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align pose sequences for both hands and bodies, for which examples are shown above on the H20 [29] and PennAction [67] datasets. Our
approach to alignment relies on a context-aware attention model that incorporates spatial and temporal context within and across sequences.
Pose data provides a valuable cue for alignment and downstream tasks, such as phase classification and phase progression, as it is robust to
different camera angles and changes in the background, while being efficient for real-time processing.

Abstract

Temporal alignment of fine-grained human actions in
videos is important for numerous applications in computer
vision, robotics, and mixed reality. State-of-the-art methods
directly learn image-based embedding space by leveraging
powerful deep convolutional neural networks. While being
straightforward, their results are far from satisfactory, the
aligned videos exhibit severe temporal discontinuity without
additional post-processing steps. The recent advancements in
human body and hand pose estimation in the wild promise
new ways of addressing the task of human action alignment
in videos. In this work, based on off-the-shelf human pose
estimators, we propose a novel context-aware self-supervised
learning architecture to align sequences of actions. We name
it CASA. Specifically, CASA employs self-attention and cross-
attention mechanisms to incorporate the spatial and temporal
context of human actions, which can solve the temporal dis-
continuity problem. Moreover, we introduce a self-supervised
learning scheme that is empowered by novel 4D augmentation
techniques for 3D skeleton representations. We systematically
evaluate the key components of our method. Our experiments
on three public datasets demonstrate CASA significantly im-
proves phase progress and Kendall’s Tau scores over the pre-
vious state-of-the-art methods.

1. Introduction

Temporal alignment of human activities in videos aims
to identify sequential per-frame correspondence between two
video instances of the same action as shown in Fig. 1. This
is challenging due to large variation in speed of actions, se-
vere self-occlusion, and diverse backgrounds across differ-
ent videos. Furthermore, an accurate temporal alignment of
human activities requires semantic understanding of human
motion and causal reasoning of the action stages. When it
comes to hand-centric fine-grained activities under first-person
views, the challenges are amplified by the varying viewpoints
and embodied movement of camera wearers. State-of-the-art
methods leverage large-scale datasets and powerful deep con-
volution neural networks to learn image-based representation
to perform temporal video alignment [16,22]. Despite rapid
progress in terms of accuracy and advanced learning schemes,
the results are still far from applicable to real-world applica-
tions.

Recent advancements and growing availability of head-
mounted devices (e.g. Microsoft HoloLens [56]) enable new
ways of communication and collaboration. For instance, the
built-in hand tracking system of HoloLens provides real-time
accurate hand pose estimation of the camera wearer. Such sys-
tems promise a revolution in how hand motion and actions can
be captured, modeled, and analyzed. Consequently, they point
towards a new way to align fine-grained hand-centric actions
in videos based on 3D skeleton motion extracted from off-the-
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Figure 2. Self-supervised learning using 4D augmentation. Given
a sequence and its augmentation in 4D, we optimize our latent space
such that the distances between the features of matching frames (z;
and z§ ) are minimized, while those of non-matching frames (z; and
z;, ) are encouraged to be further apart.

shelf pose estimators.

One appealing application of this setting is to utilize mixed
reality headsets to close the skills gap between experts and
learners. Traditionally, transferring skills from experts to
learners is not easy. Experts often have to stay close to learners
to teach and inspect individuals. Given the videos shared by
experts from their point-of-view and on-device hand pose esti-
mation, an accurate temporal alignment method that provides
dense correspondences between the fine-grained hand actions
performed by the expert and the learners will enable signifi-
cantly more efficient and precise skill transfer guidance.

Inspired by these observations, we propose to align 3D
skeletons extracted from videos for human action alignment
tasks. Instead of using 2D features used in [16, 22, 41],
we propose CASA, Context-Aware Sequence Alignment, a
novel context-aware self-supervised learning framework for
3D skeletons using 4D augmentation. As shown in Fig. 2,
our framework reasons about the context through the attention
module and performs self-supervised learning with our novel
4D augmentation strategies. From the ground-truth matching
between the augmented and original sequences, we can learn
powerful representation to perform downstream tasks.

Furthermore, our 3D skeleton-based alignment method not
only works for hand action analysis but also can be applied to
full body-related actions where we extract 3D human bodies
from videos using off-the-shelf body estimators. Although,
in such cases the reconstructed 3D human bodies can be
less accurate than the hand tracking result from mixed real-
ity devices, our method still generalizes well due to the novel
context-aware network architecture and the self-supervised
learning framework enabled by the powerful 4D augmentation
schemes.

We perform extensive experiments to validate the effective-
ness and applicability of CASA on three public datasets: Penn
Action [67], IKEA ASM [2], and H20 [29]. CASA achieves

the best performance in most phase classification tasks of
three datasets. Furthermore, in terms of phase progress and
Kendall’s tau, our method significantly outperforms the previ-
ous state-of-the-art methods [16,22]. The results demonstrate
the importance of knowing the context of action and the appli-
cability of utilizing 3D poses for fine-grained video alignment
tasks.

Contributions. In summary, our contributions are: (1)
we propose a novel attention-based and context-aware dense
alignment framework for fine-grained human action analysis;
(2) we introduce novel 4D augmentation strategies for 3D
skeletons in self-supervised learning that consider both tem-
poral and spatial augmentation; (3) to the best of our knowl-
edge, it is the first work to perform 3D skeleton-based fine-
grained video alignment using self-supervised learning. We
prove the utility of our 3D skeleton-based temporal alignment
methods by largely outperforming the state-of-the-art in three
public datasets.

2. Related Work

Self-Supervised Learning. Several image-based self-
supervised learning methods have been proposed recently that
rely on different hand-crafted pretext tasks. For example, re-
cent work used image colorization [30], solving jigsaw puz-
zles [38,62], rotation prediction [ 9] or image inpainting [26]
as pretext tasks to train self-supervised models. These hand-
crafted tasks rely on particular adhoc heuristics, which lim-
its their generalization power. Alternatively, contrastive learn-
ing approaches learn representations by contrasting positive
pairs against negative pairs [15, 23, 35, 55, 64, 71]. Notably,
Chen et al. [7] demonstrated that composition of multiple data
augmentation operations is crucial in defining the contrastive
prediction tasks that yield effective representations for sin-
gle image data. Inspired by the success of self-supervised
methods in image domain, recently several self-supervised
learning methods were proposed for videos, either using pre-
text tasks, such as predicting future frames [I, 12, 48, 59],
clip order [18, 31, 36, 65], pace [3, 8, 61, 66] or arrow of
time [40, 63], or focusing on instance-based contrastive learn-
ing techniques [11,17,25,42].

Compared to image and video-based self-supervised learn-
ing, skeleton-based self-supervised learning started to emerge
as an active field only recently. Proxy tasks such as skeleton
inpainting [68] and motion prediction [50] have been proposed
by recent work. However, such methods do not explicitly ac-
count for the spatio-temporal dependencies of skeletal repre-
sentations. Skeletal self-supervised learning techniques that
rely on neighborhood consistency [47], fusion of multiple pre-
text tasks [32] and motion continuity [51] have also shown
the promise of self-supervised techniques for learning skele-
tal sequence representations. Unlike previous approaches, we
propose a self-supervised learning framework with a compo-
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sition of 4D data augmentation strategies. We consider both
temporal and spatial transformations of the data, globally for
the skeletal motion, and locally for individual joints.

Transformer. After the success of the Transformer archi-
tecture [58] in Natural Language Processing (NLP), there has
been a surge in interest in its application for computer vision.
Several Transformer-based architectures have been proposed
for image classification [14], object detection [5], and seman-
tic segmentation [60]. More closely related to our work, Sun et
al. and Sarlin et al. [45,53] proposed Transformers for the task
of image alignment. While Transformers have been actively
used within supervised learning contexts, recent work also has
shown the potential of self-supervised pretraining of a standard
Vision Transformer model for several downstream tasks [6].
Correspondingly, in this work, we propose a self-supervised
Transformer architecture for fine-grained alignment of videos.

Sequence Alignment. Dynamic Time Warping (DTW)
has become the de facto standard for unsupervised sequence
matching due to its simplicity and generality for different types
of modalities [4]. Cuturi and Blondel [10] proposed a differ-
entiable approximation of DTW which allows for pairing it
with neural networks and training sequence models. Canon-
ical Time Warping [70] and Generalized Time Warping [69]
generalized DTW and enabled alignment of signals with dif-
ferent dimensionality. As an alternative to DTW, Su et al. [49],
relied on optimal transport to match two sequences frame-by-
frame, while regularizing the loss such that temporal informa-
tion is preserved in the matching process. While focusing on
the alignment problem, these approaches do not aim at feature
learning for sequence matching unlike our work.

Closely related to the sequence alignment problem, metrics
for assessing human motion similarity have been actively ex-
plored by previous studies [4,9, 13,33,34,37,52,54,54]. The
assessment of the similarity between two sequences of poses
or motion is a non-trivial problem since human motion varies
across sequences due to a number of different factors such
as speed, anthropometric variations, and subject-specific pose
patterns. Conventional approaches for measuring similarity of
human motion sequences are based on estimating the L2 dis-
placement error [ 13, 34] or DTW [4]. However, these metrics
disregard contextual information in the time dimension, which
limits their application for human motion analysis. To over-
come the limitations of standard metrics, deep metric learning
methods have been proposed by [9,37,52,54].

In the context of self-supervised learning-based video
alignment [16, 20, 22, 46], Time Contrastive Networks
(TCN) [46] used synchronized frames with contrastive learn-
ing to align frames from different points of view. Tempo-
ral Cycle Consistency (TCC) method [16] learned an em-
bedding space that maximizes one-to-one mapping of cycle-
consistent points across pairs of video sequences. Learning
by Aligning Videos (LAV) [22] adopted soft-DTW [10] as a
self-supervised temporal alignment loss. Unlike our work that

aims at self-supervised skeletal sequence learning, these works
all focused on matching images across videos.

3. Method

Fig. 3 shows an overview of our proposed pipeline. We
propose a self-supervised skeletal representation learning ap-
proach that uses skeletal alignment as a pretext task. Our
model relies on an attention-based context-aware framework
for sequence alignment. Our self-supervised loss, inspired by
the success of image-based contrastive learning [7], relies on
minimizing the difference between a skeletal sequence and its
augmentation in 4D, that is, in 3D space and time. Our frame-
work learns a representative latent space, which is effective in
downstream tasks and can be used to align two skeletal se-
quences via nearest-neighbor search.

Notations. Each 3D skeleton of a sequence is defined
as s; € R7*3 with J skeleton joints in x,v,z locations.
Each k-th (1 < k < L) sequence of skeletons is shown
with S, = {s1,$2,..,sp} and its augmentation is shown
with S}, = {s},s),..,sv}. The embedding of a skeletal
sequence is computed as (Uy,U}) = ®(Sk, S;; ), where
® is our framework’s encoder network with the parameters,
2. The embedding of the original sequence, Uy, is denoted
with {uq,us,...upr} and that of the augmented sequence,
U], is denoted with {uf,u),...uly}. Our latent space in
which we optimize an alignment loss is denoted with (2} =
{#z1,22,...2m} = P(Uy) and Z, = {21, 23, ...z } = P(U}.)),
where P(-) is a projection head [7]. Note that we use upper-
case notations for sequence-level processing and lower-case
notations for per-frame processing.

3.1. Preliminaries

3D human body representation. = We use SMPL [39] on
the Penn Action dataset and Keypoint RCNN [24] body joints
representation, Sycpn, € R'7%3 on the IKEA dataset. Pose
parameters, 0,,,, € R72, store angles for 22 skeleton joints
along with a global rotation and translation vector. We remap
the 22 SMPL skeleton joints to the skeleton representation
of FrankMocap [44], Ssmpr € R?5*3, to be able to use the
FrankMocap estimator. We recover 3D body skeleton, sy,
based on SM PL(Bsmpl, Osmpt ), where SM PL(-) is the func-
tion that calculates 3D skeleton, given shape, 85,1, and pose,
Osmpl, parameters.

3D hand representation. = We use MANO [43] 3D hand
skeleton representation S,,qno € R*2%3 in the H20 dataset.
MANO contains human hand shape parameters, 3,,4n0 € R?°,
and pose parameters, 0,400 € R34*3, storing angles for 30
skeleton joints, 2 global rotation and 2 translation vectors
for both hands. We recover 3d hand skeleton s,,.,, from
MANO(Bmano, Omano), where M ANO(:) is a function that
calculates 3D hand skeletons given shape (3,,4n0 ) and pose
parameters (0,,4n0)-
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Figure 3. Overview of our pipeline. The proposed framework t
augmented version S},. Both sequences are encoded by temporal posi

akes as input a skeleton sequence Sj along with its spatio-temporally
tional encodings. Self- and cross-attentional layers learn contextual infor-

mation within and across sequences with the help of temporal positional encoding. We employ a projection head to improve our representation
quality [7] . We use a contrastive regression loss that matches a pose sequence with its 4D augmented version. For the downstream tasks and

alignment, we use the embeddings before the projection head stage.

We will call, s5mp1, Srenn» and Spmano as s and omit 5 from
the following equations for simplicity. Also, we will use the
transform function 7'(-) instead of M ANO(-) and SM PL(-).
Accordingly, we will transform each pose parameter to 3D
skeletons using S, = T'(Oy,).

3.2. Model architecture

Our model consists of multi-layer perceptrons (MLP), po-
sitional encodings, an attention module, and projection heads.
In the following, we will explain each part of the model.

MLP. We use two nonlinear layers of a fully connected net-
work with the same input dimension to extract features from
our 3D joint representation before feeding them input to the
attention module.

Attention module. Transformer [58] has received a lot
of attention due to its impressive performance in the NLP
field, as summarized in Section 2. To leverage the power
of Transformers in temporal understanding, we employ self-
and cross- attention layers, that efficiently capture temporal
context as compared to methods that compute features from
single-images [106,22]. We model self-attention to learn depen-
dencies within the skeletons in the same sequence and cross-
attention to learn the inter-dependencies between the origi-
nal sequences and their 4D augmentations. To reduce the
computational complexity of attention layers, we adopt Lin-
ear Transformer [28] architecture. By contrast to the earlier

Transformer-based works [45, 53], our attention module is in-
tegrated into a self-supervised learning framework that uses
4D augmentations for sequence matching.

Temporal positional encoding. We inject temporal informa-
tion into our framework using positional encodings [58]. Us-
ing positional encodings, our model reasons about temporal lo-
cations of each skeleton frame. Such information is crucial in
understanding temporal dependencies between skeletons. Dif-
ferent from other vision-based tasks [14,53], we only need 1D
positional encodings as the order of joints in the skeleton is
fixed. We choose sinusoidal positional encoding as it is proved
to be effective in machine translation, which can be conceptu-
ally similar to aligning two skeletal sequences from the same
activity.

sin(wy - 1), = 2l

PE; = g
cos(wy -i),i =20+ 1

; ey

where w; = =s55tzr7ay and d is the dimension of the skele-
ton joints, ¢ is an index for the temporal frame location in the
sequence. We choose 5000 for the denominator of w; since the
maximum length of the sequences in our case is bounded by

5000.

Projection head. To improve the quality of our represen-
tation, we employ a projection head as in [7]. As shown
by [7], without the projection head, the learned model is more
likely to overfit to the optimization task. While we optimize
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for the alignment, we aim to have representative features for
downstream tasks that address fine-grained action recognition.
Therefore we use a projection head, p(-), in the form of an
MLP with one hidden layer.

2 = p(u;) = W2a (W), )

where o is a ReLU layer and W' and W? are fully con-

nected layers. We show that the projection head improves our
accuracy in downstream tasks in Section 4.4.

Matching and loss. Given an original sequence and its aug-
mentation in the time dimension, the temporal correspon-
dences between two sequences are already known and pre-
served. Note also that 3D geometric augmentation will not
affect the correspondences between two sequences as the
3D perturbations we use for data augmentation are time-
independent. Our self-supervised learning framework, in-
spired by recent advances in contrastive learning [7,21], learns
representations by maximizing the agreement between posi-
tive pairs, which we take, in our case, as a skeletal sequence
and its 4D augmentation. We formulate the contrastive loss for
positive pairs, (i, j), using the following equation:
exp(—|zi — 2l /Avemp)

e €2p(= l12i = zml| /Aremp)
where Aemp 1S a temperature parameter. However, the
classification-based loss can not reason about how far the pre-
diction for a matched frame is, from the ground-truth align-
ment. Therefore, instead of using Equation 3, we adopt a re-
gression loss [ 16] to penalize nearby frames less by accounting
for the temporal relationships of neighboring frames. The dif-
ference from [16] is that we compute this loss for every frame
to gather contextual information from the whole sequence, in-
stead of using frames only from a local neighborhood. The
probability of a frame, 7, in the original sequence, being a
match to a frame 7, in the augmented sequence, is denoted
with v, ; and computed by

‘C’i,j = *lOg ) (3)

’
o152l ey

ST
where «; ; is i-th value of probability ;. We then predict the

target frame index, j’, by weighing the frame indices with their
corresponding probabilities, as follows:

Yis = 4)

[Atemp |

M

J=> (i) &)
The final loss £ will be the mean squared error between the
predicted frame index j and ground truth frame index jg,
which is already known and preserved after data augmenta-

tion.
N
1 . NIE
L= 3 -3
J

; (6)
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Figure 4. Different types of 3D geometric augmentation. Transla-
tion augmentation tackles the noisy estimates of off-the-shelf pose es-
timators. We observe that different augmentation strategies produce
feasible poses that provide positive matches for the self-supervised
learning framework.

3.3. 4D Augmentation

To be able to create positive pairs of skeletal sequences with
known correspondences, we propose to augment the skele-
tal sequences in 3D space and time. We illustrate our pro-
posed 4D augmentation strategies in Fig. 4. We propose 5
different augmentation schemes: temporal augmentation, joint
angle augmentation, translation augmentation, skeleton flip-
ping, and augmenting the latent space of skeletons based on
VPoser [39]. We perform the augmentation by adding noise to
each skeletal joint translation or angle. To be able to generate
realistic augmentations of skeletons that would reflect different
variations of motion, we propose to add temporally smoothed
noise across the sequence, using a multivariate normal distri-
bution, which has a covariance matrix that contains high cor-
relations along the diagonal such that temporally closer points
are highly correlated. We provide further details about the
distribution we employ for temporally smoothed noise in our
supplemental material. We apply temporally smoothed noise
for augmenting joint angles and the latent space obtained by
VPoser. This strategy overall enables the motion to be contin-
uous and smooth over time. The augmentation function G(-)
is defined as:

S]/g = Gtemp,trans,flip(T(GVPoser,angle(ek))>7 (7)

In what follows, we describe our different augmentation strate-
gies in more detail.

Temporal augmentation. We randomly select N frames in
the original M frames. Through this step, our self-supervised
learning framework learns the different and variable speeds of
action within a sequence.

{81, 85, ..., v} = Gremp({51, 82, -, sm}), (8

Translation augmentation. We employ translation augmen-
tation to deal with noise coming from inaccuracies in 3D pose
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estimation.
Sl/@ = Gtrans(sk) = Sk +N(J)7 (9)

where NV (o) produces a uniform distribution noise with a stan-
dard deviation of 0.

Flipping. As our body is mirror-symmetric, we propose a
flipping strategy. The flipping function Gy, (-) flips left body
joints to right in the spatial coordinates and vice versa.

Angle augmentation.
joint angles we compute

To perform data augmentation, on

;c = Gangle((_)k:) = ®k + MN(C), (10)
MN(C) denotes a multivariate normal distribution with co-
variance matrix C' which contains high correlations along the
diagonal, as explained above.

VPoser Augmentation. VPoser [39] presents a method
to learn an embedding space of plausible human poses. We
leverage this latent space to further generate matching pairs of
skeletal sequences by data augmentation. To this end, we map
our pose with VPoser into the latent space and sample nearby
location in the latent space. The augmented latent space is then
decoded back to the human pose.

e;q - vaoser(ek) - Vdcc(‘/enc(ek) +MN(C))7 (11)
Here, we use the same distribution, M/, for angle augmen-
tation. V. (+) and Ve (+) correspond to the encoder and de-
coder of VPoser, respectively.

3.4. Implementation Details

To be robust to different skeleton sizes, we scale the bone
length between the chest joint and pelvis joint to the unit length
and resize all the other limb lengths accordingly. We set the
chest as the origin of our coordinate system to normalize for
translation. We align the bone between the chest and pelvis to
the z-axis and the bone between the chest and right shoulder
to the y-axis, to account for variations in rotation. We perform
a similar normalization for hand skeletons.

We rely on the TCC [16] code to reproduce their results for
the experiments on the H2O dataset and pose-based alignment,
following the same hyperparameters, described in [16]. We
provide further details for the parameters of our framework in
the supplemental material.

4. Evaluation

In this section, we first describe the datasets and the cor-
responding evaluation protocols. We then provide a detailed
analysis of our approach, CASA, and compare our approach
against the state-of-the-art methods.

4.1. Datasets

We verify our model on Penn Action [67], IKEA ASM [2],
and H20 [29] datasets. Penn Action is a sports activity
dataset. Following previous work [16,22], we use the sub-
set of 13 activities for evaluation. We precisely follow ear-
lier work [16,22] for training and test splits. IKEA ASM [2]
dataset consists of 371 videos that demonstrate the assembly
of four different furniture types. Similarly with LAV [22], we
conduct our experiments using Kallax_Drawer_Shelf assem-
bly videos (61 for training and 29 for validation). H20 [29]
is a recent egocentric action recognition and hand-object inter-
action dataset that provides ground-truth 3D poses for left &
right hands and 6D object poses, along with interaction labels.
On this dataset, we select video sequences from the activity,
pouring milk, which contains monotonic sub-actions. Among
10 subjects performing the action, we select 7 for the training
set (27 videos) and 3 for the validation set (11 videos). The
sequences have up to 865 frames, and we annotate 10 differ-
ent phases based on the original action labels, which are only
used for the evaluation purposes. We will make these new la-
bels for sequence alignment publicly available. While we use
the full-body pose as our input modality in Penn Action and
IKEA ASM datasets, we use hand pose as input for the H20
dataset. Particularly for the H20 dataset, our method demon-
strates an application of skeletal alignment for hands from an
egocentric view, which is highly relevant for augmented real-
ity scenarios. Since the Penn Action dataset does not provide
3D human poses, we estimate the 3D joints of the body using
a state-of-the-art body pose estimator [27,44].

4.2. Evaluation Metrics

Following literature [16,22], we use three different metrics
for our evaluation. We first train our network on the training
set without using any labels and then evaluate the performance
of our approach using the trained embeddings.

Phase Classification Accuracy is the per-frame classification
accuracy for fine-grained action recognition. To evaluate this
metric, we train an SVM classifier on a limited subset of the
training data to predict phase labels.

Phase Progression measures how well the progress of a pro-
cess or action is captured by the embeddings. We follow pre-
vious work [16] to use a linear regressor on the embeddings
to predict the phase progression values. It is computed as the
average R—squared measure, given by

RZ—1_ Do (Wi — i)?
Yy —w)?’
where y; is the ground truth phase progress value, ¥ is the

mean of all y; and y; is the prediction made by the linear re-
gression model. The maximum value of this measure is 1.

12)

Kendall’s Tau [16] is a statistical measure that can determine
how well-aligned two sequences are in time. It is in the range
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Dataset Method Pose ;;zi%ziligi 0 l% of I?f?els _>l o
SaL [36] v 74.87 | 78.26 | 79.96
TCN [40] v 81.99 | 83.67 | 84.04
TCC [16] v 79.72 | 81.11 | 81.35
Penn Action [67] LAV [22] . v 83.56 | 83.95 | 84.25
TCC [16] v . 79.53 | 83.75 | 84.51
LAV [22] v 79.83 | 80.20 | 80.20
CASA (ours) v - 88.55 | 91.87 | 92.20
TCC [16] . v 27.74 | 25.70 | 26.80
LAV [22] . v 29.78 | 29.85 | 30.43
IKEA ASM [2] TCC [16] v . 11.95 | 13.53 | 18.60
LAV [22] v 14.52 | 16.31 | 18.63
CASA (ours) v - 21.32 | 31.52 | 31.06
TCC [16] - v 43.30 | 52.48 | 52.78
LAV [22] - v 2348 | 36.41 | 36.38
H20 [29] TCC [16] v . 30.40 | 40.20 | 42.70
LAV [22] v 37.05 | 39.50 | 40.45
CASA (ours) v 43.50 | 62.51 | 68.78

Table 1. Phase classification results. We compare our phase clas-
sification accuracy to those of both RGB and pose based methods
on three different datasets. Our method produces the state-of-the-art
results in most cases.

of [—1, 1] where a value of 1 implies that the videos are per-
fectly aligned, while a value of —1 implies that the videos are
aligned in reverse order. Since this metric assumes a strictly
monotonic order of the actions, it is evaluated only on the Penn
Action dataset.

4.3. Comparison to the State-of-the-Art

We compare our self-supervised skeletal sequence learn-
ing approach against several different approaches [16,22, 36,

, 54], including the recent self-supervised video representa-
tion learning techniques, TCC [16], and LAV [22], that use
alignment as a pretext task. Previous approaches do not re-
port results using pose data as input. Therefore we repro-
duce the results of these baselines to be able to benchmark
our results against them by following the implementation de-
tails of [16,22]. Using precisely the same feature extractor
for processing poses, we compare our approach against them.
For feature extraction, we use two non-linear fully connected
layers which have the same dimension with our input to keep
the same amount of information. We did our best to make
fair comparison by following the same hyperparameters from
LAV [22] and TCC [16] except for the learning rate, which
we set as 0.00005 for the image, and 0.0005 for pose, as we
observed better convergence with these learning rates for dif-
ferent input modalities.

We compare our phase classification accuracy to the state-
of-the-art [16,22,36,46] in Table 1. We significantly outper-
form the existing approaches for all datasets and for all the
fractions of labels that are used to train the classifier, except
for the case of training with 10% of the labels in the IKEA
ASM dataset. Limited performance for 10% of the labels in
the IKEA ASM dataset is due to the noisy pose estimates on
this dataset resulting from object occlusions, differences in
viewpoints (e.g. sitting vs standing during furniture assembly),

ImageNet
Method Pose | pre-trained | Progress T
TCN [46] . v 0.6762 | 0.7328
SaL [36] . v 0.5943 | 0.6336
Pr-VIPE [54] | v'* . . 0.7476
TCC[16] . 0.4304 | 0.4529
LAV [22] . 0.3853 | 0.4929
TCC [16] v 0.6638 | 0.7012
LAV [22] v 0.6613 | 0.8047
Hadji [20] . v . 0.7829
TCC [16] v . 0.6268 | 0.6267
LAV [22] v 0.6404 | 0.6983
CASA (ours) v 0.9449 | 0.9728

Table 2. Video progress and Kendall’s tau results. We compare
our method to other RGB and pose based methods. Note that * uses
2D poses. Our method achieves the best results on the Penn Action
dataset.

and missing hand poses that provide informative cues for the
assembly task. For TCC [16] and LAV [22], the pose input
results in lower accuracy than the image input on the IKEA
ASM dataset due to missing contextual information related to
object interactions. Yet, our approach achieves better overall
accuracy than the existing approaches that either use image
or pose as input on this dataset. Our method reasons about
fine-grained actions, both, by accounting for contextual infor-
mation through our transformer-based self- and cross-attention
mechanism, and, by exploiting 3D poses, which provide a de-
tailed understanding of subtle human motions.

In Table 2, we further report our phase progression and
Kendall’s tau results as compared to the state-of-the-art. Re-
member that these metrics respectively measure how well the
progress of an action is and how well aligned two sequences
are in time. Our approach outperforms earlier approaches on
these metrics by a large margin (0.27 improvement on phase
progression and 0.17 improvement on Kendall’s tau). We at-
tribute this to the fact our method exploits positional encodings
to encode temporal frame location which is a valuable cue for
understanding the progress and alignment of actions. Using
an attention-based architecture, our method gathers contextual
information from the whole sequence during alignment which
results in superior accuracy than previous approaches that rely
on only local context. We provide further quantitative results
of our approach when using different fractions of the frames
from the full sequence as well as results for online sequence
alignment in our supplemental material.

4.4. Ablation Studies

In Table 3, we provide an ablation study on the Penn Action
dataset to analyze the influence of different network compo-
nents. All our design choices consistently improve our overall
accuracy. The improvement is particularly pronounced for po-
sitional encodings and attention layers. While positional en-
codings provide local information about frame location, atten-
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Method Classification(%) | Progress T
w/o positional encoding 69.01 0.3361 | 0.3415
w/o projection head 89.87 0.8852 | 0.9713
w/o self attention layers 91.24 0.9193 | 0.9310
w/o cross attention layers 92.04 0.9316 | 0.9616
All 92.20 0.9449 | 0.9728

Table 3. Influence of different components of our model. We ablate
on the Penn Action dataset to analyze our different design choices.

Method Classification(%) | Progress T
No Aug. 89.95 0.8729 | 0.9653
Temp. Aug. 91.78 0.9446 | 0.9621
w/o Ang. 92.75 0.9397 | 0.9719
w/o Trans. 92.64 0.9338 | 0.9722
w/o Vposer 92.64 0.9379 | 0.9710
w/o Flip 92.94 0.9414 | 0.9710
All 92.20 0.9449 | 0.9728

Table 4. Ablation study for 4D augmentation. The best result is
depicted in bold. We ablate on the Penn Action dataset to analyze
different data augmentation strategies.

tion layers help gather contextual information within the same
sequence and across two sequences. The projection head also
results in a considerable improvement in accuracy for all the
metrics, showing the importance of the nonlinear mapping be-
fore applying a self-supervised loss, in line with the recent lit-
erature on self-supervised learning [7].

We present further ablation studies on the influence of dif-
ferent types of data augmentation strategies in Table 4. All the
augmentation strategies, combined together, results in consis-
tently high accuracies for all the metrics. While the temporal
augmentation results in about 2% increase in the phase classifi-
cation accuracy, 3D spatial augmentation brings in another 1%
improvement in phase classification and Kendall’s Tau, which
demonstrates the individual contributions and complementary
nature of different strategies.

We present the t-SNE embeddings [57] of the representa-
tion learned by CASA on two different sequences in Fig. 5.
Color scale demonstrates the corresponding time frames of
a sequence, from start to end. We demonstrate that our ap-
proach learns a smooth representation, in which temporally
close frames are mapped to nearby positions in the embedding
space. Furthermore, the corresponding frames across the two
videos are embedded in similar locations. This structure of
the embedding space demonstrates the potential and reliabil-
ity of our method for sequence alignment. We show qualita-
tive examples of alignment between two sequences in Fig. 1.
More qualitative results can be found in our supplemental ma-
terial. We further show frame-wise matches across two se-
quences, in comparison to TCC, in Fig. 6. We observe that
CASA preserves the temporal context and results in smoother
alignments.

TCC OURS
Figure 5. t-SNE visualization of the embedding space learned by
CASA. For this visualization, we select two different sequences from
baseball_pitch. Our method is able to preserve temporal context and
align corresponding frames across videos.

TCC CASA
Figure 6. Alignment between two sequences. The x-axis is the
time frame of the source sequence and the y-axis is the time frame
of the target sequence. We show the closest matching frames across
source and target sequences. For visualization, we select two different
sequences from baseball_pitch. We observe that CASA preserves the
temporal context and results in smoother alignments.

5. Conclusion

In this paper, we propose a self-supervised learning frame-
work that uses skeletal sequence alignment as a proxy task.
The proposed CASA approach uses the self and cross atten-
tion layers in Transformers to transform the local features to be
context- and position-dependent, which is crucial for CASA
to obtain high-quality sequence alignments. We further pro-
pose to augment the skeletal sequences in 3D space and time to
generate examples for matching and training a self-supervised
loss to minimize alignment score across sequences. Our ex-
periments show that CASA achieves state-of-the-art perfor-
mances on phase action classification, phase progression, and
Kendall’s tau scores on multiple datasets.

Our method, CASA, relies on off-the-shelf pose estima-

tors to compute human pose, which is used as an input to
our framework for alignment. Wrong predictions of the off-
the-shelf pose estimator will result in inaccuracies in sequence
alignment, which is a limitation of our approach. End-to-end
learning from RGB images for skeletal alignment using a pre-
trained pose estimator would be an interesting future direction
to overcome this limitation.
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