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Abstract

The advances in monocular 3D human pose estimation
are dominated by supervised techniques that require large-
scale 2D/3D pose annotations. Such methods often behave
erratically in the absence of any provision to discard un-
familiar out-of-distribution data. To this end, we cast the
3D human pose learning as an unsupervised domain adap-
tation problem. We introduce MRP-Net1 that constitutes
a common deep network backbone with two output heads
subscribing to two diverse configurations; a) model-free
joint localization and b) model-based parametric regres-
sion. Such a design allows us to derive suitable measures to
quantify prediction uncertainty at both pose and joint level
granularity. While supervising only on labeled synthetic
samples, the adaptation process aims to minimize the un-
certainty for the unlabeled target images while maximizing
the same for an extreme out-of-distribution dataset (back-
grounds). Alongside synthetic-to-real 3D pose adaptation,
the joint-uncertainties allow expanding the adaptation to
work on in-the-wild images even in the presence of occlu-
sion and truncation scenarios. We present a comprehensive
evaluation of the proposed approach and demonstrate state-
of-the-art performance on benchmark datasets.

1. Introduction
3D human pose estimation forms a core component of

several human-centric technologies such as augmented real-
ity [24], gesture recognition [6], etc. Most of the 3D human
pose estimation approaches heavily rely on fully supervised
training objectives [15, 59, 80], demanding access to large-
scale datasets with paired 3D pose annotation. However,
the inconvenience of 3D pose acquisition stands as a signif-
icant bottleneck. Unlike a 2D pose, it is difficult to manu-
ally annotate an anthropomorphically constrained 3D pose
for an in-the-wild RGB image. Thus, most of the paired 3D
pose datasets are collected in lab environments via body-
worn sensors or multi-camera studio setups [28,78] that are

*equal contribution.
1Project page: https://sites.google.com/view/mrp-net
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Figure 1. The proposed unsupervised adaptation framework uti-
lizes a multi-representation consistency based uncertainty estima-
tion for simultaneous OOD detection and adaptation.

difficult to install outdoors. This often limits the dataset di-
versity in terms of the variety in poses, appearances (back-
ground and lighting conditions), and outfits.

Some works [69, 71] propose weakly supervised tech-
niques to bypass the requirement of 3D pose annotations.
Several of these works leverage available paired 2D pose
datasets or off-the-shelf image-to-2D pose estimation net-
works [34, 63, 83]. To address the inherent 2D-to-3D ambi-
guity, some works either rely on multi-view image pairs [11,
32,38] or utilize unpaired 3D pose samples [10,88]. Though
such methods perform well when evaluated on the same
dataset, they lack cross-dataset generalization.

Consider a scenario where we want to deploy a 3D hu-
man pose estimation system in a new application environ-
ment (i.e. target domain). From the vendor’s perspective, a
general approach would be to improve the system’s general-
ization via supervised training on a wide variety of labeled
source domains [48]. However, target-specific training usu-
ally achieves the best performance beyond the generic sys-
tem. Though it is not convenient to collect annotations for
every novel deployment scenario, an effective unsupervised
adaptation framework stands as the most practical way for-
ward. Unsupervised adaptation [19, 37, 84] seeks a learn-
ing technique that can minimize the domain discrepancy be-
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Table 1. Comparison of positive (in green) and negative (in red)
attributes of ours against prior 3D human pose estimation methods.

Methods
Real Sup. Synthetic

3D pose
Sup.

Generalization
capabilityMulti

view
2D

pose
3D

pose Occlusion Uncertainty

Zhou et al. [102] ✗ ✓ ✗ ✗ ✗ ✓
Rhodin et al. [70] ✓ ✗ ✗ ✗ ✗ ✗
Iqbal et al. [29] ✓ ✓ ✗ ✗ ✗ ✗
Doersch et al. [17] ✗ ✗ ✗ ✓ ✗ ✗
LCR-Net++ [74] ✗ ✓ ✓ ✗ ✓ ✗
PoseNet3D [81] ✗ ✓ ✗ ✗ ✗ ✗
Ours ✗ ✗ ✗ ✓ ✓ ✓

tween a labeled source and an unlabeled target. Thus, the
vendor has to collect unlabeled RGB inputs from the new
environment to enable the adaptation process. Let us con-
sider a different scenario where the target environment is
identical to one of the source domains implying no domain-
shift. Here, the vendor can choose to directly deploy the
generic system without adaptation training. However, the
system must have a provision to detect whether it is required
to run the adaptation process. In other words, it should
have the ability to discern out-of-distribution (OOD) scenar-
ios [26,47,51]. Such an ability is more crucial while deploy-
ing in a continually changing environment [89], e.g. a model
adapted for sunny weather conditions would fail while en-
countering rainy weather, thus requiring re-adaptation.

We propose a novel domain adaptation (DA) frame-
work, MRP-Net (Fig. 1), equipped with uncertainty esti-
mation [35] for the monocular 3D human pose estimation
task. To this end, we use a multi-representation pose net-
work with a common backbone followed by two pose esti-
mation heads subscribing to two diverse output configura-
tions; a) Heat-map based joint localization and b) Model-
based parametric regression. This not only encourages
ensemble-diversity required for uncertainty estimation [18]
but also allows us to encompass the merits of both schools
of thought [58, 80]. The former configuration advocates
maintaining the spatial structure via a fully-convolutional
design [56, 61, 79] while lacking provisions to inculcate
structural articulation and bone-length priors. The latter ad-
vocates regressing a parametric form of the pose as a whole
(via fully-connected layers) [30, 33, 49, 82] while allowing
model-based structural prior infusion [39, 67]. We use the
3D graphics-based synthetic SURREAL dataset [86] as the
labeled source domain to supervise our backbone network.

In addition, we derive useful measures to quantify the
prediction uncertainty at two granularity levels; viz a) pose-
uncertainty, b) joint-uncertainty. During training, we uti-
lize both a labeled source and a dataset of backgrounds
(BG) to elicit the desired behavior of the uncertainties.
Here, the backgrounds approximate an extreme out-of-
distribution scenario. Upon encountering the unlabeled tar-
get, the adaptation process seeks to reduce the target uncer-
tainties alongside a progressive self-training on a set of re-

liable pseudo-labels. Alongside the adaptation for datasets
with full-body visibility, the joint-uncertainty lays a suitable
ground to expand our adaptation to work on in-the-wild tar-
get domain (unlabeled) with partial body visibility (i.e. un-
der external occlusion or truncated frame scenarios). We
present an extensive evaluation of the proposed framework
under a variety of source-to-target settings. In summary:

• We propose a novel domain adaptation framework,
MRP-Net, that uses a multi-representation pose net-
work. Here, pose-uncertainty is quantified as the dis-
agreement between pose predictions through the two
output heads subscribing towards two diverse design
configurations (model-free versus model-based).

• We propose to utilize negative samples (backgrounds
and simulated synthetic joint-level occlusions) to im-
prove the effectiveness of the proposed pose and joint
uncertainties. The presence of negatives also helps
to retain the uncertainty estimation ability even while
adapting to a novel target scenario.

• Our synthetic (SURREAL) to in-studio adapta-
tion outperforms the comparable prior-arts on Hu-
man3.6M [28]. Our in-studio (Human3.6M) to in-the-
wild adaptation achieves state-of-the-art performance
across four datasets. We show uncertainty-aware 3D
pose estimation results for unsupervised adaptation to
in-the-wild samples with partial body visibility.

2. Related Works
Table 1 shows a comparison of our approach against re-

lated prior approaches. Here, Sup. stands for supervision.
Domain Adaptation. Cao et al. [9] propose to apply dis-
criminator based discrepancy minimization technique for
the animal pose estimation task. To address the synthetic-
to-real domain gap for 3D human pose estimation, Doer-
sch et al. [17] propose to use optical-flow and 2D key-
points as the input as these representations are least affected
by domain shift unlike RGB images (texture and lighting
variations). Similarly, Zhang et al. [97] propose to lever-
age multi-modal input, such as depth and body segmen-
tation masks. Mu et al. [60] leverage several consistency
losses to effectively adapt from source to target. Our pro-
posed framework does not access any such auxiliary input
modality. Recently, some works [77, 96] propose online
test-time adaptation of 3D human pose estimation from in-
studio source to in-the-wild target.
Pose estimation in presence of occlusion. In literature, we
find some methods that address human pose estimation in
presence of partial occlusion. Several works design tech-
niques to estimate location of the occluded keypoint condi-
tioned on the unoccluded ones while accessing additional
spatio-temporal [13, 14, 16, 68, 73] or scene related con-
text [41,94,95]. Mehta et al. [55] propose to use occlusion-
robust pose-maps to address partial occlusion scenarios.

20449



Monocular 3D human pose estimation. In literature, we
find two broad categories viz. a) methods that directly infer
the 3D pose representation [1, 4, 75] and b) methods using
model-based parametric representation [3, 5, 7, 40, 64]. The
former directly maps the input image to the 3D pose while
the latter maps images to latent parameters of a predefined
parametric human model. The latter setup provides a suit-
able ground to impose the kinematic pose priors via adver-
sarial training [36, 42]. The former setup is further catego-
rized into one-stage [62, 65, 66, 80, 91, 100] and two-stage
methods [27, 53, 59, 99]. One-stages approaches directly
map images to the 3D poses. Whereas, two-stage methods
first map images to an 2D pose representation followed by
another mapping to perform the 2D-to-3D lifting.
Pose estimation via multi-head architecture. PoseNet3D
[81] employs a student-teacher multi-head framework.
However, the primary task is 2D-to-3D lifting where they
rely on 2D pose predictions obtained from fully supervised
image-to-2D pose model [61]. Unlike PoseNet3D, we do
not leverage in-the-wild 2D pose annotations or temporal
consistency. Further, prior arts [23, 72] also employ similar
multi-head architecture to leverage auxiliary supervision or
to improve predictions through consistency losses. To the
best of our knowledge, none of the prior-arts utilize such
architecture for OOD or self-adaptation to unlabeled target.

3. Approach
We aim to prepare a pose estimation network that can

discern OOD samples by delivering a high prediction uncer-
tainty for such inputs. Simultaneously, the network should
not compromise on pose estimation performance for in-
domain inputs. Sec. 3.1 first discusses the pros and cons of
the two widely used design configurations specific to output
representation of human pose estimation networks. We de-
scribe the key design components of the proposed MRP-Net
architecture, following which we propose intuitive ways to
quantify the pose and joint uncertainties. Sec. 3.2 illustrates
the training procedure to progressively strengthen and lever-
age the pose-uncertainty for the unsupervised DA setting.
In Sec 3.3, we leverage the joint-uncertainties as a means
to expand the adaptation to a broader scope, i.e. to in-the-
wild targets in the presence of occlusion and truncations.

3.1. Pose estimation architecture

In literature, pose estimation architectures employ one of
the following two design configurations.
a) Localization-based representation. Most of the pop-
ular 2D pose estimation approaches employ fully convo-
lutional architectures (such as hourglass networks [61]),
where the final pose is realized via J heatmaps, one for each
joint [56]. Here, the heatmaps are treated as spatial proba-
bility distributions (PDFs) with a probability peak near the
spatial joint location. This can also be viewed as a localiza-

tion based model-free design as it refrains from utilizing the
joint-connectivity and the bone-length knowledge.
b) Regression-based representation. Here, networks aim
to directly regress joint coordinates or some rich paramet-
ric representations (latent) of the final pose [30, 82]. Net-
works employ fully-connected layers after the back-bone
CNN, thereby breaking away from the spatial structure to
learn a highly non-linear mapping, unlike the localization-
based design. One can easily inculcate joint-connectivity or
bone-length priors via model-based design with integrated
forward kinematics [44, 67, 101]. However, such model-
based representation does not allow a provision to extract
joint-level uncertainty as it sees the pose as a whole.

Normally trained systems often behave erratically in the
absence of any provision to discard out-of-distribution in-
puts. In literature, ensemble-based systems [45] have been
used to derive useful uncertainty measures. Several ap-
proaches resort to random initialization or dataset boot-
strapping to induce ensemble-diversity which is crucial to
realize a robust uncertainty quantification metric.

3.1.1 MRP-Net architecture

Keeping in mind the computational overhead of full net-
work ensembles, we decide to develop multi-head ensem-
bles with a common CNN backbone. As shown in Fig. 2,
the multi-head ensemble consists of a common encoder
backbone E which is followed by two ensemble heads that
are denoted as BL and BR. Unlike the random initialization
strategy, we propose to maintain ensemble diversity by fol-
lowing the above discussed pose modeling configurations.
a) Joint-localization at BL output. The localization
branch BL is a convolutional decoder which outputs
heatmap PDFs, h̃ : {h̃(j)}Jj=1 (via spatial-softmax). These
heatmaps are converted to 2D joint coordinates via a soft-
argmax operation, q̃(j) =

∑
v(v)h

(j)(v). Here, v : [vx, vy]
denotes the spatial grid index. We also extract joint-
confidence, w̃ as w̃(j) = maxv h

(j)(v).
b) Kinematic-parameterization at BR output. On the
other hand, the regression branch BR consists of several
fully-connected layers to regress a 3D pose parameteri-
zation, p̂l and camera-parameters, ĉ. We design a sim-
ple kinematic model based on the knowledge of hierarchi-
cal limb connectivity and relative bone-length ratios. We
aim to disentangle the rigid camera variations (in camera
space) from the non-rigid limb articulations (in canonical
space). Here, the non-rigid articulations are modeled at the
view-independent canonical space. Note that, in canonical
space, the pelvis joint exactly aligns with the origin while
the skeleton faces towards the positive X-axis, thus mak-
ing it a view-independent pose representation, p̂c ∈ RJ×3.
In our convention, the skeleton-face is obtained as the
cross-product direction of two vectors; i.e., left-hip to neck
and left-hip to right-hip. However, directly regressing the
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Figure 2. An overview of the proposed framework. A. Design configuration for output representations of MRP-Net architecture. B. Details
of the Forward-kinematics transformation. C. Applying rotation and camera transformations. D. An illustration of the datasets and loss
terms for the proposed pose-level and joint-level adaptation. E. The occlusion simulation to obtain in-view and out-view joint-ids.

canonical pose coordinates p̂c does not ensure the 3D bone-
length constraints. Thus, we obtain the canonical pose via a
forward-kinematic transformation where the pose-network
regresses local limb vectors of unit magnitudes, p̂l ∈ RJ×3.
For each joint j, the limb-vector is defined at a prede-
fined convention of parent-relative joint space. Here, the
forward-kinematic transformation TFK builds the canoni-
cal pose by recursively traversing over joints in the kine-
matic tree; while applying pre-fixed bone-length magni-
tudes along the transformed limb-vector directions (see Fig.
2B). Alongside the local limb-vectors, the pose-network re-
gresses the Euler-rotations alongside the scale and spatial
translation parameters (ĉ: 3 angles, 1 scale, and 2 transla-
tion parameters). Following this, scaled orthographic pro-
jection Tc outputs the projected image-space joint coordi-
nates q̂ ∈ RJ×2. This also outputs the camera-space 3D
pose p̂ ∈ RJ×3 as an intermediate representation.
Next, we quantify uncertainty as follows:
a) Quantifying pose-level uncertainty. In literature, en-
semble disagreement provides a useful quantitative measure
to evaluate the prediction uncertainty [18]. For MRP-Net,
we propose to rely on the diversity in design configuration
between the two representations obtained via BL and BR.
Thus, we define the pose-uncertainty as follows:

U(I) = |q̃ − q̂|; q̃ = BL◦E(I), q̂ = T ◦BR ◦ E(I) (1)

Here, ◦ denotes functional composition and T = TFK ◦ Tc.
b) Quantifying joint-level uncertainty. Among the two
representations, joint-level uncertainty can be extracted
from localization based spatial map distributions. For each
joint prediction, the joint uncertainty associated with a joint
j, is realized as the self-entropy of spatial distributions, i.e.

H(I, j) = −
∑
v

h̃(j)(v) log h̃(j)(v) (2)

3.2. Pose-level adaptation framework

In unsupervised DA the primary goal is to transfer the
task knowledge from a labeled source dataset Ds (synthetic
domain) to an unlabeled target dataset Dt (real domain).

3.2.1 Preparing pose-uncertainty-aware MRP-Net

Let, Lh(.) and Lp(.) be the mean squared loss for the
heatmap and the 3D pose respectively. The synthetic su-
pervision loss is expressed as;

L(s)
Sup (I ∈ Ds) = Lh(h̃, hgt) + λ1Lp(p̂, pgt) + λ2U (s) (3)

Here, hgt and pgt denote the respective ground-truths (GT)
with λ1 and λ2 being the balancing hyperparameters. The
intended behaviour of pose-uncertainty is that it would elicit
a high value for U (s) for unfamiliar inputs while being low
for familiar in-domain samples, i.e. for I ∈ Ds. However,
training of MRP-Net solely on samples from Ds outputs
consistently low pose-uncertainty for both in-domain and
out-of-domain samples during validation. One has to ex-
plicitly update the network parameters to obtain higher un-
certainty for the unfamiliar inputs. In view of the human
pose estimation task, we resort to a dataset of background
images Db (i.e. images without any person in frame) to ap-
proximate an extreme out-of-distribution scenario.

In summary, the MRP-Net is trained to minimize L(s)
Sup

while simultaneously maximizing the pose-uncertainty for
backgrounds i.e. U(b) = U(I ∈ Db).

3.2.2 Adaptation via uncertainty minimization

Next, the uncertainty-aware network is exposed to the un-
labeled target samples, It ∈ Dt. Analyzing the histogram
from Fig. 1 of the pose-uncertainties for samples from Ds,
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Db, and Dt shows that the uncertainties for Dt spans a wide-
range of values with the same for Ds and Db as peaky dis-
tributions at opposite extremes. One can relate the uncer-
tainty gap between the samples from Db and Dt as result of
the distinction between data-uncertainty (or aleatoric un-
certainty) and knowledge-uncertainty (or epistemic uncer-
tainty), respectively. Here, data-uncertainty refers to the ir-
reducible uncertainty in prediction as a result of noisy input,
whereas the knowledge-uncertainty refers to the reducible
uncertainty elicited as an outcome of the discrepancy in in-
put distributions (i.e. the synthetic versus real domains).
a) Adaptation. Motivated by the above discussion, we seek
to minimize the pose-uncertainty for the target samples, i.e.
U(t) = U(I ∈ Dt) alongside minimizing L(s)

Sup , while si-
multaneously maximizing U(b) = U(I ∈ Db).
b) Self-training on target pseudo-labels. The litera-
ture [46, 103] suggests that target supervision on a reliable
pseudo-label subset helps to improve the adaptation perfor-
mance. In classification tasks, the class predictions of the
most confident targets are collected as a reliable pseudo-
label subset [76]. In the proposed scenario, the reliability
of pseudo-label selection based on the pose-uncertainty is
highly questionable, as it might be an outcome of the en-
forced uncertainty minimization loss instead of a genuine
learning induced behaviour. Thus, in order to move away
from such dependency, we utilize an equivariance consis-
tency based pseudo-label selection criteria. This is real-
ized by applying the most diverse spatial transformation i.e.
image-flip. Essentially, the 2D pose predictions of a given
image, It and the corresponding flipped image, I ′t = FI(It)
are compared after a left-right joint-id swapping operation
Fq . Thus, for each It we obtain the following predictions
q̂t, q̃t,Fq(q̂

′
t),Fq(q̃

′
t). Finally, the pseudo-label subset Dpl

t

is realized by selecting samples that have an equivariance-
consistency less than a preset threshold αth

p i.e.,

Dpl
t = {It : (|q̂t −Fq(q̃

′
t)|+ |q̃t −Fq(q̂

′
t)|) < αth

p } (4)

Next, we minimize the target pseudo-label supervision loss;

L(t)
pSup(I ∈ Dpl

t ) =

J∑
j=1

w̃(j)(L(j)
h (h̃, hpl

gt) + λL(j)
p (p̂, ppl

gt)) (5)

Here, the supervised joint-wise loss is weighted by the
normalized joint-confidences to avoid strong supervision on
confusing joint predictions. ppl

gt and hpl
gt denote the estimated

pseudo-label GT (i.e. prediction average over the equivari-
ance instances). Here, Dpl

t alongside the pseudo-label GTs
are updated at regular intervals during training.

3.3. Joint-level adaptation framework

Most of the prior 3D pose estimation approaches expect
full-body visibility without external occlusion. However, in

real-world deployment, the camera feed may capture human
images having external object occlusions or truncations. In
such scenarios, an intended behavior of the model would be
to estimate a reasonably well joint localization specifically
for the in-view joints with lower joint-uncertainty values,
and higher joint-uncertainties for the out-view joints.
3.3.1 Preparing joint-uncertainty-aware MRP-Net
Similar to pose-uncertainty, one must simulate joint-level
uncertainties to enable the model to elicit the above dis-
cussed behavior. Note that, training on synthetic full-
body images (i.e. Ds) or the backgrounds (i.e. Db) is not
suitable enough as they do not encourage varying joint-
uncertainties for the same input instance. Thus, we simulate
an occlusion-aware synthetic dataset, DO

s with segregated
set of in-view and out-view image-joint pairs, denoted as
J s

inV and J s
outV respectively (see Fig. 2D). Broadly, we sim-

ulate occlusion of two kinds, viz, a) occlusion by an external
object, and b) truncation of the image frame. We apply the
following synthetic supervision loss.
LOA

Sup(I∈DO
s ) = 1J s

inV
(L(j)

h (h̃, hgt) + λ1L(j)
p (p̂, pgt))− λ2H(s)

J s
outV

(6)
Here, 1 denotes an indicator function. The last-term aims
to maximize the joint-uncertainties only for the out-view
joints. We also maximize joint-uncertainties of all the joints
for the backgrounds Db by maximizing H(b)

∀j .
3.3.2 Adapting to unlabeled target with occlusion
Next, the joint-uncertainty-aware model is exposed to sam-
ples from the unlabeled target dataset containing images of
varied kinds including full-body, truncated, and occluded
samples. We denote this dataset as DO

t against the full-body
target Dt. We follow the adaptation process very similar
to that of the proposed pose-level adaptation with the pose-
uncertainties replaced by the joint-uncertainties.

We follow the similar equivariance-based pseudo-label
selection criteria to pick the suitable (It, j) pairs for creat-
ing the target pseudo-label subset, J t

inV. Here, J t
outV denotes

the set of the (It, j) pairs having joint-uncertainty greater
than a preset threshold αth

h . Rest of the (It, j) pairs can
move either towards J t

inV or J t
outV over the course of adapta-

tion training and are thus left untouched (no loss imposed).

J t
inV = {(It, j) : H(It, j)(|q̃(j)t −F (j)

q (q̂′t)|) < αth
q } (7)

The adaptation training involves minimizing H(t)

J t
inV

while

maximizing H(t)

J t
outV

(joint-uncertainties for J t
inV and J t

outV

respectively), alongside minimizing the joint-supervision
on target pseudo-labels, i.e. LOA

pSup((I, j) ∈ J t
inV)

3.4. Inferring the final 3D pose

In the proposed MRP-Net, 3D pose can only be inferred
through the BR branch (i.e. p̂). However, several recent
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Table 2. Quantitative results on 3DPW and 3DHP. Numbers and layout taken from [98]. ∗ denotes inference stage (or online) optimization.

Adaptation
type Methods H3.6M→3DPW H3.6M→3DHP H3.6M→SURREAL H3.6M→HumanEva

MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

General
Adaptation

DDC [85] 110.4 75.3 115.6 91.5 117.5 80.1 83.8 64.9
DAN [52] 107.5 73.2 109.5 89.2 114.2 78.4 78.5 62.7
DANN [19] 106.3 71.1 107.9 88.0 113.6 77.2 76.3 60.8
Zhang et al. [98] 94.7 63.9 99.3 81.5 103.3 69.1 69.2 53.5
Ours 91.9 62.1 96.2 78.6 99.6 67.2 66.8 51.9

Test-time
Adaptation

ISO [96]∗ - 70.8 - 75.8 - - - -
BOA [77]∗ 92.1 58.8 - 77.4 - - - -
Ours+ISO∗ 89.6 57.5 92.9 76.3 96.4 65.1 65.2 50.1

works [58] advocate for a localization-based representation
even for the 3D pose estimation by introducing another out-
put for joint-wise depth-localization. Based on the pros
and cons of both the modeling configurations, we decide
to leverage the best of both worlds by training a fusion net-
work to realize the final 3D pose prediction p̂f . The fusion
network takes three inputs; a) 3D pose predictions via BR

(i.e. p̂), b) 2D pose prediction via BL (i.e. q̃), and c) the
joint-confidences w̃. The fully-connected fusion network is
trained to minimize a loss that is exactly similar to L(t)

pSup
but on samples from both source and target pseudo-label
set. Please refer to Supplementary for more details.

4. Experiments

We demonstrate effectiveness of MRP-Net (MRPN) by
evaluating it on a variety of cross-dataset settings.

Implementation details. We use ResNet-50 [25] (till Res-
4f), pre-trained on the ImageNet, as the common encoder
E. The localization branch BL comprises of of transposed
convolutional layers which progressively increase the spa-
tial resolution to yield 17 heatmaps of size 56×56. The re-
gression branch BR consists of a series of fully-connected
(FC) layers which later bifurcate into two sub-branches to
yield camera parameters ĉ and local limb vectors p̂l. We
trained the framework on a NVIDIA P-100 GPU (16GB),
with a batch size of eight. We employ separate Adam opti-
mizers [31] for each loss term. See Suppl. for more details.

Datasets. We use the following datasets.
a) SURREAL (S) synthetic dataset [86] is used both as
source and target under different problem settings. Though
the dataset encapsulates a wide range of diversity, synthetic-
trained model suffers from poor generalization on natural
images due to synthetic-to-real domain-shift.
b) Backgrounds. We use background images taken from;
LSUN [92], Google Street View [93], Natural Scenes [21],
and Campus Scenes [8] to form the dataset, Db.
c) Human3.6M (H). For a fair evaluation, we use the stan-
dard, in-studio Human3.6M (H3.6M) dataset [28] as either
source or target domain in different problem settings.
d) Target datasets. 3DPW [87], HumanEva [78], and
MPI-INF-3DHP (3DHP) [54] are used as unlabeled target

Table 3. Quantitative comparison on Human3.6M. Our proposed
method outperforms the prior-arts at various supervision levels. *
denotes using MPII [2] with 2D pose annotations. + denotes using
additional in-the-wild data taken from the Internet. supervision-
type on target (H3.6M) is indicated under the Supervision column.
Semi-sup (S1) denotes 3D pose supervision only on subject S1.

Methods Supervision PA-MPJPE↓ MPJPE↓
Martinez et al. [53] Full-3D 52.5 67.5
Xu et al. [90] Full-3D 36.2 45.6
Chen et al. [12] Full-3D 32.7 47.3
Mitra et al. [57] Semi-sup (S1) 90.8 120.9
Li et al. [50] Semi-sup (S1) 66.5 88.8
Rhodin et al. [70] Semi-sup (S1) 65.1 -
Kocabas et al. [32] Semi-sup (S1) 60.2 -
Iqbal et al. [29]* Semi-sup (S1) 51.4 62.8
Ours(S→H, Semi) Semi-sup (S1) 49.6 59.4
Kundu et al. [43]+ No sup. 99.2 -
Ours(S→H) No sup. 88.9 103.2

datasets to evaluate the unsupervised adaptation.
Occlusion simulation. We perform occlusion simulation
on both source and target. The simulation process works on
the corresponding full-body instances. We paste external
objects (like cars, chair, wardrobe, etc.) to simulate occlu-
sions, whereas truncation is simulated by randomly zoom-
ing into the top or bottom region of the full-body images.
Evaluation metrics. For a fair comparison, we evaluate
our approach on the standard benchmark datasets described
above. The standard mean per joint position error metric
computed before and after Procrustes Alignment [22] are
denoted as MPJPE and PA-MPJPE respectively [28].

4.1. Quantitative analysis

4.1.1. Synthetic to real adaptation. Labeled synthetic
SURREAL (S) is used as the source domain, while the unla-
beled target instances are taken from Human3.6M (H). Ta-
ble 3 shows a comparison of Ours(S→H) on unsupervised
and semi-supervised settings. Here, semi-supervised set-
ting denotes 3D supervision only on subject S1. In spite of
the huge domain shift between SURREAL and Human3.6M
our adaptation strategy yields state-of-the-art performance
among the semi-supervised and unsupervised prior-arts.
4.1.2. In-studio to in-the-wild adaptation. We evalu-
ate the performance of MRPN in Table 2 on four target
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A. Ours(S→H, Semi). Results on H3.6M (in-studio) B. Ours(H→3DHP). Results on 3DHP (in-studio)

C. Ours(H→3DPW). Results on 3DPW (in-the-wild) D. Ours(H→3DPW). Results on internet data (in-the-wild)

E. Ours(JU). Results on occluded-3DPW F. Ours(JU). Results on occluded internet data

Figure 3. Qualitative analysis. 3D poses shown correspond to the original camera view and another azimuthal view (+30◦ or -30◦). For
results in panel E and F the joints with uncertainty greater than a prefix threshold are highlighted with red-blobs. The model fails on rare
poses, complex inter-limb occlusion and heavy background clutter as highlighted by red bases. Refer Suppl. for more results.

domains, i.e., 3DHP, 3DPW, SURREAL, and HumanEva
datasets when using Human3.6M as the source domain. Our
baseline is trained only on the source domain Human3.6M.
A direct transfer on the target domains performs poorly
attributed to the vast domain gap induced due to chang-
ing pose, appearance, and backgrounds between source and
target datasets. Our pose-level adaptation strategy helps
MRPN improve upon the prior-arts even on in-the-wild
3DPW dataset by a significant margin, thereby validating
ours superior generalizability. Ours+ISO is the variant
which uses ISO [96] for test time optimization.
4.1.3. Adaptation to partial body visibility. Table 4 re-
ports a quantitative analysis to highlight the merits of our
design choices against the standard prior-art techniques.
Under Joint-level adaptation, the baseline on row-1 shows
transfer results on the target before adaptation. Row-2 base-
line employs uncertainty maximization on target as well.
Finally, row-3 uses target pseudo labels for self-training.
Ours(JU) outperforms LCR++ [74] even in the absence of
2D/3D supervision on in-the-wild datasets like MPII.
4.1.4. Ablation study. In Table 4, under pose-level adap-
tation, the baseline on row-5 uses MRPN architecture while
employing an adversarial discriminator based discrepancy
minimization on encoder features (DANN). The baseline
on row-6 shows transfer results on the target before adapta-
tion. Row-8 baseline employees self-training unlike in row-
7 where only the target uncertainty is minimized. Our final
model is depicted in row-9 where the pose predictions are
obtained via the fusion-network unlike in row-4.

4.2. Qualitative evaluation and limitations

Fig. 3 and Fig. 5 analyze our pose prediction results
across variations in pose complexity, occlusion/truncation
scenarios and environmental conditions (i.e. in-studio and

Table 4. Ablation study. The column headings indicate usage
of different loss terms during training. Ablations under pose-
level adaptation are evaluated on Human3.6M. * denotes inference
without the fusion network. Ablations under joint-level adaptation
are evaluated on truncated/occluded 3DPW test-split, obtained via
in-house occlusion simulations. Here, MPJPE is computed only
for the true in-view joints. B1 and B2 denotes our baselines under
joint-level and pose-level adaptations respectively.

Joint-level adaptation on 3DPW

No. Method LOA
Sup −H(b)

∀j H(t) LOA
pSup MPJPE↓

1. B1(JU; H→3DPW) ✓ - - 191.2
2. B1(JU; H→3DPW) ✓ ✓ - 130.7
3. Ours(JU; H→3DPW) ✓ ✓ ✓ 98.0
4. LCR-Net++ [74] H3.6M(3D), MPII(2D) 104.9

Pose-level adaptation on Human3.6M

No. Method L(s)
Sup − U (b) U t L(t)

pSup MPJPE↓

5. B2(S→H)*+DANN [20] only L(s)
Sup Standard DA 116.8

6. B2(S→H)* ✓ - - 122.4
7. B2(S→H)* ✓ ✓ - 113.4
8. Ours(S→H)* ✓ ✓ ✓ 106.3
9. Ours(S→H) ✓ ✓ ✓ 103.2

in-the-wild). Fig. 3 presents extensive in-the-wild and par-
tial body visibility scenarios. We also show results on im-
ages randomly taken from online sources. MRP-Net suc-
cessfully estimates reasonable 3D poses for most of the oc-
cluded and truncated cases. However, our model may fail
under certain drastic scenarios such as multi-level body-
part occlusion, high background clutter, and rare athletic
poses. Fig. 5 gives an insight into how MRP-Net adapts to
both unoccluded and partial-body visibility scenarios with
predictions better than LCR++ [74]. MRPN(B1) indicates
the occlusion-aware network before the adaptation train-
ing. Without adaptation on target samples, the model pre-
dicts with high uncertainty. MRPN(PU) and MRPN(JU)
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Figure 4. A. Histogram of samples from different domains (source, target, and background) along the joint uncertainty metric. B. Visual-
izing how the model choose to maximizes uncertainty for background (on right) and and occluded joints (on middle).
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Truncated
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Figure 5. Pose prediction results showing measure of uncertainty
values for pose, in-view, and out-view joints. The barometer
height indicates high uncertainty. The blue, green and orange
barometers indicate the prediction uncertainty for the full-pose,
true-in-view joints and true-out-view joints respectively.

indicate the final networks after the pose-level and joint-
level adaptations. MRPN(PU) is not tuned to work on oc-
cluded/truncated images and thus yields a higher uncer-
tainty for the bottom two images. Whereas, the uncertainty
predictions of MRPN(JU) for the green and orange barom-
eter yield the expected behaviour. The red-blocks under GT
column segregate the true out-view joints. The in-view joint
predictions of MRPN(JU) match with the same under GT.

Societal impacts. We do not foresee a direct negative soci-
etal impact from our framework. However, it may be lever-
aged for human-tracking applications. We urge the readers
to make ethical and responsible use of our work.

4.2.1. Model interpretability. We also perform a thorough
qualitative study to interpret the behaviour of our network
for a wide variety of in-distribution and out-of-distribution
samples. In Fig. 4, we analyze how samples from dif-
ferent domains (such as source, target, and backgrounds)
are distributed along the uncertainty metrics, i.e. the pose-
uncertainty and joint-uncertainty. This gives an insight
into how MRPN caters to OOD samples as well as the un-

certainty associated with partial body visibility. Fig. 4A
shows histogram of the predicted joint-uncertainties for
the true in-view and out-view joints separately for source
(i.e. inV-S and outV-S) and target (i.e. inV-T and
outV-T). BG denotes the histogram of all out-view joints
for backgrounds. The shaded regions in the bottom panel
depicts J t

inV and J t
outV which are segregated using the preset

thresholds αth
q and αth

h respectively (edges of the green-box).
Our adaptation algorithm succeeds to separate inV-T and
outV-T over the course of adaptation training. Next, Fig. 4B
shows a similar analysis for pose-uncertainties. We show
five different examples sampled from different regions of
the histogram-bins. In the right-panel, we show that to max-
imize pose-uncertainty for backgrounds (OOD samples),
MRPN estimates the 2D landmarks and 3D pose points sep-
arated towards opposite diagonal corners. Here, the 2D
landmarks are collapsed to the top-left corner whereas the
root joint (pelvis) of the model-based 3D predictions are
seemed to have collapsed towards the bottom-right corner.
In the bottom-panel, for uncertain target instances, we see
two peaks in the joint heatmap distributions; one at the top-
left corner (OOD-related) and the other near the actual joint
location. During adaptation, the OOD-related peak sup-
presses while the joint-related peak rises to simultaneously
reduce the uncertainty while converging towards the true
pose outcome. Finally, on the left panel, joint-level uncer-
tainty is indicated by the entropy of heatmap distribution.

5. Conclusion

We presented a multi-representation pose network that
embraces the pros and cons of both model-free and model-
based pose representations to realize a disagreement based
pose-uncertainty measure. We develop learning techniques
to make the model behave differently for the in-domain
and out-of-domain scenarios. Later, the same instigated be-
haviour is used to devise effective unsupervised adaptation
objectives. Formalizing prediction uncertainty in the pres-
ence of temporal context remains to be explored in future.
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