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Figure 1. From top-left: examples of frames from the SmartPortraits dataset videos that capture human portraits in different natural
environments, with varying lightning conditions, using a smartphone and external depth camera on a rig. Bottom-right: recorded trajectory
(red – initial time, green – end time) and dense reconstruction obtained by ACMP [88].

Abstract

We present a dataset of 1000 video sequences of human
portraits recorded in real and uncontrolled conditions by
using a handheld smartphone accompanied by an external
high-quality depth camera. The collected dataset contains
200 people captured in different poses and locations and its
main purpose is to bridge the gap between raw measure-
ments obtained from a smartphone and downstream appli-
cations, such as state estimation, 3D reconstruction, view
synthesis, etc. The sensors employed in data collection are
the smartphone’s camera and Inertial Measurement Unit
(IMU), and an external Azure Kinect DK depth camera
software synchronized with sub-millisecond precision to the
smartphone system. During the recording, the smartphone
flash is used to provide a periodic secondary source of light-
ning. Accurate mask of the foremost person is provided as
well as its impact on the camera alignment accuracy.

For evaluation purposes, we compare multiple state-of-
the-art camera alignment methods by using a Motion Cap-
ture system. We provide a smartphone visual-inertial bench-
mark for portrait capturing, where we report results for

multiple methods and motivate further use of the provided
trajectories, available in the dataset, in view synthesis and
3D reconstruction tasks.

1. Introduction
Realistic rendering of people, and in general of objects,

has recently achieved an unprecedented level of detail and
realism [4, 27, 46, 49, 76, 87, 93, 94] with potential ground-
breaking applications in telepresence, VR and AR. Most of
these methods have focused on static scenes and synthetic
data, leaving apart the computational time required, which
is still prohibitive. In contrast, many potential usages of re-
construction and rendering are ideal candidate applications
for smartphones, or other consumer-level devices, whose
sensors are improving every year but still of limited quality.
Our objective is to create a dataset that recreates in the wild
conditions emulating smartphone users.

The SmartPortrait dataset1 is an effort to bridge the gap
between realistic raw data obtained from people, collected

1https://MobileRoboticsSkoltech.github.io/SmartPortraits/
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from a handheld smartphone and the down-stream recon-
struction applications, for instance 3D portrait reconstruc-
tion, view synthesis, etc. The key component that links
both views is camera pose state estimation. A usual prac-
tice is to obtain these poses by using a reliable but com-
putationally demanding Structure from Motion (SfM) algo-
rithm such as COLMAP [71] or multi-modal SLAM meth-
ods [13, 41, 68, 80]. The trajectories provided in our dataset
emulate handheld movements, as if the user, or close-by
users, were recording the sequences (see Fig. 1).

Many view synthesis methods [28, 49, 57, 74] generate
their own datasets just by using state estimation methods.
These single camera free-viewpoint images can only be
considered if the scene is static. We asked volunteers to
stay as still as they could while recording them in a semicir-
cular trajectory from close and mid distances. We observed
that most of the volunteers slightly changed their postures
so we should expect some degree of displacement, which
transforms the problem into non-static.

The SmartPortrait dataset is obtained in a variety of
emplacements, under different lightning conditions, plus a
flashing light from the smartphone at regular intervals. The
smartphone camera is complemented with a high-quality
depth sensor, adding robustness and multi-modality.

We provide a recorded dataset consisting of smartphone
video images, IMU data, perfectly time aligned, and an ex-
ternal depth camera from Azure Kinect DK. The evaluation
includes two steps: first we compare the most promising
methods with a reference trajectory obtained from a motion
capture (MoCap) system. Second, for some environments,
it is not possible to deploy the MoCap system. Therefore,
we provide a reference trajectory, obtained from the previ-
ous best performing method, and provide an upper bound
of the error by using a non-reference metric [40]. In further
evaluations, we benchmark multiple state of the art methods
for visual SLAM, SfM and Visual-Inertial based methods.

Next, we want to connect the problem of camera pose
estimation with two downstream tasks: 3D reconstruction
with COLMAP [72], ACMP [89] and SOTA view synthesis
algorithms (NeRF [49], FVS [66], SVS [67]). These appli-
cations will help us to understand the importance of pose
estimation and its correlation with other tasks.

Ethical considerations. We asked all participants in the
dataset for a signed consent to record their portraits and
publicly release them for purely academic purposes. We ex-
plicitly indicated in the agreement their right, at any time,
of removing all their data.

2. Related work
Capturing human data is always addressed to a particular

task, for instance, human faces, portraits, facial expressions,
hand gestures, full bodies, etc. The common trait is that
obtaining these data is a challenging process and different

approaches exists to tackle them. Our data include human
portraits, or upper body of people, and there exists a relation
to many other works on capturing human data. This section
reviews the existing literature based on the sensor set used
to obtain them. Later, we will discuss some applications
and finally, we will present some state estimation methods
as a requirement for single free-viewpoint recordings.

Motion Capture systems [1, 3] utilize multiple cus-
tomized cameras to accurately detect reflective or infra-red
markers. They are a popular method used to capture human
data by tracking markers and synchronize them with video:
HumanEva [77], Human3.6M [35] and INRIA [90]. A neg-
ative effect is that it requires the volunteers to wear special
suites over their bodies, changing their clothing appearance.

Multiple cameras overcome this issue and remove the
need for markers. They are a very popular method to cap-
ture body expressions and fine details, preserving visual ap-
pearance of the models. Examples include shape capture
[85], streamable free-viewpoint [17], AIST [83], Panoptic
studio [38, 39] with a mixture of 500 cameras, BUFF [95]
for human pose and shape estimation, Humbi [92] for body
expressions, [28, 87] for head portraits, or photo-realistic
full-body avatars [8]. These settings are in practice very
precise at capturing simultaneously the same event, e.g. a
dynamic person. They are however expensive, difficult to
deploy in different environments, and require a consider-
able amount of effort to calibrate and synchronize them.

Controlled lightning conditions are also becoming an
important feature for obtaining a fine detailed geometry re-
construction when digitizing humans [32,74,85]. SmartPor-
traits includes some images under smartphone flash condi-
tions, such that the lightning source coincides with the opti-
cal sensor frame and creates a different outcome than under
ambient lightning.

Some attempts have tried to lower the demanding re-
quirements of multi-camera settings, where many sensors
and lightning sources are required. One solution is enhanc-
ing the data obtained with a single depth sensor [10, 33,
42, 75, 91] or multiple depth sensors [21, 34, 96]. Other ap-
proaches try to reduce the number of cameras in operation
and still obtain reasonably accurate results [98, 99].

At the extreme, one would desire a single camera free-
viewpoint, either taking multiple pictures or with a video
[5, 89]. This is the aim of our dataset as well.

From the perspective of datasets capturing human data
for people reconstruction and rendering task, we observe the
following modelling classes: full body modelling (Dynam-
icFAUST [11], BUFF [95], People Snapshot [6]), clothes
modelling (3DPeople [59], SIZER [81]), head/torso por-
trait modelling (UHDB11 [82], Nerfies [57], Portrait Neu-
ral Radiance [57]), or suitable for applications in couple of
tasks (RenderPeople, Humbi [92]). There are also crowd-
sourced datasets such as MannequinChallenge [44], TikTok
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EuRoC MAV TUM-VI TUM RGB-D PennCOSYVIO KAIST VIO ADVIO Ours

Year 2016 2018 2012 2016 2021 2018 2021
Environ-
ment

indoors indoors/
outdoors

indoors indoors/
outdoors

indoors indoors/
outdoors

indoors

Carrier MAV handheld handheld/robot handheld UAV handheld handheld
Focus MAV VIO/SLAM VIO RGB-D SLAM handheld VIO UAV VIO handheld

VIO/SLAM
VIO/SLAM in
Human Digitiz.

Cameras stereo gray:
2x752x480 @20Hz

stereo gray:
2x1024x1024
@20Hz

RGB-D:
640x480 @30Hz

• 4 RGB: 1920x1080 @30Hz
• stereo gray: 2x752x480
@20Hz
• fisheye gray: 640x480 @30Hz

• RGB: 640x480
@30Hz
• stereo IR:
640x480 @30Hz

• RGB: 1280×720
@60Hz
• fisheye gray:
640x480 @60Hz

• RGB: 1920x1080
@30Hz
• depth: 640x576
@5Hz

IMUs ADIS16448 3-axis
acc/gyro @200Hz

BMI160 3-
axis acc/gyro
@200Hz

Kinect 3-axis acc
@500Hz

• ADIS16488 3-axis acc/gyro
@200Hz
• Tango 2 3-axis acc @128Hz
• Tango 2 3-axis gyro @100Hz

Pixhawk 4 Mini
3-axis acc/gyro
@100Hz

MP67B 3-
axis acc/gyro
@100Hz

• LSM6DSO 3-axis
acc/gyro @500Hz
• MPU-9150 3-axis
acc/gyro @500Hz

Time sync hw hw hw hw, sw data sw hw, sw + frame sync
Point clouds ✓(some seq) × ✓ × × ✓ ✓
Distance 11 seq, 0.9 km 28 seq, 20 km 39 seq x several m 4 seq, 0.6 km 14 seq x several m 23 seq, 4.5 km 1000 seq, 6.6km

Ground-
truth

• 3D pos. (some seq),
laser tracker @20Hz
• 3D pose (some seq),
MoCap @100Hz
• 3D pcds (some seq),
laser tracker

3D pose, MoCap
@120Hz
(partial gt)

• 3D pose, Mo-
Cap @300Hz
(partial gt)
• 3D pcds, Kinect
@5Hz

3D pose, visual markers
@30Hz

3D pose, MoCap
@50Hz

• 3D pose, IMU
+ manual position
fixes @100Hz
• 3D pcds, Tango
@5Hz

• 3D pose (some
seq), MoCap
@240Hz
• 3D pose,
COLMAP/RGB-D
SLAM @5Hz

Acc. ≈ 1 mm 1 mm (static case) 1 mm (relative) 15 cm 1 mm 0.1 - 1 m [86] 1 mm - 1 cm

Table 1. Overview of common Visual (V) and Visual Inertial (VI) benchmark datasets targeted at state estimation.

Dataset [36] collected from social networks available for
reconstruction tasks. Our dataset is unique since it records
consumer-level data (smartphone) “in the wild” supported
by high-quality external depth data.

Recently emerged neural implicit representation meth-
ods allow to bypass the need for obtaining accurate 3D
structure of a scene and instead model it implicitly, e.g.
by considering occupancy [48], signed distance function
[56] or volumetric density [46, 49]. In particular, there
have been several works that successfully used neural im-
plicit representation for creating realistic portrait avatars
[27, 28, 57, 74, 87].

Unfortunately, when scenes include dynamic elements,
and that is the case of video recording of people, the state
estimation of camera poses or free-viewpoints and the 3D
scene is not so trivial. In the downstream tasks of 3D human
reconstruction, two main variants exist: free-form [15, 69,
70] and model based [6, 47, 55].

Accordingly, when reducing the number of cameras to
a single one and working in non-static conditions because
the volunteers in our dataset stand still but not immobile,
then, state estimation becomes the key ingredient that al-
lows a handheld single camera video to be used for human
digitization. Either if camera poses are compensated while
learning a model [45] or estimated as recorded, the quality
of these is going to be determinant for any downstream task.

To the best of our knowledge, there are no datasets
that directly address the evaluation of state estimation ap-
proaches when a human is in the main focus of sensors.
State estimation of camera poses include techniques such
as Visual Odometry (VO) [22, 25], Visual-Inertial Odom-
etry (VIO) [9, 41, 43, 62]. Variants of Simultaneous Lo-
calization and Mapping (SLAM), which include a loop in

estimation for global pose alignment, either Visual SLAM
(V-SLAM) [29, 51, 52, 80] or Visual-Inertial SLAM (VI-
SLAM) [13, 31, 61, 68] and Structure from Motion (SfM)
[71], all of them relevant to the be applied to the sensor
data available in a smartphone. To date, there are numerous
datasets available [12,14,16,18,19,30,37,58,73,79,86,100]
that vary greatly by their focus, recording environment, sen-
sor carriers as well as by the amount of data recorded and
the accuracy of the ground truth. We briefly describe the
main features of the main datasets and give a comparison
with our dataset (see Table 1).

The EuRoC Micro Aerial Vehicles (MAV) dataset [12]
focuses on VIO and SLAM for MAVs as well as 3D re-
construction. The authors employ a stereo pair of cameras
hardware-synchronized with an IMU installed on a MAV
for acquiring the data sequences in two indoor environ-
ments. Kaist VIO [37] is another indoor dataset that focuses
on VIO for aerial vehicles, it specifically addresses chal-
lenging scenarios for VIO that contain pure rotational/harsh
motions. TUM-VI [73] is a dataset for the purpose of
evaluating VIO algorithms. Compared to other mentioned
datasets it stands out by its size, diversity of the recorded
sequences, as well as uses higher resolution cameras. TUM
RGB-D [79] features only indoor sequences captured with
a Kinect sensor that is handheld or mounted on a robotic
platform. The dataset includes challenging scenarios for
the proper evaluation of RGB-D SLAM approaches. Pen-
nCOSYVIO [58] is one more VIO benchmark that con-
tains diverse challenging sequences. It includes not only
rotational motions but hard visual conditions as well. The
dataset was captured using a larger number of sensors than
any other related datasets: 3 GoPro cameras, an integrated
VI-sensor and 2 Google Project Tango tablets mounted on a
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Figure 2. Front and back view of the recording platform.

rig. However, as pointed out in [73] the setup yields lower
synchronization accuracy between cameras and IMUs when
compared to datasets like TUM-VI. ADVIO [18] focuses on
benchmark VIO and SLAM methods for smartphones and
mobile devices with low-cost sensors. It contains different
large indoor and outdoor environments recorded in public
places.

Our dataset contains recordings of people in indoor envi-
ronments and focuses on the diversity of people, their cloth-
ing, the environments and the lightning conditions, totally
uncontrolled aiming to recreate every-day life conditions of
smartphone users. Compared to PennCOSYVIO, KAIST
VIO and ADVIO that use heterogeneous sensors too, we
employ a significantly more precise hybrid hw/sw synchro-
nization technique from [24] (see Sec. 3.1). Due to record-
ings surroundings peculiarities we provide pseudo-ground
truth poses based on the gathered sensors data like in [18]
the quality of whose is estimated in a manner similar to [58]
by capturing verification sequences (see Sec. 5.2).

3. Recording Platform

Our dataset aims to provide human portrait data in the
realistic environments captured by a middle-price smart-
phone. To meet these requirements, we have designed a
portable handheld platform with a Samsung S10e smart-
phone (RGB camera, 1920x1080 p, 30 fps; IMU, 500 Hz,
flasher, 1 Hz) and a high-end depth sensor Azure Kinect
DK (depth camera, 640x576 p, 5 fps). The high-quality
external depth camera is chosen instead of the smartphone
with a built-in sensor as (i) the modern smartphone depth
images are still not as high-quality as external depth sen-
sors, and (ii) it is not possible to record RGB and depth
tracks by the smartphone on high frequency simultaneously.
A common view of the system is presented in Fig. 2.

Specifics of our recording case — dynamic camera
movements close to real-life handheld capture and a per-
son in foreground with non-stationary pose (blinking eyes,
small movements of the person because of breath, coordi-
nation, heart beats).

Figure 3. Obtained relative transformations by calibration. ITC –
smartphone camera in smartphone IMU reference frame, CTD –
depth camera in smartphone camera frame. CTD is found as
CTD =C TR ·R TD , where CTR is Azure RGB camera in smart-
phone camera frame obtained by Kalibr, RTD is factory-known
Azure RGB camera in Azure depth camera frame. Azure RGB is
only used for this procedure.

3.1. Time and Frame Synchronization

The independence of smartphone and depth camera adds
an additional challenge to the time synchronization. If
frames from both sensors are captured at slightly different
instants of time, several tens of ms, this degrades the quality
of the camera pose estimation.

To synchronize the cameras, we introduce a two-step
sync process. First, the time domains between two sensors
are synchronized by Twist-n-Sync algorithm [23] which is
not affected by network asymmetry, in contrast to network-
based protocols like NTP. And in the second step – the syn-
chronization of frame capturing moments from both sen-
sors is done. For solving that, the grabbing of the smart-
phone’s framing phase is performed via remote API inter-
face. Then depth camera triggering is automatically tuned
to this phase as explained in [24]. The sync used provides
sub-millisecond accuracy.

3.2. Calibration

The full intrinsic and extrinsic calibration of smartphone
camera and smartphone IMU, is obtained by the Kalibr tool-
box [65] with 6x6 AprilGrid array of 3x3 cm AprilTags [54]
as the visual markers.

To find depth-to-smartphone camera transformation,
firstly, we obtained the Azure RGB to smartphone camera
transform. Then, combined it with the factory-known Azure
depth (infra-red) to Azure RGB camera transform. This
method gives much better accuracy than direct depth-to-
smartphone camera transformation with low-quality infra-
red camera. We use Azure RGB only for this procedure.
All the obtained transformations are shown in Fig.3.

Smartphone camera is rolling-shutter type; however, we
applied global-shutter camera model during calibration to
feed the calibration parameters correctly to the methods we
compared in Sec. 5. Standalone IMU calibration is also per-
formed. IMUs noise parameters were borrowed from [78]
and [53] for smartphone and standalone IMU respectively.
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4. Dataset
Our dataset contains 1000 records of 200 people, with

natural clothing, captured in different native locations and
poses. Every record consists of synchronized smartphone
data (Full HD RGB video, flash timestamps, timestamped
accelerometer and gyroscope measurements) and the depth
images from external high-quality depth sensor. The dataset
also contains reference ground truth trajectories of the
smartphone camera obtained as described in Sec. 5.2 and
segmentation masks for the person. We supplement the
dataset by labels for genders and difficult cases for render-
ing like volume hairs/beard/glasses. Data parameters and
sampling rates of the sensors are presented in Table. 1.

4.1. Collection Process and Statistics

During every recording process, three people are in-
volved: (1) a volunteer who is being filmed, (2) an operator
that carries the recording platform, and (3) an assistant that
monitors the correctness of the recording through SSH. The
volunteer is asked to stand or sit still. The operator carries
a recording platform around the person at the subject’s face
height as depicted in Fig. 1. The recording trajectory begins
in front of the person to capture the whole scene, then the
operator moves to a side of the volunteer and makes four
100-120 degrees circular arcs around the model. The entire
trajectory is shown in Fig. 1. The timestamps of every arc
edge are marked online during recording by the assistant in
an automated manner. In post-processing stage, the whole
trajectory could be split into separate arcs applying these
marks.

Every person is captured in 5 different poses — 3 in a
standing position (straight, hand on hips, with head turned)
and 2 in a sitting position (straight, with head turned).
Standing and sitting positions were captured from a dis-
tance of about 2 and 1 m respectively. During the recording,
blinking flash on the smartphone is turned on with a fre-
quency of 1 Hz to relight the model. Effect of re-lightning
is more distinguishable on sitting positions since they are
captured from a closer distance.

Data collection is performed in 5 different locations of
native indoor environments: cafeteria, lab, office, cam-
pus entrance, and student council. Their common view is
demonstrated in Fig. 1. The average length of the trajec-
tories for staying and sitting position are 7.14 and 5.8 m
accordingly. The total duration of all tracks is 11 hours and
6 minutes, and the total length is 6610 meters.

SmartPortrait contains people of different gender, ap-
pearance, clothing, hairstyles, etc. Statistics are shown in
Fig. 4.

4.2. Segmentation Masks

Along with recorded data, we also provide segmentation
masks of humans on the images. This information could
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Figure 4. Dataset statistics. Left: Locations of recording. Center:
Gender Right: Appearance.

be used for filtering out potentially dynamic landmarks of
the scene on the trajectory estimation step (blinking eyes,
subject movements) as demonstrated in Sec. 5.2 or for sep-
aration of portraits parts from the scene for only-person 3D
reconstruction. For this task, we design a semi-automated
labeling process, based on U2-Net [63] that is pre-trained
on people masks from the Supervisely Person Dataset [2].
Usage of this method on our data overestimates the person
mask, also covering some parts of the background. DB-
SCAN clusters the masked part by using the depth compo-
nent, discarding scene parts that are not related to the fore-
ground. Finally, segmentation results are assessed visually
by labelers.

5. Evaluation
The evaluation part tackles two main questions — (1)

how to find the best way of calculating pseudo-ground truth
poses for our dataset and (2) investigate the performance of
V and VI state estimation methods on smartphone data only.
V denotes all visual methods: VO and V-SLAM; the same
applies for VI.

5.1. Metrics

Full-reference metrics. Among the class of full-
reference metrics where the reference trajectory (ground
truth) is available, we consider RMSE statistics on Abso-
lute Pose Error (APE) and Relative Pose Error (RPE) for the
rotation and translation parts. In particular, for translation
APE, we apply the Umeyama alignment [7, 84] between a
pair of trajectories if expressed in different origin frames.
For rotation APE, the Umeyama alignment is followed by
the trajectory’s reference frame transformation.

No-reference metrics. No-reference metrics are alterna-
tive to the full-reference metrics when the reference trajec-
tory is not available or its quality is disputable. In our work,
we use Mutually Orthogonal Metric (MOM) [40] that mea-
sures quality of the trajectory by evaluating quality of the
map aggregated from point clouds registered via the trajec-
tory poses. MOM provides stronger correlation with RPE
error in comparison to its competitors [64]. In our setting,
MOM uses the point clouds converted from depth images.

In order to apply MOM on trajectories ambiguous to
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Figure 5. Full-reference (APE/RPE) and no-reference (MOM) metric statistics for COLMAP and ORB SLAM (RGB-D) for 5 test se-
quences with MoCap ground truth poses. (b) and (p) indicate that only background keypoints and person keypoints correspondingly were
considered for pose estimation. One pose for ORB SLAM (p) is not converged, therefore its values are excluded from the evaluation.

C
O

LM
A

P

O
p
e
n
V

S
LA

M

O
R

B
-S

LA
M

 3
 (

V
)

LD
S
O

O
K

V
IS

O
R

B
-S

LA
M

 3
 (

V
I)

P
V

IO

S
V

O
2

V
IN

S
-F

u
si

o
n

V
IN

S
-M

o
n
o

10 2

10 1

RPE translation (m)

C
O

LM
A

P

O
p
e
n
V

S
LA

M

O
R

B
-S

LA
M

 3
 (

V
)

LD
S
O

O
K

V
IS

O
R

B
-S

LA
M

 3
 (

V
I)

P
V

IO

S
V

O
2

V
IN

S
-F

u
si

o
n

V
IN

S
-M

o
n
o

10 2

10 1

APE translation (m)

C
O

LM
A

P

O
p
e
n
V

S
LA

M

O
R

B
-S

LA
M

 3
 (

V
)

LD
S
O

O
K

V
IS

O
R

B
-S

LA
M

 3
 (

V
I)

P
V

IO

S
V

O
2

V
IN

S
-F

u
si

o
n

V
IN

S
-M

o
n
o

10 3

10 2

10 1

100
APE rotation (deg)

C
O

LM
A

P

O
p
e
n
V

S
LA

M

O
R

B
-S

LA
M

 3
 (

V
)

LD
S
O

O
K

V
IS

O
R

B
-S

LA
M

 3
 (

V
I)

P
V

IO

S
V

O
2

V
IN

S
-F

u
si

o
n

V
IN

S
-M

o
n
o

10 3

10 2

10 1

RPE rotation (deg)

Figure 6. Evaluation of V/VI methods that employ only smartphone data (frames and IMU) on benchmark sequences.

scale (e.g., COLMAP), we optimize the scale factor w.r.t.
MOM metric — which assumes that the correct value of
scale is reached at the optimum in the metric, when the ag-
gregated map of point clouds is at its best condition.

5.2. Ground Truth Trajectories

The majority of the dataset sequences (see Fig. 4) are
captured in public places or areas where either applying
conventional methods of acquiring ground-truth poses (e.g.,
MoCap) are not feasible, or such methods disrupt the nativ-
ity of the surroundings (e.g., visual markers).

Therefore, it is required a no-reference method in order
to validate the obtained trajectories when MoCap data is
not available. Below, we will present a procedure to select
a new reference trajectory and an upper bound of its error.

Methods. Since the dataset is targeted on both state esti-
mation and reconstruction/synthesis domains, we consider
the main methods typically used by the community that
make use of the sensors: RGB, depth cameras and IMU.
From reconstruction and rendering field experience, we
consider the COLMAP [71] Structure-from-Motion (SfM)
pipeline that is de-facto standard tool in this area and usu-
ally employed as ground truth. COLMAP uses only RGB
data and therefore its trajectory is defined up to a scale fac-
tor, that limits its usage in state estimation tasks. In ad-
dition, we consider the class of RGB-D SLAM algorithms
that are able to provide poses and scale is observable. Based

on the wide evaluation of RGB-D SLAM methods done
in [97] we choose ORB-SLAM (RGB-D) [52], implemen-
tation from [13], as one with the lowest trajectory error.

MoCap Test Sequences. To assess the accuracy of the
ground truth poses, we record several testing sequences in
the laboratory environment where the use of a more accu-
rate ground truth acquisition method is possible. In partic-
ular, we utilize OptiTrack MoCap system [1] to record 5
testing sequences of one person in the common dataset for-
mat. MoCap is synchronized with the platform offline by
the Twist-n-Sync algorithm [23]. The extrinsic parameters
calibration requires to calculate:

min
X,Y ∈SE(3)

∑
i

|| log
(
Y · TM (i) ·X · T−1

C (i)
)
||, (1)

where TM (i) is the trajectory given by the MoCap at time
i, TC is pose at the camera frame calculated by the algo-
rithm, X is the transformation between the camera optical
center and the tracked object in the MoCap and Y is the
transformation between the origin frame of the MoCap and
the origin of the SLAM algorithm (usually first frame).

Results. In order to support the selection of the pseudo
ground truth, we evaluate COLMAP and ORB-SLAM
(RGB-D) (actually, virtual stereo) on the MoCap test se-
quences by using the described above full-reference and
no-reference metrics. Because the landmarks on the vol-
unteer body might be non-static (person can breath, blink),
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Figure 7. MOM generalization to 50 other scenes from the dataset.

we consider three modifications of COLMAP and ORB-
SLAM (RGB-D) – using the whole scene, using mask for
background, using mask for person. The evaluation results
are presented in the Fig. 5. Both methods demonstrate al-
most the same performance on the considered metrics, be-
ing close to the resolution limit of the MoCap system. The
usage of masks does not affect the performance in case of
COLMAP that could be explained by photometric consis-
tency imposed by the algorithm. ORB SLAM performs
worse when only part of the scene is visible.

Eval Generalization. The above evaluation on the Mo-
Cap test sequences with ground truth available is limited
only to the lab location. To extend it to all locations that
our dataset covers, we must consider the comparison of
COLMAP and ORB-SLAM (RGB-D) by using the no-
reference metric MOM. For that, we select 10 trajectories
from every location that result into 50 test sequences. Eval-
uation performance is presented in Fig. 7 and it allows to
make the following two conclusions. Firstly, since MOM
measures the dispersion of deviations on planar surfaces in
the aggregated map it can be noticed that for the majority of
locations it does not overcome 2 cm. This value is compara-
ble to the depth sensor noise, that means that both methods
give relatively good trajectories from the state estimation
point of view. Secondly, COLMAP performs slightly bet-
ter than ORB-SLAM (RGB-D), although it requires post-
processing for revealing the scale. We will provide the ob-
tained trajectories of both methods as the pseudo-ground-
truth methods.

5.3. V and VI Evaluation

One of the motivations of our work is the study the po-
tential of applications of V/VI methods using smartphone-
only data targeted to the domain of human portraits. In this
section, we provide evaluation of different state-of-the-art
methods and a baseline for future comparisons. In addition,
to all the considered methods, we deliver configuration and
calibration files for methods to be used with our data for
benchmark.

Methods. In evaluation we consider two classes of
methods: Visual (V) and Visual Inertial (VI) methods. Con-
sidering recent exhaustive evaluations [20, 37], we order
top-rated V/VI methods. The considered methods for both
classes are: for V — OpenVSLAM [80], ORB SLAM
Monocular [13], LDSO [29] and COLMAP [71]. For VI
(ordered by performance on other datasets) – ORB-SLAM
3 (VI) [13], Kimera VIO [68], OpenVINS [31], VINS-
Fusion [62] [60], VINS-Mono [61], PVIO [43], SVO.2 [26],
MSCKF [50], OKVIS [41], ROVIO [9]. Some of the meth-
ods (Kimera VIO, OpenVINS, MSCKF, ROVIO) were dis-
carded because they require recording device to be static
over the first seconds of the trajectory for initialization,
whereas our use case does not cover such scenario.

Benchmark Dataset To evaluate the performance of the
methods, we uniformly pick 2 sequences for every combi-
nation of location and volunteer pose, resulting in a total
of 50 evaluation sequences. As ground truth, we consider
the trajectories produced by ORB-SLAM (RGB-D) that, as
demonstrated in Sec. 5.2, provides excellent performance.

Results. The evaluation results on the set of the full-
reference metrics are presented in Fig. 6. Because the
pseudo GT provides a statistical bound, it could be used
for exact ordering in cases when the order of error magni-
tude is higher than the error between MoCap and pseudo
GT. In particular, in our comparison we can order only the
next V/VI methods: LDSO, OKVIS, PVIO, SVO2, VINS.
In general, we can observe that V methods perform more ac-
curately in rotation and translation than VIO methods. The
VIO method’s accuracy varies, where ORB 3 VI perform-
ing as accurate as V methods. All VI have better than 1
degree of accuracy in absolute rotation error.

6. Application
3D reconstruction. For qualitative comparison on 3D

reconstruction, we provide poses obtained from the top
performing methods for state estimation from every class
and use two state-of-the-art methods for 3D reconstruction:
COLMAP multi-view stereo (MVS) [72] and ACMP [88].
The demonstration of the obtained 3D scenes is presented
in Fig. 8 from two views — center and the edge of the tra-
jectory arcs. For both reconstruction pipelines, COLMAP
trajectory produces less distorted reconstruction, overcom-
ing ORB-SLAM (RGB-D) and (V) versions. It could also
be noticed that from the trajectory border point of view 3D
reconstruction has less quality. The solution from the VI
method produced an incorrect reconstruction, perhaps due
to its error.

View Synthesis. We provide a qualitative comparison
of the considered VO-SLAM methods evaluated on an im-
age synthesis problem. For that we considered SOTA meth-
ods: Neural Radiance Field [49] (NeRF), and generalized
NeRF approaches — FVS [66] and SVS [67] in their de-
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Figure 8. Qualitative demonstration of dense reconstruction from different views using COLMAP-MVS (3 left columns) and ACMP (3
right columns) on poses from COLMAP-SfM, ORB-SLAM (RGB-D), ORB-SLAM (V).

COLMAP ORB-SLAM (RGB-D)Original

Figure 9. Qualitative demonstration of the NeRF novel-view syn-
thesis algorithm on new poses, not observed before.

fault pre-trained versions. The data provided to methods is
the solution of the trajectories. For NeRF algorithm, that
is optimized per each scene, COLMAP provides the best
qualitative results, the objects are coherently synthesized,
a little blurred. ORB-SLAM (RGB-D) result shows some
inconsistencies on the rendering (Fig. 9-Bottom-right) and
overall less definition than COLMAP, although they both
showed a similar trajectory error. Results of FVS and SVS
are presented in Fig. 10. For both, COLMAP and ORB,
their provide less quality than NeRF. It could be explained
by difference in poses configuration w.r.t original methods
data on which methods were trained.

7. Discussion
One of the questions that this paper raised in the intro-

duction is: Are we ready to calculate handled trajectories
in the wild and convert them into 3D portraits of people?

Real time VI methods do not perform as accurately as

ORB-SLAM (SVS)COLMAP-SfM (FVS) COLMAP-SfM (SVS) ORB-SLAM (FVS)

Figure 10. Qualitative demonstration of the FVS and SVS novel-
view synthesis algorithms on new poses, not observed before.

V methods (some of them not real-time). Still, the accu-
racy achieved is remarkable, providing very accurate trajec-
tories; probably, they could be better if IMUs were properly
initialized.

Despite their accuracy, the results obtained on the ap-
plications (NeRF and reconstruction) could be improved.
This question is to be explored, but our qualitative results
hint that trajectory error is not perfectly correlated with the
downstream task, either for synthesis or for reconstruction.
An explanation can be the photo-metric consistency, which
is more important than the trajectory error. A corollary of
this: perhaps the solution is not to jointly optimize trajec-
tories and maps, but simply optimize the map, allowing for
small disturbances on the camera poses from a reasonable
initial solution. We plan to further investigate this issue.

Potential Negative Societal Impact. Realistic human
data are required to achieve a future of immersive VR and
tele-presence. However, there are other potentially danger-
ous uses of these technology such as identity theft or fake
news.

Acknowledgments. This research is based on the work
supported by Samsung Research, Samsung Electronics.

21325



References
[1] OptiTrack. www.optitrack.com/. 2, 6
[2] Supervisely person dataset. https://supervise.

ly/explore/projects/supervisely-person-
dataset-23304/datasets. 5

[3] Vicon motion systems. www.vicon.com. 2
[4] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXII 16, pages 696–712. Springer, 2020. 1

[5] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar,
Christian Theobalt, and Gerard Pons-Moll. Learning to re-
construct people in clothing from a single rgb camera. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1175–1186, 2019. 2

[6] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Video based reconstruc-
tion of 3d people models. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8387–8397, 2018. 2, 3

[7] K Somani Arun, Thomas S Huang, and Steven D Blostein.
Least-squares fitting of two 3-d point sets. IEEE Trans-
actions on pattern analysis and machine intelligence,
(5):698–700, 1987. 5

[8] Timur Bagautdinov, Chenglei Wu, Tomas Simon, Fabian
Prada, Takaaki Shiratori, Shih-En Wei, Weipeng Xu, Yaser
Sheikh, and Jason Saragih. Driving-signal aware full-body
avatars. ACM Transactions on Graphics (TOG), 40(4):1–
17, 2021. 2

[9] Michael Bloesch, Michael Burri, Sammy Omari, Marco
Hutter, and Roland Siegwart. Iterated extended kalman fil-
ter based visual-inertial odometry using direct photometric
feedback. The International Journal of Robotics Research,
36(10):1053–1072, 2017. 3, 7

[10] Federica Bogo, Michael J Black, Matthew Loper, and Javier
Romero. Detailed full-body reconstructions of moving peo-
ple from monocular rgb-d sequences. In Proceedings of the
IEEE international conference on computer vision, pages
2300–2308, 2015. 2

[11] Federica Bogo, Javier Romero, Gerard Pons-Moll, and
Michael J Black. Dynamic faust: Registering human bod-
ies in motion. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6233–6242,
2017. 2

[12] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W Achte-
lik, and Roland Siegwart. The euroc micro aerial vehicle
datasets. The International Journal of Robotics Research,
2016. 3

[13] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,
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