Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation

Abhijit Kundu 1, Kyle Genova 1, Xiaoqi Yin 1, Alireza Fathi 1, Caroline Pantofaru 1, Leonidas Guibas 1,4, Andrea Tagliasacchi 1,3, Frank Dellaert 1,2, Thomas Funkhouser 1

1Google Research 2Georgia Tech 3Simon Fraser University 4Stanford University

Figure 1. Panoptic Neural Fields (PNF) is an object-aware neural scene representation that decomposes a dynamic 3D scene into a set of objects (things) and background (stuff), each represented by a separate MLP based neural function. Our model predicts a panoptic-radiance field that represents the color, density, instance, and category label of any 3D point at any given time. The model is trained from RGB images alone and can describe dynamic challenging 3D scenes as shown above.

Abstract

We present Panoptic Neural Fields (PNF), an object-aware neural scene representation that decomposes a scene into a set of objects (things) and background (stuff). Each object is represented by an oriented 3D bounding box and a multi-layer perceptron (MLP) that takes position, direction, and time and outputs density and radiance. The background stuff is represented by a similar MLP that additionally outputs semantic labels. Each object MLPs are instance-specific and thus can be smaller and faster than previous object-aware approaches, while still leveraging category-specific priors incorporated via meta-learned initialization. Our model builds a panoptic radiance field representation of any scene from just color images. We use off-the-shelf algorithms to predict camera poses, object tracks, and 2D image semantic segmentations. Then we jointly optimize the MLP weights and bounding box parameters using analysis-by-synthesis with self-supervision from color images and pseudo-supervision from predicted semantic segmentations. During experiments with real-world dynamic scenes, we find that our model can be used effectively for several tasks like novel view synthesis, 2D panoptic segmentation, 3D scene editing, and multiview depth prediction.

1. Introduction

The ability to understand the content within an image is an essential task in computer vision, and over time we have witnessed a rapid increase in task complexity. Over a short period of time, we have progressed from the task of identifying the overall presence of objects within an image (i.e. classification [26] and object detection [17,20]), to fine grained pixel-by-pixel classification (i.e. semantic segmentation [31, 47]), and to the ability to differentiate between object instances of the same class (i.e. panoptic segmentation [6, 24]).

However image level representations described above have limited applications. Instead we are interested in full 3D scene understanding which is important for autonomous driving [21], semantic mapping [58], and many other applications involving navigation or operation in the physical world [7]. Given a sequence of RGB images, our goal is to infer: 1) a 3D reconstruction of the observed geometry, 2) a radiance field of the scene, 3) a decomposition of the scene into potentially dynamic things (e.g., cars) and background stuff (e.g., grass), 4) a category and instance label for every 3D point, as illustrated in Figure 1.

In recent years, neural 3D scene representations like...
NeRF [33] have made significant advancements [55, 60]. NeRF represents a scene using a multi-layer perceptron (MLP) that maps positions and directions to densities and radiiances which can then be used to synthesize an image from a novel view. However NeRF lacks semantic understanding and is also not object aware. In this work we explore neural scene representations for semantic 3D scene understanding tasks beyond the usual view synthesis task.

Some recent work augments NeRF to infer semantics [66], adding an extra head to predict semantic logits for any 3D position along with the usual density/color. Other recent work decomposes a scene into a set of NeRFs associated with foreground objects separated from the background [18, 40, 61]. However, these systems have several limitations in the context of our goals: 1) they do not produce panoptic segmentations, 2) they learn from scratch for every scene; and 3) they share MLPs for multiple objects, which limits their ability to reproduce specific instances.

We address these issues in our proposed Panoptic Neural Fields (PNF), an object-aware neural scene representation that explicitly decomposes a scene into a set of objects (things) and amorphous stuff background. Each object instance is represented by a separate MLP to evaluate the radiance field within the local domain of a potentially moving and semantically labeled 3D bounding box. The semantic-radiance field of the stuff background is also represented by an MLP which includes an additional semantic head. Together the stuff and things MLPs jointly define a panoptic-radiance field that describes the density, color, category, and instance label of any 3D point over time.

Our object aware representation makes it possible to describe scenes with multiple moving objects and also paves the way to incorporate constraints that objects of the same category have similar shape and appearance. Previous object-aware frameworks [40, 61] used a shared MLP with instance-specific latent codes to incorporate this prior. In our model, each object instance is represented by a separate MLP that is initialized with a category-specific prior using meta-learning. The separation of learning of object category priors via meta-learning makes it possible to represent instance-specific details with smaller MLPs, which speeds inference in scenes with many objects.

Given a collection of images captured from a scene, we employ off-the-shelf algorithms to predict camera parameters [35] and 2D semantic segmentations [6] for all images, plus a set of 3D object detections with 3D oriented bounding boxes and category labels [41]. We initialize the weights of the MLPs for our panoptic neural field model either with object category-specific meta-learned initialization or simple biased initialization of density activation layers. We then jointly optimize the bounding box and MLP parameters to minimize analysis-by-synthesis style losses that measure differences in color and semantic images synthesized with volumetric rendering (as in NeRF [33]). Thus, our approach provides an unified framework for optimizing 3D shape, appearance, semantics, and object poses all from a set of color images.

We evaluate our method on several scene understanding and synthesis tasks using experiments on the KITTI [15] and KITTI-360 [30] dataset, including 3D panoptic reconstruction, and scene editing. The output panoptic-radiance field can also be used to synthesize 2D image-level outputs like semantic segmentation, panoptic segmentation, depth images, and colored images of both observed and novel views. We demonstrate the utility of the proposed method for these scene understanding tasks, as well as for novel-view synthesis method with movable scene components.

Our contributions can be summarized as follows:

- We propose, to the best of our knowledge, the first method that can derive a panoptic-radiance field of complex dynamic 3D scenes from images alone.
- Our single unified model achieves state-of-the-art quality across multiple tasks and benchmarks on KITTI and KITTI-360 datasets.
- We incorporate object shape and appearance priors via category-specific meta-learned initialization. This allows our object MLPs to be much smaller and faster than previous object-aware representations.
- We jointly optimize all (stuff and things) neural fields and object poses, allowing our method to cope with noisy object poses and image segmentations.

2. Related Work

The most relevant related work is summarized in Table 1 and can be broadly divided into three categories: (1) Learning based single image 3D semantic and/or instance segmentation, (2) Multi-view 3D reconstruction and segmentation methods, and (3) Neural fields.

Single image reconstruction and segmentation. 3D-RCNN [28] and Mesh-RCNN [16] takes as input a single RGB image and predicts 3D mesh and pose of object instances in the image. Total3DUnderstanding [39] combines layout estimation, 3D object detection, and object mesh generation. More recently [8] showed 3D panoptic reconstruction and segmentation from a single RGB image.

Multi-view reconstruction and segmentation: Incorporating semantics into SLAM and SfM systems has a long history [2, 19, 27, 50]. More recently, PanopticFusion [37] is an incremental, online mapping approach that fuses a sequence of RGB-D images into a consistent panoptic segmentation. ATLAS [36] reconstructs and labels the 3D geometry from multiple posed RGB images. However, ATLAS produces only semantic segmentations (without instances). Both PanopticFusion and ATLAS works only for
static scenes, requires 3D supervision, and relies upon convolutions on a discrete voxel grid, which limits its resolution. Kimera [48] takes a stereo sequence and does online reconstruction, meshing, and semantic labeling of the mesh using ground-truth labels, as a proxy for any 2D segmentation method. Dynamic Scene Graphs [49] expands on that by inferring object instances, even dynamic ones in case of people. Both methods, though representing impressive systems, were only demonstrated in simulation and rely on ground-truth semantic labels.

Neural radiance fields (NeRFs). This work builds upon NeRF [33], which represents a scene using a multi-layer perceptron (MLP) that maps positions and directions to densities and radiances. From that representation, novel views can be synthesized using volumetric rendering and compared to input views in a self-supervised optimization procedure to infer MLP weights for an observed scene. However, NeRF only works for static scenes and trains for hours (from scratch) for every set of input views.

NeRFs with semantics. Recent work has considered using neural representations to infer semantics [66]. In particular, SemanticNeRF [66] adds an extra head to NeRF to predict semantic category logits for any 3D position along with the usual density and color. We follow the same general strategy for semantic labeling, but extend it to produce panoptic segmentations with object instances in semantically labeled bounding box tracks.

NeRFs with dynamics disentangle a scene into a canonical volume and its time-varying deformation, represented by a second MLP. This approach has been applied for deforming faces [12, 14, 45], moving human bodies [43, 53, 56], and objects [10, 29, 42, 44, 59]. In contrast, we consider dynamic scenes that contain many moving objects.

NeRFs with object decompositions [18, 40, 61] decom-
meta-learning based initialization (See Sec. 3.4).

3.1. Scene Representation

The core of our framework is the panoptic-radiance field representation. This representation accepts input queries consisting of a point position \(\mathbf{x} \in \mathbb{R}^3 \), view direction \(\mathbf{d} \in \mathbb{R}^3 \), and time \(t \in \mathbb{R} \). The outputs of a query are color, density, a semantic label, and an instance label. This field is the composition of multiple distinct neural functions. There are separate fields for each 3D object (things), and another, larger field for the background (stuff). The field associated with one object is defined inside a mobile 3D oriented bounding box. The background is represented by another neural function defined inside a larger scene bounding box. It encodes density, appearance, and semantic labels.

Things: Foreground objects in our representation are represented by a neural function inside a dynamic bounding box. To instanciate the set of object tracks in a scene, we first run an RGB-only 3D object detector [41] and tracker [57]. This provides a bounding box track \(T_k \) and semantic class for each recognized object instance \(k \). The track is parameterized by a sequence of transformation matrices, one at each of at a set of discrete timestamps. For each timestamp, we create a rotation matrix \(\mathbf{R} \in \mathbb{R}^{3\times3} \) and a translation vector \(\mathbf{t} \in \mathbb{R}^3 \). There is also a box extent \(s \in \mathbb{R}^3 \) along each axis that is time-invariant. To determine the coordinate frame of an object at an arbitrary real-valued timestamp, we interpolate the discrete track steps.

For each object instance, we instantiate a separate time-invariant MLP with the standard NeRF architecture [33]. Its weights are initialized using the techniques described in Section 3.4. To query this MLP, positions and directions are transformed from the world frame to the bounding box frame defined by the track at the current timestamp. We optimize all parameters of the MLP and object track \(T_k \) jointly. Optimizing object track parameters is important as initial boxes (even GT boxes) may be noisy. In order to optimize rotation, we orthogonalize \(\mathbf{R} \) after each gradient descent step using SVD, which projects it back onto \(\text{SO}(3) \).

Stuff: We represent the static background stuff with a single neural function. In addition to predicting density and color at every 3D point, the stuff function also learns a semantic label per point. We again use an MLP to represent the learned function. The architecture is similar to NeRF, but with an additional head for semantic logits. This head is direction-invariant to encode the inductive bias that 3D points have multi-view consistent semantic labels. Note that unlike the MLPs for objects, which are bounded, the stuff MLP must handle the unbounded nature of real world scenes. Therefore we follow [63] and split the architecture into separate foreground and background MLPs. Please see the supplementary materials for more details.

Panoptic-Radiance Field: The final panoptic-radiance field at a 3D point is computed from aggregating the contributions of the individual thing and stuff MLPs. For any given output channel (color, density, etc.), our function takes the sum of all contributions from any bounding box hits, defaulting to the stuff output if there is no intersection. For the color field \(c \), this is:

\[
c(x | \theta) = \mathbb{1}_S(x) c_s(x | \theta) + \sum_k c_k(T_k^{-1}x | \theta) \tag{1}
\]

where \(\mathbb{1}_S \) is 1 if and only if the point intersects no bounding boxes and \(c_s \) is the stuff color field. For other fields, we simply substitute the radiance \(c \) with the density, semantic, or instance function. Object boxes contribute a one-hot semantic logit vector for their class, which handles the merging of stuff and thing semantics. Similarly, the instance label function is a vector of length \(K \), with one dimension per detected object \(k \). Objects contribute a one-hot vector...
for their instance while the stuff function’s instance output is always zero.

3.2. Rendering Panoptic-Radiance Fields

Given the complete panoptic-radiance field representation, a 2D image can be synthesized with volume rendering. This process is described in more detail in NeRF [33]. Our image synthesis approach is the similar to NeRF, with the addition of support for extra output channels and dynamic boxes. To render a single ray \(r = o + t d \) we uniformly sample \(N = 1024 \) points \(x \) (with jitter) along the ray and alpha-composite the result of the output channel \(C \) we wish to render (RGB, depth, semantic, instance):

\[
C(r \mid \theta) \approx \sum_{i=1}^{N} w(t_i) f(r(t_i) \mid \theta). \tag{2}
\]

Above, \(w(t) \) is the final weight associated with each sample, determined by over compositing the opacity values of each sample along the ray. The function \(f \) returns the representation value for the channel in question at the query point. For semantics, this is logits, while for instance it is a one-hot encoding of the object instance identifier \(k \).

3.3. Model Losses and training

We jointly optimize all network parameters \(\theta \) and object tracks \(T \) to reproduce the observed RGB images and predicted 2D semantic images:

\[
\arg\min_{\theta, T_{k,i}} L_{\text{rgb}}(\theta, T_{k,i}) + L_{\text{sem}}(\theta, T_{k,i}) \tag{3}
\]

At each gradient descent step, we randomly sample mini-batches of rays. Our RGB loss is the mean squared error between the synthesized and ground truth color, summed over sampled rays as in NeRF [33]. Our semantic loss is applied at the same pixel locations, and compares the synthesized semantics with the input 2D semantic segmentation prediction [6]. For this loss, we apply a per-pixel softmax-cross entropy function rather than mean squared error.

3.4. Incorporating priors via initialization

One of the core benefits of an object aware approach, is the ability to incorporate inductive bias that objects instances within same category, often have similar 3D shape and appearance. One possible way to incorporate such priors is to have shared MLP weights across all object instances, combined with some instance specific codes. Our framework instead uses separate MLPs for representing instances within same category, often have similar 3D shape and appearance. One possible way to incorporate such priors is to have shared MLP weights across all object instances, combined with some instance specific codes. Our framework instead uses separate MLPs for representing each object instance. As illustrated in Fig. 3, this allows each MLP to be smaller as it only needs to represent a single object instance, resulting in faster inference speed on scenes with multiple objects. Object shape and appearance priors are instead incorporated via initialization of the MLP weights of the neural functions. We present two approaches (see Fig. 4) of initializing our model, one based on category specific meta-learning and another based on simple bias initialization of the activation function of the MLPs.

Biased initialization: This simple initialization scheme improves convergence behavior and training performance without requiring a large dataset from which to learn a shape.
Figure 6. Images of color, depth, instance segmentation, and semantic segmentation rendered on dynamic KITTI scenes from our model trained only from RGB images.

Figure 7. Rendered color, depth, instance segmentation, and semantic segmentation images of our models representing dynamic KITTI scenes with various object categories. These results used KITTI provided object tracks. Note that our instance specific object MLPs can also reconstruct novel object categories like truck and bus.

prior. In real-world outdoor scenes, most of the stuff volume is empty space. By contrast, most of the volume inside each things object bounding box is non-empty. We incorporate this prior directly by biasing the density prediction layer of the MLPs. For the stuff MLP, we initialize our bias to -5.0, whereas for all thing MLPs, we initialize the final bias layer to 0.1. Furthermore, for all MLPs, we use the softplus activation for the fully connected layer predicting the density outputs [65]. We have found that this simple injection of prior knowledge via initializing the bias values is quite effective and robust compared to random initialization, since dense content in stuff can suppress gradients from distant objects.

Category specific learned initialization: If a large shape collection is available for certain object categories, we can further improve on the bias initialization scheme. In particular, we use meta-learning [11] to capture category-specific shape and appearance priors. This process is illustrated in Fig. 5. First, we meta-learn category-specific initial weights by pre-training on ShapeNet [5]. Then, we use these weights to initialize the thing MLPs in our model when training on a novel scene.

To meta-learn a category-specific shape prior, we use the FedAvg [32] algorithm. This algorithm is known to be equivalent [23] to REPTILE [38] meta-learning, used before for NeRF initialization in [54]. To do one meta-step of FedAvg, we independently optimize a set of MLPs, each on a separate ShapeNet shape. We then average the model weights across all NeRF models, and start another meta-step. Fig. 5 visualizes the evolution of the learned initialization across several outer loops of FedAvg. In our experiments, we pre-train using the 2D rendered car images [52] of ShapeNet [5] to obtain the learned initialization model. When reconstructing a full scene, we then initialize the MLPs for each car instance track T to this initialization.

4. Evaluations

We performed a series of experiments to evaluate our model on multiple computer vision tasks, including view synthesis, reconstruction, 2D panoptic segmentation, 2D depth prediction, and scene editing. See the supplemental video for comprehensive visualizations of our results. All experiments used either the KITTI [15], Virtual KITTI [3,13] or the recent KITTI-360 [30] datasets. These datasets involves difficult forward facing cameras in complex outdoor dynamic scenes. KITTI-360 is the first benchmark that evaluates both the task of synthesising color and appearance images from novel views. Our model outperforms every other method in that leaderboard for both tasks as shown in
ors derived from meta-learning with images from ShapeNet.

The improvement over NSG also demonstrates the advantage of incorporating category-specific priors. To study the novel view synthesis capabilities of our model on dynamic scenes, we also experiment on several dynamic scenes from KITTI dataset as shown in leftmost columns of Fig. 6 and Fig. 7. Below we evaluate our model for each task in more detail.

Novel View Synthesis: How well a particular representation describes a scene is reflected in the quality of rendered views. As shown in Tab. 2, color images rendered by our model achieves the best PSNR and is competitive with latest view synthesis models [1, 25, 33, 46]. Since the scenes used in KITTI-360 [30] novel view synthesis task are all static, we attribute the improved performance to our model benefiting from separate object-aware MLPs and incorporation of category-level priors. To study the novel view synthesis capabilities of our model on dynamics scenes, we also experiment on several dynamic scenes from KITTI dataset as shown in leftmost columns of Fig. 6 and Fig. 7. Notice that the rendered color images accurately captures the moving vehicles in the scene. A quantitative analysis of synthesized colored images for dynamic KITTI scenes is available in Tab. 3, wherein we follow the same experimental setup as described in Sec. 5.2 of Ost et al. [40].

As expected, our method significantly outperforms representations like SRN [52] and NeRF [33] which rely on static world assumption. Note that our model also outperforms NSG [40] even though our instance specific object MLPs are much smaller (10× fewer FLOPs) compared to those used in NSG [40]. The improvement over NSG also demonstrates the advantage of incorporating category-specific priors derived from meta-learning with images from ShapeNet.

Panoptic Segmentation: Semantic and instance segmentation of an arbitrary view can be obtained from our model by simple rendering (see Eq. (2)) along the desired view. The two right columns of Fig. 6 and Fig. 7 demonstrate the rendered semantic and instance segmentation images from our model. As shown in Tab. 2, our model achieves state-of-the-art 74.28 mIoU for the task of novel view semantic segmentation on KITTI-360. One approach of generating segmentation images for any arbitrary view is to first synthesize color image from a desired view using view synthesis methods like [1, 25, 33, 46]; followed by 2D image segmentation [6, 64]. However as demonstrated in Tab. 2, our unified model significantly outperforms all such two-stage baselines. Moreover the rendered segmentation images from our model are temporally consistent and works for dynamic scenes. We also perform a ablation study of the rendered segmentation images on dynamic scenes from KITTI. Quantitative and qualitative results are shown in Tab. 4 and Fig. 8 respectively. Our model significantly out performs (+9.2 mIoU) non object-aware models like SemanticNeRF [66], since they cannot model dynamic objects. Our model also improves upon single image state-of-the-art segmentation models [6] by fusing information from multiple views.

2D Depth Estimation: We also demonstrate rendered depth images from our model, obtained by over compositing point depths along rays with opacity values as described in Eq. (2). Rendered depth images are shown in the second columns of Figs. 6 and 7, along with other outputs of the

Table 2. Results on novel view color and semantic synthesis tasks on KITTI-360 [30] dataset. Rendered semantic segmentation and color images from our model is the best performing method for both the tasks in KITTI-360 leaderboard.

<table>
<thead>
<tr>
<th>Method</th>
<th>Semantics mIoU</th>
<th>Appearance PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeRF [33] + PSPNet [64]</td>
<td>55.01</td>
<td>21.18</td>
</tr>
<tr>
<td>FVS [66] + PSPNet [64]</td>
<td>67.08</td>
<td>20.00</td>
</tr>
<tr>
<td>Mip-NeRF [1] + PSPNet [64]</td>
<td>51.15</td>
<td>21.54</td>
</tr>
<tr>
<td>Ours</td>
<td>74.28</td>
<td>21.91</td>
</tr>
</tbody>
</table>

Table 3. Comparison of image reconstruction quality in dynamic KITTI scenes following the the experiment setup of NSG [40].

<table>
<thead>
<tr>
<th>Method</th>
<th>mIoU</th>
<th>PQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Deelab [6] on ground-truth RGB</td>
<td>49.9</td>
<td>43.2</td>
</tr>
<tr>
<td>2D Deelab [6] on NeRF rendered RGB</td>
<td>32.1</td>
<td>24.9</td>
</tr>
<tr>
<td>Ours without thing MLPs (≈SemanticNeRF)</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>56.5</td>
<td>45.9</td>
</tr>
</tbody>
</table>

Figure 8. Comparison of semantic segmentation output from Panoptic-DeepLab [6] on ground-truth RGB image, SemanticNeRF [66], and the semantic segmentation rendered from our model from the same view. Segmentation produced by our model is significantly better as highlighted by the red boxes in the figure.
Figure 9. Scene decomposition comparison. Top row: reference views. Middle and Bottom: renderings of objects (without background stuff) of NSG [40] and PNF (ours) model respectively. Note that the traffic sign-posts in front of the cars are entangled with the rendered cars in NSG, but not in our results. Also the windows of the bus are correctly reconstructed as translucent by our model.

Figure 10. Scene editing. We manipulate input ground truth images from KITTI Virtual [13] (top) by cloning all cars to be the same (lower left) or changing their orientations (lower right).

Object Decomposition: Fig. 9 shows visualizations of how images from a dynamic KITTI scene are decomposed into MLPs representing different object instances. These images are rendered without the (stuff) background. Compared to NSG [40], our method does a better job of disentangling objects from the (stuff) background. In particular, note that the occluding traffic sign-posts in front of the car are entangled with the rendered cars in NSG, but not in our results. Better object decomposition from our model is also important for the scene editing task discussed below.

Scene Editing: Since our model separates objects from the background and builds a full 3D radiance field for each object, it is possible to edit images using the model by removing objects, adding new objects, and transforming object bounding boxes and poses. Fig. 10 shows few scene editing examples on Virtual KITTI dataset. The top row shows original images, and the bottom row shows edits. In bottom-left, we demonstrate cloning of cars by replicating the weights of all object MLPs to a same car. In bottom right of the figure we independently rotate each vehicle object.

5. Limitations

Like most other NeRF-style methods, our model is compute-intensive and hence currently only suited for offline applications. However, we expect advances in neural rendering [34, 55] will alleviate some of these speed issues in near future. It also does not incorporate more complex light transport effects, such as shadowing, under object motion. Our framework optimizes and corrects bounding box poses from noisy 3D object detection and tracking, but has not been designed to handle other errors such as missing and duplicate detections and incorrect class predictions. Finally, our framework does not handle deformable objects and is restricted to scenes with rigid moving objects.

6. Conclusion

This paper presents Panoptic Neural Fields (PNF), an object-aware neural scene representation that decomposes a scene into a set of MLPs associated with object instances (things) and the background (stuff). Our model learns a 4D panoptic radiance representation of dynamic scenes from images alone. This representation can be queried to obtain the color, density, instance, and category label of any 3D point over time. Several tasks like scene editing, view synthesis, panoptic segmentation are derived by simply rendering the representation from the desired views. Results of experiments on several KITTI scenes demonstrate state-of-the-art performance for novel view synthesis and panoptic segmentation for challenging outdoor scenes with multiple dynamic objects.

[57] Hai Wu, Wenkai Han, Chenglu Wen, Xin Li, and Cheng Wang. 3D multi-object tracking in point clouds based on prediction confidence-guided data association. IEEE Transactions on Intelligent Transportation Systems, pages 1–10, 2021. 4

[66] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-Place Scene Labelling and Understanding with Implicit Scene Representation. In ICCV, 2021. 2, 3, 7