GAT w/o dropout 75.67±0.27
GAT w/ dropout 79.45±0.59
GAT w/ dropout +FLAG 81.76±0.45

Table 7. Test Accuracy on the ogbn-products dataset.

ogbn-products
Backbone Test Acc

GraphSAGE w/ NS 78.70±0.36
+FLAG 79.36±0.57
GraphSAGE w/ Cluster 78.97±0.33
+FLAG 78.60±0.27
GraphSAGE w/ SAINT 79.08±0.24
+FLAG 79.60±0.19

Table 8. Test accuracy on ogbn-products with GraphSAGE
trained with diverse mini-batch algorithms.

steps for the inner-maximization to make the attack strong
enough, while for FLAG we only compute 3 steps. We
can see that FLAG outperforms all other methods. We at-
tribute that to the practice of our multi-scale augmentation,
which diversifies the scale range of feature perturbations,
and helps the model see diverse input features to general-
ize better, especially on out-distribution samples. Although
“free” method incorporates diversifying augmentations, but
here the benefits are overwhelmed by the suboptimal prob-
lem.

Effects of weighted perturbation. The effects of bi-
ased perturbation are reported in Figure 3c. Generally
speaking, when log2(αu/αl) > 0, which means that un-
labeled nodes receive larger augmentations, the perfor-
mance gains are more salient. The phenomenon sup-
ports our practice of using weighted perturbation to pro-
mote multi-scale augmentations. Empirically we find that
the benefit of weighted perturbation is more evident on
ogbn-products than on ogbn-arxiv. Our under-
standing is that, ogbn-products is better suited with our
practice of labeled vs. unlabeled split because of its high la-

65

bel sparsity compared with ogbn-arxiv (label rate 8%
vs. 54%). When labeled nodes are more sparse, the neigh-
borhood of labeled nodes will be more overwhelmed by un-
labeled ones, where our approximation is more accurate.

Hyperparameter sensitivity. Figure 3a and Figure 3b
show the hyperparameter sensitivity of our method. Over-
all, our method is stable to yield consistent accuracy boost
compared with baseline.

Compatibility with mini-batch methods. Graph mini-
batch algorithms are critical to training GNNs on large-
scale datasets. We test how different algorithms will work
with adversarial data augmentation with GraphSAGE as
the backbone. From Table 8, we see that neighbor sam-
pling [16] and GraphSAINT [43] can all work with FLAG
to further boost performance, while Cluster [4] suffers an
accuracy drop.

Compatibility with dropout. Dropout is widely used in
GNNs. Table 7 shows that, when trained without dropout,
GAT accuracy drops steeply by a large margin. What is
more, FLAG can further generalize GNN models together
with dropout, similar to the phenomenon of image augmen-
tations. It demonstrates that our method is fully compatible
with this domain/model-agnostic regularizer.

Towards going “free”. FLAG introduces tractable extra
training overhead. We empirically show that, when we de-
crease the total number of training epochs to make it as fast
as the standard GNN training pipeline, FLAG still brings
significant performance gains. Table 6 shows that FLAG
with fewer epochs still generalizes the baseline. Empiri-
cally, on a single Nvidia RTX 2080Ti, 100-epoch vanilla
GAT takes 88 mins, while FLAG (fast) in Table 6 takes 91
mins. We note that heuristics like early stopping and cyclic
learning rates can further accelerate the adversarial training
process [39], so there are abundant opportunities for further
research on adversarial augmentation at lower or even no
cost.

Towards going deep. Over-smoothing stops GNNs
from going deep. FLAG shows its ability to boost both shal-
low and deep baselines, e.g., GCN and DeeperGCN. We
carefully examine FLAG’s effects on generalization when
a GNN goes progressively deeper in Figure 4a. The exper-
iments are conducted on ogbn-arxiv with GraphSAGE
as the backbone, where a consistent improvement is evident.

What if there’s no node feature? One natural ques-
tion can be raised: what if no input node features are pro-
vided? ogbn-proteins is a dataset without input node
features. [17] proposed to average incoming edge features
to obtain initial node features, while [24] used summa-
tion and achieved competitive results. Note that the GCN
and GraphSAGE baselines in Table 1 use the “mean” node
features as input and suffer an accuracy drop with FLAG;
DeeperGCN leverages the “sum” and gets further improved.
Interestingly, when DeeperGCN is trained with “mean”

node features, it receives high invariance, so that even large
magnitude perturbations will not change its result. The di-
verse behavior of adversarial augmentation implies the im-
portance of node feature construction method selection.

Where Does the Boost Come from? It is now widely
believed that model robustness appears to be at odds with
clean accuracy. Despite the recent proliferation of literature
in using adversarial data augmentation to promote standard
performance, it is still unsettled where the boost or detri-
ment of adversarial training comes from. Like one-hot word
embeddings for language models, input node features usu-
ally come from discrete spaces, e.g., the bag-of-words bi-
nary features in ogbn-products. We conjecture that the
diverse effects of adversarial training in different domains
stem from differences in the input data distribution rather
than model architectures. To ground our claim, we have the
following observations.

Observation 1: We utilize FLAG to augment MLPs
(an architecture where adversarial training has adverse ef-
fects in the image domain), and successfully boost gener-
alization. FLAG directly improves the test accuracy from
61.06±0.08% to 62.41±0.16% on ogbn-product, and
from 55.50± 0.23% to 56.02± 0.19% on ogbn-arxiv.

Observation 2: In general, adversarial training hurts
the clean accuracy in image classification, but [35] showed
that CNNs could benefit from adversarial augmentations on
MNIST, where the pixel values are closer to discrete distri-
bution than other more natural image datasets.

Observation 3: To illustrate, we provide a simple ex-
ample on the Cora [12] dataset. To simplify the scenario,
we choose FGSM to craft adversarial augmentations for a
GCN. By adding Gaussian noise with standard deviation
σ, we simulate node features drawn from a continuous dis-
tribution. The result is summarized in Figure 4b. When
σ = 0, the discrete distribution of node features persists.
At this moment, a GCN with adversarial augmentation out-
performs the non-augmented model. With increased noise
level σ, the features are continuously distributed with large
support and FGSM starts to harm the clean accuracy, which
validates our conjecture. All these observations support our
conjecture that data distribution has more to do with the ef-
fect of adversarial augmentation, while the lack of rigorous
theoretical justification is a limitation of our analysis.

Applicability to computer vision tasks. Despite the fo-
cus on graph learning, we believe our work benefits the vi-
sion community. Graph is widely used in CV, e.g., 3D vi-
sion and scene understanding. Also 2D images can be rep-
resented as grid graphs with pixels as nodes, so we can use
GNNs for image recognition smoothly. Here we provide
some preliminary results of FLAG on MNIST superpixel
dataset [9]. GCN reaches 87.83±0.70% while GCN+FLAG
gets 89.1± 0.37%, which is an evidence of FLAG’s poten-
tial of contributing to the vision community.

66

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
perturbation step size

78.5

79.0

79.5

80.0

80.5

81.0

81.5

82.0
te

st
 a

cc
ur

ac
y

(%
)

GraphSAGE+FLAG
GAT+FLAG
GraphSAGE
GAT

(a) step size

2 3 4 5
number of ascend step

79.0

79.5

80.0

80.5

81.0

81.5

82.0

te
st

 a
cc

ur
ac

y
(%

)

GraphSAGE+FLAG
GAT+FLAG
GraphSAGE baseline
GAT baseline

(b) ascent steps

1 0 1 2
log2(u/ l)

79.0

79.5

80.0

80.5

81.0

81.5

82.0

te
st

 a
cc

ur
ac

y
(%

)

GraphSAGE+FLAG
GAT+FLAG
GraphSAGE baseline
GAT baseline

(c) weighted perturbation

Figure 3. Results of GraphSAGE and GAT on the ogbn-products dataset.

3 6 9 12
number of layer

70.5

71.0

71.5

72.0

72.5

ac
cu

ra
cy

 (%
)

Baseline
+FLAG

(a)

0.00 0.05 0.10 0.15 0.20
noise std

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

re
la

tiv
e

in
cr

ea
se

 ra
te

 (%
) Baseline

+FGSM

(b)

Figure 4. (a) Test accuracy on ogbn-arxiv; (b) Performance gap on Cora.

6. Conclusion

We propose FLAG, a simple, scalable, and general data
augmentation method for better GNN generalization. Like
widely-used image augmentations, FLAG can be easily in-
corporated into any GNN training pipeline. FLAG yields
improvements over a range of GNN baselines. Besides ex-
tensive experiments, we also provide conceptual analysis
to validate adversarial augmentation’s different behavior on
varied data types. The effects of adversarial augmentation
on generalization are still not entirely understood, and we
think this is a fertile space for future exploration. How-
ever, for the potential negative social impact, our work may
be deployed as regularizer of fine-grained social tracker for
large-scale social network to undermine personal privacy.

Acknowledgements. Kezhi Kong and Tom Goldstein
were supported by DARPA GARD, Office of Naval Re-
search, AFOSR MURI program, the DARPA Young Fac-
ulty Award, and the National Science Foundation Division
of Mathematical Sciences. Additional support was provided
by Capital One Bank and JP Morgan Chase. Guohao Li
and Bernard Ghanem were supported by the King Abdullah
University of Science and Technology (KAUST) Office of
Sponsored Research through the Visual Computing Center
(VCC) funding.

References

[1] Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance
adaptive adversarial training: Improved accuracy tradeoffs in
neural nets. arXiv preprint arXiv:1910.08051, 2019. 1

[2] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning
with graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018. 2

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1, 3

[4] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Ben-
gio, and Cho-Jui Hsieh. Cluster-gcn: An efficient algo-
rithm for training deep and large graph convolutional net-
works. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
pages 257–266, 2019. 7

[5] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual ad-
versarial training for graph convolutional networks. arXiv
preprint arXiv:1902.09192, 2019. 2

[6] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking graph
neural networks. arXiv preprint arXiv:2003.00982, 2020. 4

[7] Federico Errica, Marco Podda, Davide Bacciu, and Alessio
Micheli. A fair comparison of graph neural networks for

67

graph classification. arXiv preprint arXiv:1912.09893, 2019.
4

[8] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua.
Graph adversarial training: Dynamically regularizing based
on graph structure. IEEE Transactions on Knowledge and
Data Engineering, 2019. 2

[9] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-
rich Müller. Splinecnn: Fast geometric deep learning with
continuous b-spline kernels. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 869–877, 2018. 7

[10] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng,
and Jingjing Liu. Large-scale adversarial training for
vision-and-language representation learning. arXiv preprint
arXiv:2006.06195, 2020. 1, 3

[11] Victor Garcia and Joan Bruna. Few-shot learning with graph
neural networks. arXiv preprint arXiv:1711.04043, 2017. 1

[12] Lise Getoor. Link-based classification. In Advanced methods
for knowledge discovery from complex data, pages 189–207.
Springer, 2005. 7

[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.
1, 5

[14] Jonathan Godwin, Michael Schaarschmidt, Alexander L
Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar
Veličković, James Kirkpatrick, and Peter Battaglia. Simple
GNN regularisation for 3d molecular property prediction and
beyond. In International Conference on Learning Represen-
tations, 2022. 1

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 3, 5

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, pages 1024–1034, 2017.
1, 2, 5, 7

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. arXiv preprint arXiv:2005.00687, 2020.
1, 2, 3, 4, 5, 7

[18] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik,
Percy Liang, Vijay Pande, and Jure Leskovec. Strate-
gies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265, 2019. 2

[19] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong
Liu, Jianfeng Gao, and Tuo Zhao. Smart: Robust and ef-
ficient fine-tuning for pre-trained natural language models
through principled regularized optimization. arXiv preprint
arXiv:1911.03437, 2019. 1

[20] Hongwei Jin and Xinhua Zhang. Latent adversarial train-
ing of graph convolution networks. In ICML Workshop on
Learning and Reasoning with Graph-Structured Representa-
tions, 2019. 2

[21] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 1

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[23] Chang Li and Dan Goldwasser. Encoding social informa-
tion with graph convolutional networks forpolitical perspec-
tive detection in news media. In Proceedings of the 57th
Annual Meeting of the Association for Computational Lin-
guistics, pages 2594–2604, 2019. 1

[24] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard
Ghanem. Deepergcn: All you need to train deeper gcns.
arXiv preprint arXiv:2006.07739, 2020. 7

[25] Junying Li, Deng Cai, and Xiaofei He. Learning graph-
level representation for drug discovery. arXiv preprint
arXiv:1709.03741, 2017. 5

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 1, 3, 5

[27] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Ad-
versarial training methods for semi-supervised text classifi-
cation. arXiv preprint arXiv:1605.07725, 2016. 1

[28] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018. 3

[29] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan
Wang, and Jie Tang. Deepinf: Social influence predic-
tion with deep learning. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2110–2119, 2018. 1

[30] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. Dropedge: Towards deep graph convolutional net-
works on node classification. In International Conference
on Learning Representations, 2019. 1, 2, 5

[31] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,
Zheng Xu, John Dickerson, Christoph Studer, Larry S Davis,
Gavin Taylor, and Tom Goldstein. Adversarial training for
free! In Advances in Neural Information Processing Sys-
tems, pages 3358–3369, 2019. 2, 3

[32] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bo-
jchevski, and Stephan Günnemann. Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868, 2018.
4

[33] Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen,
and Xiaogang Wang. Person re-identification with deep
similarity-guided graph neural network. In Proceedings of
the European conference on computer vision (ECCV), pages
486–504, 2018. 1

[34] Manli Shu, Zuxuan Wu, Micah Goldblum, and Tom Gold-
stein. Prepare for the worst: Generalizing across domain
shifts with adversarial batch normalization. arXiv e-prints,
pages arXiv–2009, 2020. 1

[35] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. arXiv preprint arXiv:1805.12152,
2018. 1, 3, 7

68

[36] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C
Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
to unseen domains via adversarial data augmentation. In
Advances in neural information processing systems, pages
5334–5344, 2018. 1, 3, 4

[37] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng
Liu, and Bryan Hooi. Nodeaug: Semi-supervised node clas-
sification with data augmentation. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 207–217, 2020. 1

[38] Jason Wei and Kai Zou. Eda: Easy data augmentation tech-
niques for boosting performance on text classification tasks.
arXiv preprint arXiv:1901.11196, 2019. 1

[39] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better
than free: Revisiting adversarial training. arXiv preprint
arXiv:2001.03994, 2020. 7

[40] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang,
Alan L Yuille, and Quoc V Le. Adversarial examples im-
prove image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 819–828, 2020. 1, 6

[41] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,
William L Hamilton, and Jure Leskovec. Graph convo-
lutional neural networks for web-scale recommender sys-
tems. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
pages 974–983, 2018. 1

[42] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive learn-
ing with augmentations. Advances in Neural Information
Processing Systems, 33, 2020. 1

[43] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Raj-
gopal Kannan, and Viktor Prasanna. Graphsaint: Graph
sampling based inductive learning method. arXiv preprint
arXiv:1907.04931, 2019. 7

[44] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas Goldstein,
and Jingjing Liu. Freelb: Enhanced adversarial training for
language understanding. arXiv preprint arXiv:1909.11764,
2019. 1

[45] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann.
Adversarial attacks on neural networks for graph data. In
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages
2847–2856, 2018. 5

69

