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Abstract

Clinical outcome or severity prediction from medical im-
ages has largely focused on learning representations from
single-timepoint or snapshot scans. It has been shown that
disease progression can be better characterized by tempo-
ral imaging. We therefore hypothesized that outcome pre-
dictions can be improved by utilizing the disease progres-
sion information from sequential images. We present a deep
learning approach that leverages temporal progression in-
formation to improve clinical outcome predictions from
single-timepoint images. In our method, a self-attention
based Temporal Convolutional Network (TCN) is used to
learn a representation that is most reflective of the disease
trajectory. Meanwhile, a Vision Transformer is pretrained
in a self-supervised fashion to extract features from single-
timepoint images. The key contribution is to design a recal-
ibration module that employs maximum mean discrepancy
loss (MMD) to align distributions of the above two contex-
tual representations. We train our system to predict clini-
cal outcomes and severity grades from single-timepoint im-
ages. Experiments on chest and osteoarthritis radiography
datasets demonstrate that our approach outperforms other
state-of-the-art techniques.

1. Introduction

Predicting clinical outcomes from medical images is
a long standing goal in the medical vision community
[1, 6, 39, 77]. For the past half a decade, researchers have
employed various deep neural networks (DNNs) [10,30,38]
to improve diagnostic and prognostic performance. Pre-
viously, DNNs were trained from scratch [56] for classi-
fication and detection tasks on various medical imaging
datasets. These multi-organ datasets can range from 2D ra-
diographs (x-rays) [50] to 3D magnetic resonance imaging
(MRI) [41] or computerized tomography (CT) [70] scans.
More recent frameworks have employed knowledge distil-

lation [48,55] and self-supervision techniques [4,64] to pre-
train models which are then finetuned on limited medical
imaging data. This has led to improved model performance.

However, most medical imaging datasets contain only
single-timepoint or ‘snapshot’ images. Although a snap-
shot image plays an essential role for describing a disease,
sequential scans provide a more comprehensive character-
ization of the evolution and prognosis of a pathology. The
temporal evolution of imaging biomarkers are highly corre-
lated with disease progression trajectory. We hypothesize
that this rich underlying domain information can be lever-
aged by deep learning approaches to make accurate predic-
tions about the disease trajectory even when temporal data
is limited/unavailable.

In practice, temporal medical data can be very limited
because patients are often lost to follow-up or suffer from
chronic diseases with infrequent re-evaluations of their con-
dition. Temporal models usually overfit on these small
datasets leading to poor generalizability. Hence, they are
limited in their use as a standalone source for training recur-
rent neural networks (RNN), Temporal ConvNets (TCN),
etc. Recently there have been many deep learning–based
works that aim to learn representations from sequential
medical imaging data [20, 21, 33, 63]. The bottleneck of
limited training samples is evident in all of them. Unlike the
video vision community where the presence of large scale
temporal datasets facilitates temporal modeling approaches,
pursuing similar problems (for e.g., future timepoint sever-
ity prediction, object evolution) in medical imaging sce-
nario is technically challenging.

In this work we propose to learn disease progression
patterns from limited temporal imaging data, and use this
auxiliary knowledge to enhance predictive performance of
methods that use snapshot scans. Since the representations
are obtained from two different domains - snapshot and
temporal - the challenges lie in how to optimally adapt and
align these feature distributions. Because each image in a
temporal sequence contributes unequally, we first extract an
‘optimal’ embedding of the entire sequence. An ‘optimal’
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embedding should retain maximum information focused on
the key transition stages over the course of a disease. The
temporal feature representation can then be aligned against
a snapshot feature. Our next step involves employing an
appropriate feature matching technique to re-calibrate the
two different domain representations (snapshot and tempo-
ral). We build a framework that leverages partially available
temporal data to re-calibrate the representations learned by
the single-timepoint pipeline. A temporal network that em-
ploys multi-head self-attention at each layer is incorporated
in our architecture. We eventually obtain a global attention
distribution that aids in selecting an optimal representation
from the whole sequence. Meanwhile, a vision transformer
is pretrained in a self-supervised fashion to extract features
from snapshot images. Finally, during the finetuning phase,
maximum mean discrepancy (MMD) loss is proposed as a
feature matching tool to minimize the distance between the
two representations.

The main contributions of this work are as follows:

• This is the first work that learns representations from
limited temporal medical images, and eventually uti-
lizes them to improve clinical prediction tasks from
single-timepoint datasets.

• We use a Temporal ConvNet that employs hierarchical
attention to obtain the most optimal representation of
a temporal image sequence, so that it can be compared
with the features from a single image–based pipeline.

• In our study, intermediate representations are available
from temporal and snapshot images. We propose to
use MMD loss for the first time in this domain, to align
the snapshot feature space with the optimal temporal
representations selected through an attention mecha-
nism.

2. Related works
2.1. Temporal modeling of disease progression

In the current era of precision medicine, temporal mod-
eling of disease progression is an important field of re-
search. To learn disease trajectory from sequential imaging
data, medical vision researchers have typically applied var-
ious recurrent neural networks (RNNs) widely used by the
video analytics community. Recurrent convolutional mod-
els [18, 61, 73] were the first to process variable sequence
inputs and exploit their long-term dynamics across time-
points. Along this direction, many recent techniques have
been developed for recognizing human action in videos
[66,71]. Temporal Difference Network [66] simultaneously
learns both short and long-term motion information to im-
prove action recognition performance. Yang et. al [71] in-
troduced a pyramid network (TPN) that utilized both slow

Outcome/Severity
prediction

Temporal ConvNet

Attention

Optimal representation 

Sequential images

Target data

Unlabeled snapshot image

Recalibration network

Feature matching with MMD Loss

Temporal Progression Learning

Snapshot Learning

1 2 3 4 5 6

Self-supervised ViT

Finetune

Figure 1. Overview of our proposed method. Temporal learning
module learns the optimal representation from sequential images.
Snapshot learning extracts representations from snapshot images.
The Recalibration network aligns the two contextual representa-
tions using MMD loss.

and fast tempos through a single multi-level architecture by
unifying features from different hierarchies. GESTURES
[47] pretrained a spatio-temporal CNN on action recog-
nition data to extract representations from seizure videos.
Konwer et. al [33] used an architecture inspired by Cor-
rRNN [72] for predicting disease severity at a future time-
point. To do so, a correlation module was integrated within
a Gated Recurrent Unit (GRU) to exploit the disease corre-
lation among different zonal patches. Zhang et. al [75] cap-
tured both the 3D spatial context and temporal dynamics of
a growing tumor by employing a spatio-temporal ConvL-
STM framework.

Temporal ConvNets (TCN) have been shown to be more
effective over LSTM-based methods in tasks like action
segmentation and recognition [14,22], but are yet to be fully
explored for medical imaging. Recently, TCN showed sig-
nificant improvement over recurrent models in Alzheimer’s
disease detection [20]. In our work, we make use of a TCN-
based architecture to select the optimal representation of
the entire temporal sequence. This requires incorporating
attention within the temporal approach. A TCN-based ar-
chitecture is more explainable than RNNs because attention
can be incorporated at various levels - kernel, layer-wise
or globally [28, 36]. This motivates us to use a hierarchi-
cal attention–based TCN architecture for the temporal sec-
tion of our framework. Though transformers have recently
shown improved performance over TCN, limited datasets
restrict us to a lightweight transformer alternative like TCN.
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2.2. Feature and probability distribution level losses

Distance measures that match two image distributions,
are generally found to operate at two levels - 1) posterior
probability and 2) feature space. KL-divergence loss [34]
and Bhattacharya distance [5] are two popular measures in
the former category that have been used for vision problems
like visual tracking and image segmentation [7, 16, 23, 24].
However, in our case, the image representations to be com-
pared are derived from two different contexts, i.e, tempo-
ral and snapshot. Also, the tasks performed to obtain them
are not similar. It is a hard imposition to match the un-
derlying probability distributions. Hence, we used the sec-
ond category losses - MMD and CORAL loss to align the
image feature distributions. [2, 40, 54, 69]. These are pop-
ular metrics for feature adaptation between two types of
data. MMD is widely used to interpret tasks like neural
style transfer [31], or improving unsupervised image gen-
eration [68]. These losses minimize the distance between
various statistical measures (first and second moments) of
image embeddings.

2.3. Self-supervised Transformers in medical imag-
ing

The introduction of Vision transformers (ViT) [19]
proved that even without using CNNs, compelling classi-
fication performance could be achieved in supervised ap-
proaches solely from a sequence of image patches. ViT ex-
ploits the long-range spatial dependencies in images, pre-
viously underutilized by CNN models. After pretraining,
ViT can be finetuned on downstream medical datasets to
achieve improved results in classification and segmentation
tasks [15, 60, 67, 74]. This is perfectly suited for analyz-
ing medical images, where intra-image disease manifes-
tations can be characterized more comprehensively using
ViTs. Hence, we propose to use a ViT as a feature extractor
for snapshot images in our framework. A major disadvan-
tage of ViT is that their pretraining necessitates large scale
datasets.

Self-supervised learning approaches [11, 25] have made
significant advances in recent years, improving the ability
to learn image representations even from smaller datasets.
This is achieved by training models on well-designed proxy
goals that do not require manual annotations. Examples
of these goals include discriminative tasks such as predict-
ing image rotation [17], solving multimodal jigsaw puz-
zles [42], etc. In this work, we focus on training ViT in
a self-supervised paradigm by leveraging large-scale, albeit
unannotated, snapshot medical images.

3. Methodology
Given a snapshot image of an individual patient, we pre-

dict their clinical outcomes/disease severity by utilizing the

disease progression information previously learnt from a
small temporal dataset with sequential scans. An overview
of our proposed framework is shown in Fig. 1. The key idea
is to use the feature representations of the temporal images
to recalibrate the representation of snapshot images. In the
training stage, besides finetuning the snapshot representa-
tions through the standard loss (e.g., cross-entropy loss or
ordinal loss, depending on the task), we also match them
with the temporal representations at a distribution level, us-
ing the MMD loss. At the inference time, the recalibrated
snapshot representations are used for the final prediction.
This recalibration strategy, as well as the training losses, are
elaborated in section 3.1. Prior to this, we use state-of-the-
art methods for obtaining both the snapshot and the tempo-
ral representations. First, we extract hidden representations
from temporal images using a hierarchical TCN. This step
selects the best representation from each sequence. Detailed
description is provided in section 3.2. As for the snapshot
representations, we use a pretrained self-supervised vision
transformer (see section 3.3).

3.1. Representation Recalibration network and
training losses

We first introduce the key component of our method –
the recalibration network. It uses representations of tempo-
ral images to recalibrate representations of snapshots. More
details of how these representations are obtained will be ex-
plained in later sections. Here we assume snapshot/single-
timepoint image embeddings xs ∈ R512. They are fed as
input to the recalibration network, i.e., a multilayer percep-
tron (MLP) with 1 hidden layer. We also have temporal
representations yt ∈ R512 from temporal sequences. The
temporal representations are only used in the training stage
to recalibrate snapshot representations. To train the recali-
bration network, we use both the standard prediction loss,
Lprediction, and the MMD loss, LMMD, to match the snap-
shot representations to the temporal representations.

L = λ1LMMD + Lprediction (1)

Given two distributions Ps and Pt for snapshot and tem-
poral data, by mapping the data into a reproducing kernel
Hilbert space (RKHS) using function ϕ(·), the MMD be-
tween the two distributions is calculated as

MMD2(s, t) = sup
∥ϕ∥H≤1

∥∥Exs∼Ps
[ϕ(xs)]− Eyt∼Pt

[
ϕ(yt)

]∥∥2
H

where Exs∼Ps
[·] denotes the expectation with regard to the

distribution Ps, and ∥ϕ∥H ≤ 1 defines a set of functions in
the unit ball of a RKHS, H. In our setting, the problem is
simplified as we assume the data are all represented in the
same latent space with Euclidean metric. The MMD loss is
then reduced to
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Figure 2. Illustration of the proposed architecture. Self-attention block after each layer of TCN, helps to obtain the optimal represen-
tation from each sequence of temporal images. Meanwhile, snapshot image representations are generated through a self-supervised ViT.
The snapshot and temporal representations are aligned using MMD loss while training a downstream neural network

LMMD = ∥ 1

N

N∑
s=1

xs − 1

M

M∑
t=1

yt∥2,

in which N and M are the numbers of snapshot representa-
tions and temporal representations, respectively.

In the loss (Eqn. 1), the prediction loss can be different
for different types of target datasets. For outcome prediction
on chest radiographs, we prefer a combination of MMD and
Cross-entropy loss as shown in Eqn. 2.

Lchest = λ1LMMD + LCE (2)

On the other hand, the severity changes in knee os-
teoarthritis disease is a classic application of ordinal regres-
sion [8]. We use a combination of MMD and Ordinal loss
as shown in Eqn. 3.

Lknee = λ2LMMD + LOrd (3)

Next, we explain how the temporal representation and
snapshot representation are obtained before recalibration.

3.2. Temporal progression learning

Our temporal representation is obtained based on the
state-of-the-art TCN. We will first provide some details of
these techniques. For our problem, to match with snapshot
representations, we need to find an optimal representation
from the temporal sequence. To this end, we introduce a hi-
erarchical self-attention module. The attention at different
levels will be aggregated to obtain a single optimal repre-
sentation for recalibration.
Background: TCN. The goal of the TCN is to gather the
spatial dependencies over long ranges through causal di-
lated convolutions. The causal nature ensures that the com-
putation of output at an individual timepoint t depends only

on the present and the past timepoints. Here, we briefly ex-
plain the temporal modeling using a TCN module.

Assume a sequence of temporal images {x1, x2, ..., xT }
available for each patient in the pretraining stage. This se-
quence of images is fed to a ResNet-18 model pretrained
on ImageNet [26, 51]. A vector with 512 elements is ob-
tained with the extracted features. Considering T tempo-
ral images of a patient, a sequence of 512-element vectors
p = {p1, p2, ..., pT } is computed, which is then used as in-
put to the TCN.

Fig. 2 shows the typical structure of a TCN with 2 di-
lated causal convolution layers. In our architecture we have
used 3 such convolution layers. The dilation factors used
for the layers are d = {1, 2, 4} and the kernel size chosen
is k = 3. Dilation is equivalent to introducing a fixed step
between every d adjacent filter taps. For a TCN layer, the
relevant history information is obtained from (k − 1)d past
timepoints. For an input feature sequence p, and a filter
f : {0, ..., k − 1} → R, the dilated convolution D on an
element s is defined as:

D(s) =

k−1∑
j=0

f(j) · p(s−d.j) (4)

where s− d.j refers to the past direction.

Hierarchical attention. In addition to feature extraction,
we also exploit the TCN structure to select the optimal
representation of the entire image sequence. As shown in
Fig. 2, a multi-head self attention block is inserted between
every two convolutional layers of the TCN. The input fea-
tures are transformed into query f and key g via 1× 1 con-
volutions. The attention map A is then obtained from f and
g by

A = β(fT g) (5)
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where β is the softmax activation function. These maps
contain self-attention weights which essentially quantify the
importance of one timepoint relative to another. Next, the
weighted representations ATh are generated, where h is an-
other set of feature transformed using 1 × 1 convolution.
Finally we add the input features p, to ATh.

o = p+ATh (6)

Note this output is 512 × T dimensional, consisting of
representations for each of the T time slices. For the final
calibration, we need to use the attention A to generate a 512
dimensional representation.

Recall A is a T ×T matrix which is normalized for each
column. We sum up each row of A to get a T dimensional
weight vector α, measuring the contribution of each time
slice to all other time slices. A higher weight implies the
corresponding time slice is more important. We apply soft-
max to this weight vector and use the output to calculate a
weighted sum of the representations at all time slices. This
final representation is then used in the recalibration task per-
formed in section 3.1. Further details on obtaining the op-
timal representation are provided in Supplementary. The
pretraining of sequential images using TCN is performed
with categorical cross entropy loss.

3.3. Snapshot representation learning

For learning representations from snapshot images, we
adopt the architecture of Self-supervised image Trans-
former (SiT) [3] without the rotation task. We employ two
tokens - first, the image patch token to perform image recon-
struction, and second, the contrastive token of SimCLR [11]
for contrastive prediction task.
Reconstruction task. For the image reconstruction task, a
transformer is trained to extract the encoded visual features.
The motivation is to learn context-preserving representa-
tions from the snapshot scans. Individual image grids are
intentionally corrupted by passing through various trans-
formations like addition of random noise, blurring by fil-
ters, and random grid replacement from another image. The
transformer aims to restore the original image from the cor-
rupted image. The output tokens of the transformer are ag-
gregated to reconstruct the input image. The ℓ1-loss be-
tween the input and the reconstructed image is employed as
shown in Eqn. 7:

Lr(P) =
1

D

D∑
i

||Ii − Tr(Īi)|| (7)

where, ||.|| is the ℓ1 norm, Ii is the original image, Īi is
the corrupted image, Tr(.) returns the reconstructed image
and D denotes the batch size. P are the parameters of the
transformer to be learned during training.

Contrastive learning task. Positive pairs are constructed
with the augmented versions of the same image. Augmen-
tation techniques like cropping and horizontal flipping are
used. Negative pairs denote samples coming from differ-
ent inputs. The network is trained to minimize the distance
between a positive pair and maximize the distance between
a negative pair. This is achieved through a contrastive loss
function, Lc, with cosine similarity as the similarity mea-
sure.

Lc(P) = − 1

D

D∑
i=1

log
esim(Tc(Ii), Tc(Ĩj))/τ∑2D

j=1,j ̸=i e
sim(Tc(Ii), Tc(Ij))/τ

(8)
where Tc(.) denotes the image embedding coming from
the contrastive head, sim(., .) is the dot product of the ℓ2
normalised inputs, which is the cosine similarity, and τ de-
notes a constant temperature parameter which we set to 0.5.
Ĩj are Ij are augmentations of the same image. The con-
trastive loss is defined as the arithmetic mean over all pos-
itive pairs in the batch of the cross entropy of their nor-
malized similarities. For pretraining of snapshot images,
we used a weighted combination of Reconstruction loss and
Contrastive loss. It is given by:

Lpre = λp1Lr + λp2Lc (9)

The pretrained representation will be used as the input for
the recalibration network (Section 3.1).

4. Experiment design and results
To validate our proposed method, we perform experi-

ments on two types of radiograph images. Chest radio-
graphs (CXRs) are analyzed in order to predict clinical out-
comes for COVID-19 patients and knee radiographs are
studied to predict osteoarthritis (OA) severity.

The ability to predict clinical outcomes in COVID-19
can have significant implications on physician decision-
making regarding medical resource allocation and treatment
administration. This is particularly true in low-resource or
surging case settings where triage must be performed. Sim-
ilarly, grading of knee is clinically significant in monitoring
a patient’s disease progression and determining appropri-
ate treatment measures. Furthermore, accurate grading of
OA is critical for epidemiological surveys of disease preva-
lence. However, current scoring systems for OA rely heav-
ily on physician interpretation of medical images which has
been reported to have a high rate of inter-observer variabil-
ity [32]. This might be overcome by automated approaches.

Multiple datasets are employed for model training and
validation for the two applications listed above. While most
datasets have only single-timepoint images, very few con-
tain temporal data, described in detail below.
COVID-19 radiograph dataset. For pretraining of the
vision transformer, we used 28,433 images jointly from
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two Kaggle sources - 21,165 scans from a COVID-
19-radiography-database [13] and 7268 from the SIIM-
COVID19-detection challenge [62]. The temporal dataset,
CovidProg, used for training TCN, included 942 images
from 150 COVID patients. Evaluation was performed on
the SnapCXR dataset, which had 631 snapshot images se-
lected from TCIA [52] containing clinical outcome infor-
mation.
Knee osteoarthritis dataset. We utilized two publicly
available knee radiograph datasets, OAI [43] and the Kaggle
knee osteoarthritis dataset [12]. OAI is a longitudinal study
of 4,796 participants examined with radiographs and MRI
during 9 follow-up examinations (0 to 96 months). Only
the radiographs are studied in this work. Each radiograph
also has an associated Kellgren-Lawrence (KL) score pro-
vided by a physician interpreter. There are 5 KL grades
ranging from 0 to 4 that is a measure of the OA severity in
knee joints. For pretraining the transformer we jointly used
17,230 images from 4,350 OAI studies, and 5,778 images
from the training folder of the Kaggle dataset. The remain-
ing 426 OAI cases comprising 2,474 images were used as
temporal data to train the TCN. Evaluation was done on a
target dataset of 2,482 images utilizing both the validation
and test folders in the Kaggle data.

4.1. Implementation details

Environment. Our framework is built in Pytorch [46]
and trained on an Nvidia GTX 2080Ti GPU. The self-
supervised snapshot model is trained using the Adam op-
timizer. The learning rate and batch size are 0.0005 and 72,
respectively. We used λp1 = λp2 = 1. For optimization of
the TCN model, we used the following parameters: learning
rate = 0.001, momentum = 0.9, and optimizer=SGD. Pre-
trained ResNet-18 features were used as input; the training
converged within 20 epochs.
Preprocessing. For the COVID-19 chest radiograph
datasets, lung region segmentation was first performed us-
ing a Residual U-Net model [76] so that features only from
lung fields would be analyzed. All CXRs were aligned
to the same intensity range through an average histogram
matching method. For temporal data, each CXR image was
divided into six grids. This was accomplished by dividing

each lung into 3 equal zones. Corresponding grids of tem-
poral images were used for separate timepoints, providing a
grid-level registration across timepoints. Consequently, we
obtained 6 training sequences for each patient in the tem-
poral module. ResNet18 features were extracted from these
grids and fed to TCN.

For the OAI dataset, we filtered out missing KL scor-
ing labels and derived a training set of 19,704 knees. We
utilized the BoneFinder tool [37] to localize the knee joint
landmarks. Using these landmarks, the region of interest
was cropped out for both knees. Following [58], histogram
clipping and global contrast normalization were applied to
each localized knee joint image. Finally, we rescaled all im-
ages to 310 × 310 pixels using bilinear interpolation. The
Kaggle OA dataset was used as provided. To feed the tem-
poral data into TCN, each knee image was divided into two
parts longitudinally and resized to dimension 128 × 128.
Thus we obtained 4 training sequences for each patient in
the temporal module.
Evaluation metrics. We employ AUC, sensitivity, speci-
ficity, F1 score to evaluate COVID-19 outcome prediction.
t-distributed stochastic neighbor embedding (t-SNE) plots
are computed for ventilation requirement prediction from
features obtained after global average pooling. For knee
severity multi-label classification, we used µF1, balanced
accuracy, AUC (one vs all), and Cohen’s Kappa score as
evaluation metrics. Images with the intermediate grades 1,
2 and 3 are more difficult to differentiate from one another.
Hence we also calculate AUC (one vs one) between grades
1,2 and 2,3 to measure their classification performance.

4.2. Results

COVID-19 outcome prediction. Quantitative results:
To evaluate the proposed model in predicting COVID-19
induced mortality and mechanical ventilation, we com-
pare it with seven methods including: COVID-Net [65],
Rahimzadeh et. al [49], Oh et. al [44], COVIDiagnosis-
Net [59], DarkCovidNet [45], CNN + LSTM [29], Azizi et.
al [4], and Li et. al [35]. Table 1 shows that our method out-
performs each of these methods on the SnapCXR dataset.
COVID-Net [65] uses a lightweight residual projection-
expansion-projection-extension (PEPX) design pattern with

Name Ventilation Mortality
Method AUC(↑) Sensitivity(↑) Specificity(↑) F1 score(↑) AUC(↑) Sensitivity(↑) Specificity(↑) F1 score(↑)

COVID-Net [65] 0.73 0.64 0.69 0.70 0.76 0.63 0.73 0.72
Rahimzadeh et. al [49] 0.75 0.62 0.74 0.68 0.77 0.58 0.76 0.74

Oh et. al [44] 0.75 0.69 0.75 0.75 0.78 0.61 0.75 0.72
COVIDiagnosis-Net [59] 0.71 0.60 0.71 0.68 0.78 0.56 0.74 0.65

DarkCovidNet [45] 0.77 0.71 0.76 0.74 0.78 0.65 0.71 0.76
CNN + LSTM [29] 0.74 0.63 0.66 0.63 0.76 0.62 0.69 0.69

Azizi et. al [4] 0.79 0.74 0.79 0.76 0.80 0.74 0.77 0.78
Li et. al [35] 0.79 0.71 0.75 0.74 0.81 0.68 0.76 0.80

Ours 0.88 0.76 0.80 0.79 0.87 0.74 0.78 0.84

Table 1. COVID-19 outcome prediction results on SnapCXR dataset
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Method µF1(↑) BA(↑) AUC(↑) Kappa(↑) AUC(1,2)(↑) AUC(2,3)(↑)
MobileNetV2 [53] 0.5104 0.3532 0.7822 0.2554 0.6208 0.6191

CNN + Ordinal loss [9] 0.6865 0.6638 0.8950 0.5557 0.7298 0.8576
SE block [27] 0.7336 0.7237 0.9237 0.6237 0.7866 0.9265
Ensemble [57] 0.7405 0.7342 0.9112 0.6327 0.7896 0.9360
DeepKnee [58] 0.3956 0.5078 0.7456 0.2287 0.5931 0.7398

Ours w/o temporal (TCN+MMD) 0.7844 0.7850 0.9520 0.6492 0.8428 0.9165
Ours w/o Attention 0.8126 0.7607 0.9581 0.6842 0.8954 0.9126

Ours w/o Hierarchical Att 0.8327 0.7883 0.9727 0.7065 0.8820 0.9284
Ours 0.8265 0.8216 0.9773 0.7357 0.9167 0.9382

Table 2. Osteoarthritis severity prediction results and ablation studies on OA Kaggle dataset

Name Ventilation Mortality
Method AUC Sensitivity Specificity F1 score AUC Sensitivity Specificity F1 score

Ours w/o temporal (TCN+MMD) 0.78 0.71 0.78 0.72 0.79 0.76 0.69 0.73
Ours w/o Attention 0.82 0.69 0.75 0.76 0.82 0.71 0.74 0.75

Ours w/o Hierarchical Att 0.86 0.75 0.84 0.74 0.85 0.75 0.71 0.80
Ours 0.88 0.76 0.80 0.79 0.87 0.74 0.78 0.84

Table 3. Ablation study results for COVID-19 outcome prediction on SnapCXR dataset

Name Ventilation Mortality OA
Method AUC F1 AUC F1 AUC µF1

KL 0.81 0.67 0.82 0.77 0.92 0.76
Bhattacharya 0.77 0.65 0.75 0.71 0.89 0.79

CORAL 0.86 0.77 0.83 0.79 0.95 0.83
Ours (MMD) 0.88 0.79 0.87 0.84 0.97 0.82

Table 4. Ablation study results for different losses

convolutions at each stage. Rahimzadeh et. al [49], Oh et.
al [44], and DarkCovidNet [45] use various pretrained Deep
CNNs. However, these fully supervised methods fail with
limited training data, and share similar predictive perfor-
mance. COVIDiagnosis-Net [59] tuned a SqueezeNet ar-
chitecture for COVID-19 diagnosis. Though they utilized
an augmentation strategy, their lightweight backbone under-
performed other state-of-art approaches. More recent meth-
ods, including Azizi et. al [4] and Li et. al [35], exploit
self-supervised learning strategies resulting in a boost in
prediction performance. Our pipeline uses a self-supervised
vision transformer as a feature extractor but also uniquely
learns features of temporal progression. This approach out-
performs other methods, achieving a ∼ 11.5% increase in
AUC over state-of-the-art benchmarks for both ventilation
and mortality prediction tasks. Qualitative results: Fig.
3 demonstrates that utilizing temporal representations in
our architecture results in better defined clusters between
the ventilated and non-ventilated classes on the t-SNE plot.
The inter-feature spatial distance also decreases leading to a
more compact visualization. Class activation maps (CAMs)
were generated before and after the inclusion of our tempo-
ral approach and are shown in Fig. 5. 5.b.2 and 5.e.2 each
demonstrate that our model more precisely localizes atten-
tion to pathological infiltrates when compared with baseline
CAMs shown in 5.b.1 and 5.e.1. 5.c.2 demonstrates im-
proved localization of model attention to bilateral infiltrates

rather than the large unilateral attention shown in 5.c.1.
OA severity prediction. Quantitative results: We com-
pare our method against MobileNetv2 [53], CNN + Ordinal
loss [9], Squeeze-Excitation block (SE block) [27], Deep-
Knee [58] and, Ensemble [57] in Table 2. MobileNetv2 [53]
incorporates bottleneck depth-separable convolution with
residuals. CNN + Ordinal loss [9] adds an ordinal loss
for grade classification. This loss significantly improves the
performance motivating us to leverage it in our framework.
SE blocks performed best out of all comparative models
achieving a 0.92 AUC. Tiulpin et. al [58] fused predictions
from multiple Siamese deep models, but did not achieve
good performance results. Our model is the first to leverage
the temporal scans present in this OAI dataset to improve
severity grading. Learning the progression of OA vastly
improved the classification results from single images. We
achieved a ∼ 5.8% increase in AUC over the state-of-the-
art benchmark [27]. Our model also outperforms state-of-
the-art approaches in the clinically difficult problem of dis-
criminating between intermediate grades 1 vs 2 and 2 vs
3 (given by AUC(1,2) and AUC(2,3)). We also reported
a Cohen’s Kappa value of 0.73 for our method which was
the best among all approaches, demonstrating our model’s
higher agreement with ground truth KL scores. Qualita-
tive results: CAMs generated from the last layer of each
compared model are illustrated in Fig. 4. Both our model
and the SE block baseline [27] show superior localization of
attention to pathological osteophyte development and joint-
space narrowing when compared with other baselines. The
Supplementary section contains further qualitative analyses.

4.3. Ablation Study

Effectiveness of Attention: Several experiments are per-
formed on the SnapCXR and OA Kaggle datasets to verify
the benefit of each component of our proposed framework.
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Figure 3. Comparison between t-SNE plots before and after using temporal modeling Figure 4. Qualitative comparisons
of knee CAMs depicting OA severity

Figure 5. Qualitative comparison of chest CAMs before and after temporal modeling. a-f show
CXRs with pathological lung infiltrates indicated by orange arrows a.1 - f.1 show generated
CAMs before temporal modeling and a.2-f.2, after.

Figure 6. Optimization curve of feature
distribution losses

We first remove the temporal module from the framework in
Fig. 2 and perform predictions from only snapshot images
using the SiT [3]. This network is taken as the baseline fea-
ture extractor without TCN and Attention. Compared with
this baseline, our model yields a 12.8% and 10.12% AUC
improvement in ventilation and mortality prediction, and a
∼ 2.65% improvement for OA severity prediction. We then
average only the representations from the output of TCN
without using attention, inhibiting the model from choosing
an optimal representation from the temporal sequence. It
can be seen in Table 3 that introducing the Global Atten-
tion module improves our AUCs to 0.86 and 0.85 for ven-
tilation and mortality prediction on SnapCXR, and to 0.97
AUC for OA severity classification on the Kaggle dataset.
Finally, our application of hierarchical self-attention per-
forms slightly better than the global attention-weighted fea-
tures. We attribute this improvement to the self-attention
exploited after every layer, enabling better contextual un-
derstanding of the modality itself. Effectiveness of MMD
loss: Table 4 presents ablation results for different loss
functions. Using the MMD loss resulted in 8.6%, 6.09%
performance improvement (AUC) for SnapCXR prediction
tasks and 5.4% improvement in OA severity prediction in
the Kaggle dataset. KL-divergence and Bhattacharya losses
help in matching two posterior probability distributions and
result in inferior performance. Because our distributions are
derived from two different contexts (temporal vs snapshot)
used for two different purposes (severity progression track-
ing and clinical outcome prediction), feature level losses

like MMD and CORAL are more appropriate. Fig. 6 shows
the AUC achieved at different stages by varying the weights
of MMD and CORAL in the final loss for our method and
ablation work, respectively. The MMD AUC curve achieves
saturation earlier at λ = 0.5, suggesting that even a small
weight of MMD loss improved results.

5. Conclusion

This paper presents a novel framework for the augmen-
tation of snapshot-image–based pipelines by the integration
of information from multi-image sequences. Unlike exist-
ing approaches trained only on snapshot images, our ar-
chitecture learns disease progression representations which
are used to re-calibrate snapshot features. When evaluated
on chest and knee radiograph datasets, the proposed archi-
tecture outperforms state-of-the-art approaches. This work
paves the way for the inclusion of temporal data as auxiliary
information for single image-based training paradigms.
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Beate Diehl, and Sébastien Ourselin. Transfer learning
of deep spatiotemporal networks to model arbitrarily long
videos of seizures. In International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention,
pages 334–344. Springer, 2021. 2

[48] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy
Bengio. Transfusion: Understanding transfer learning for
medical imaging. arXiv preprint arXiv:1902.07208, 2019. 1

[49] Mohammad Rahimzadeh and Abolfazl Attar. A modi-
fied deep convolutional neural network for detecting covid-
19 and pneumonia from chest x-ray images based on the

18833

https://nda.nih.gov/oai/
https://nda.nih.gov/oai/


concatenation of xception and resnet50v2. Informatics in
Medicine Unlocked, 19:100360, 2020. 6, 7

[50] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang,
Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis
Langlotz, Katie Shpanskaya, et al. Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learn-
ing. arXiv preprint arXiv:1711.05225, 2017. 1

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 4

[52] Joel Saltz, Mary Saltz, Prateek Prasanna, Richard Moffitt,
Janos Hajagos, Erich Bremer, Joseph Balsamo, and Tahsin
Kurc. Stony brook university covid-19 positive cases [data
set]. the cancer imaging archive. https://doi.org/
10.7937/TCIA.BBAG-2923. 6

[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 7

[54] Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In European con-
ference on computer vision, pages 443–450. Springer, 2016.
3

[55] Jinghan Sun, Dong Wei, Kai Ma, Liansheng Wang, and
Yefeng Zheng. Unsupervised representation learning meets
pseudo-label supervised self-distillation: A new approach to
rare disease classification. In International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pages 519–529. Springer, 2021. 1

[56] Nima Tajbakhsh, Michael B Gotway, and Jianming Liang.
Computer-aided pulmonary embolism detection using a
novel vessel-aligned multi-planar image representation and
convolutional neural networks. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, pages 62–69. Springer, 2015. 1

[57] Aleksei Tiulpin and Simo Saarakkala. Automatic grad-
ing of individual knee osteoarthritis features in plain radio-
graphs using deep convolutional neural networks. Diagnos-
tics, 10(11):932, 2020. 7
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