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Abstract

3D point cloud segmentation has made tremendous
progress in recent years. Most current methods focus on
aggregating local features, but fail to directly model long-
range dependencies. In this paper, we propose Stratified
Transformer that is able to capture long-range contexts and
demonstrates strong generalization ability and high perfor-
mance. Specifically, we first put forward a novel key sam-
pling strategy. For each query point, we sample nearby
points densely and distant points sparsely as its keys in a
stratified way, which enables the model to enlarge the effec-
tive receptive field and enjoy long-range contexts at a low
computational cost. Also, to combat the challenges posed
by irregular point arrangements, we propose first-layer
point embedding to aggregate local information, which fa-
cilitates convergence and boosts performance. Besides, we
adopt contextual relative position encoding to adaptively
capture position information. Finally, a memory-efficient
implementation is introduced to overcome the issue of vary-
ing point numbers in each window. Extensive experiments
demonstrate the effectiveness and superiority of our method
on S3DIS, ScanNetv2 and ShapeNetPart datasets. Code is
available at https:// github.com/ dvlab-research/ Stratified-
Transformer.

1. Introduction

Nowadays 3D point clouds can be conveniently col-
lected. They have demonstrated great potential in various
applications, such as autonomous driving, robotics and aug-
mented reality. Unlike regular pixels in 2D images, 3D
points are arranged irregularly, hampering direct adoption
of well-studied 2D networks to process 3D data. Therefore,
it is imperative to explore advanced methods that are tai-
lored for 3D point cloud data.

Abundant methods [7, 15, 16, 34, 35, 41, 52, 61, 62] have
explored 3D point cloud segmentation and obtained decent
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Figure 1. Visualization of Effective Receptive Field (ERF) [29],
given the feature of interest (shown with green star) in the output
layer. Red region corresponds to high contribution. Left: Input
point cloud and the ground truth. Middle: The ERF and prediction
of the model without stratified strategy and by only attending to its
own window. Right: The ERF and prediction of the model with
direct long-range dependency, using the stratified strategy. More
illustrations are shown in the supplementary file.

performance. Most of them focus on aggregating local fea-
tures, but fail to explicitly model long-range dependencies,
which has been demonstrated to be crucial in capturing con-
texts from a long distance [49]. Along another line of re-
search, Transformer [44] can naturally harvest long-range
information via the self-attention mechanism. However,
only limited attempts [31, 62] have been made to apply
Transformer to 3D point clouds. Point Transformer [62]
proposes “vector self-attention” and “subtraction relation”
to aggregate local features, but it is still difficult to directly
capture long-range contexts. Voxel Transformer [31] is tai-
lored for object detection and performs self-attention over
the voxels, but it loses accurate position due to voxelization.

Differently, we develop an efficient segmentation net-
work to capture long-range contexts using the standard
multi-head self-attention [44], while keeping position infor-
mation intact. To this end, we propose a simple and power-
ful framework, namely, Stratified Transformer.

Specifically, we first partition the 3D space into non-
overlapping cubic windows, inspired by Swin Trans-
former [26]. However, in Swin Transformer, different
windows work independently, and each query token only
chooses the tokens within its window as keys, thus attend-
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ing to a limited local region. Instead, we propose a strati-
fied strategy for sampling keys. Rather than only selecting
nearby points in the same window as keys, we also sparsely
sample distant points. In this way, for each query point, both
denser nearby points and sparser distant points are sampled
to form the keys all together, achieving a significantly en-
larged effective receptive field while incurring negligible
extra computations. For instance, we visualize the Effec-
tive Receptive Field (ERF) [29] in Fig. 1 to show the impor-
tance of modeling long-range contexts. In the middle of the
figure, due to incapability to model the direct long-range de-
pendency, the desk merely attends to the local region, lead-
ing to false predictions. Contrarily, with our proposed strat-
ified strategy, the desk is able to aggregate contexts from
distant objects, such as the bed or curtain, which helps to
correct the prediction.

Moreover, it is notable that irregular point arrangements
pose significant challenges in designing 3D Transformer. In
2D images, patch-wise tokens can be easily formed with
spatially regular pixels. But 3D points are completely dif-
ferent. In our framework, each point is deemed as a token
and we perform point embedding for each point to aggre-
gate local information in the first layer, which is beneficial
for faster convergence and stronger performance. Further-
more, we adopt effective relative position encoding to cap-
ture richer position information. It can generate the posi-
tional bias dynamically with contexts, through the interac-
tion with the semantic features. Also, considering that 3D
point numbers in different windows vary a lot and cause
unnecessary memory occupation for windows with a small
number of points, we introduce a memory-efficient imple-
mentation to significantly reduce memory consumption.

In total, our contribution is threefold:

• We propose Stratified Transformer to additionally
sample distant points as keys but in a sparser way, en-
larging the effective receptive field and building direct
long-range dependency while incurring negligible ex-
tra computations.

• To handle irregular point arrangements, we design
first-layer point embedding and effective contextual
position encoding, along with a memory-efficient im-
plementation, to build a strong Transformer tailored
for 3D point cloud segmentation.

• Experiments show our model achieves state-of-the-
art results on widely adopted large-scale segmenta-
tion datasets, i.e., S3DIS [1], ScanNetv2 [10] and
ShapeNetPart [5]. Extensive ablation studies verify the
benefit of each component.

2. Related Work
Vision Transformer. Recently, vision Transformer [44]
becomes popular in 2D image understanding [4, 9, 12, 13,

26, 31, 38, 42, 43, 47, 48, 57, 60, 63]. ViT [13] treats each
patch as a token, and directly uses a Transformer encoder to
extract features for image classification. Further, PVT [48]
proposes a hierarchical structure to obtain a pyramid of fea-
tures for semantic segmentation and also presents Spatial
Reduction Attention to save memory. Alternatively, Swin
Transformer [26] uses a window-based attention, and pro-
poses a shifted window operation in the successive Trans-
former block. Methods of [9, 12, 57] further propose dif-
ferent designs to incorporate long-range and global depen-
dencies. Transformer is already popular in 2D, but remains
under-explored on point clouds. Inspired by Swin Trans-
former, we adopt hierarchical structure and shifted window
operation for 3D point cloud. On top of that, we propose
a stratified strategy for sampling keys to harvest long-range
contexts, and put forward several essential designs to com-
bat the challenges posed by irregular point arrangements.

Point Cloud Segmentation. Approaches for point cloud
segmentation can be grouped into two categories, i.e.,
voxel-based and the point-based methods. The voxel-based
solutions [7, 15, 16] first divide the 3D space into regu-
lar voxels, and then apply sparse convolutions upon them.
They yield decent performance, but suffer from inaccurate
position information due to voxelization. Point-based meth-
ods [2,6,8,11,14,17–24,28,30,33–35,37,39–41,45,46,50,
52,54–56,58,59,61,62] directly adopt the point features and
positions as inputs, thus keeping the position information
intact. Following this line of research, different ways for
feature aggregation are designed to learn high-level seman-
tic features. PointNet and its variants [34,35] use max pool-
ing to aggregate features. PointConv [52] and KPConv [41]
try to use an MLP or discrete kernel points to mimic a con-
tinuous convolution kernel. Point Transformer [62] uses
the “vector self-attention” operator to aggregate local fea-
tures and the “subtraction relation” to generate the attention
weights, but it suffers from lack of long-range contexts and
insufficient robustness upon various perturbations in testing.

Our work is pointed-based and closely related point
transformer yet with a fundamental difference: ours over-
comes the limited effective receptive field issue and makes
the best of Transformer for modeling long-range contextual
dependencies instead of merely local aggregation.

3. Our Method
3.1. Overview

The overview of our model is illustrated in Fig. 2. Our
framework is point-based, and we use both xyz coordinates
and rgb colors as input. The encoder-decoder structure is
adopted where the encoder is composed of multiple stages
connected by downsample layers. At the beginning of the
encoder, the first-layer point embedding module is used
for local aggregation. Then, there are several Transformer
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(b) Two Successive Stratified Transformer Blocks 
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Figure 2. (a) Framework Overview. (b) Structure of Stratified Transformer Block. Hierarchical structure is employed to obtain multi-
level features. Input point clouds firstly go through the Point Embedding module to aggregate local structure information. After several
downsample layers and transformer blocks, the features are upsampled for segmentation. SSA: Stratified Self-attention. Shifted SSA: SSA
with shifted window. Best viewed in color.

blocks at each stage. As for the decoder, the encoder fea-
tures are upsampled to become denser layer by layer in the
way similar to U-Net [36].

3.2. Transformer Block

The Transformer block is composed of a standard multi-
head self-attention module and a feed-forward network
(FFN). With tens of thousands of points as inputs, directly
applying global self-attention incurs unacceptable O(N2)
memory consumption, where N is the input point number.

Vanilla Version. To this end, we employ window-based
self-attention. The 3D space is firstly partitioned into non-
overlapping cubic windows, where the points are scattered
in different windows. Instead of attending to all the points
as in global self-attention, each query point only needs to
consider neighbors in the same window. Multi-head self-
attention is performed in each window independently. Since
different windows may contain varying numbers of points,
we denote kt as the number of points within the t-th win-
dow. Formally, given that Nh is the number of heads, Nd

is the dimension of each head and Nc = Nh × Nd is the
feature dimension, for the input points in the t-th window
x ∈ Rkt×(Nh×Nd), the multi-head self-attention in the t-th
window is formulated as

q = Linearq(x), k = Lineark(x), v = Linearv(x),

attni,j,h = qi,h · kj,h,

ˆattni,.,h = softmax(attni,.,h), (1)

yi,h =

kt∑
j=1

ˆattni,j,h × vj,h,

ẑ = Linear(y),

where q,k,v ∈ Rkt×Nh×Nd are obtained from x by three
linear layers, and · means dot product between vectors qi,h

farthest point sampling (fps)

Window Partition

Large Window Partition
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𝒅𝒆𝒏𝒔𝒆 ∪ 𝐊𝒊

𝒔𝒑𝒂𝒓𝒔𝒆

Figure 3. Illustration of the stratified strategy for keys sampling.
The green star denotes the given query point.

and kj,h. attn ∈ Rkt×kt×Nh is the attention map, and
y ∈ Rkt×Nh×Nd is the aggregated feature, which is further
projected to the output feature ẑ ∈ Rkt×(Nh×Nd).

Note that the above equations only show the calculation
in a single window, and different windows work in the same
way independently. In this way, the memory complexity is
dramatically reduced to O(Nk × k2) = O(N × k), where k
is the average number of points scattered in each window.

To facilitate cross-window communication, we also shift
the window by half of the window size between two succes-
sive Transformer blocks, similar to [26]. The illustration of
shifted window is given in the supplementary file.
Stratified Key-sampling Strategy. Since every query
point only attends to the local points in its own window,
the vanilla version Transformer block suffers from limited
effective receptive field even with shifted window, as shown
in Fig. 1. Therefore, it fails to capture long-range contextual
dependencies over distant objects, causing false predictions.

A simple solution is to enlarge the size of cubic win-
dow. However, the memory would grow as the window
size increases. To effectively aggregate long-range contexts
at a low cost of memory, we propose a stratified strategy
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Figure 4. Plot of training loss (solid line) and validation mIoU
(dotted line) in the training process. The models w/ (blue curve)
and w/o (orange curve) first-layer point embedding are compared.

for sampling keys. As shown in Fig. 3, we partition the
space into non-overlapping cubic windows with the win-
dow size swin. For each query point qi (shown with green
star), we find the points Kdense

i in its window, same as
the vanilla version. Additionally, we downsample the in-
put points through farthest point sampling (fps) at the scale
of s, and find the points Ksparse

i with a larger window size
slargewin . In the end, both dense and sparse keys form the final
keys, i.e., Ki = Kdense

i ∪ Ksparse
i . Note that duplicated

key points are only counted once.
The complete structure of Stratified Transformer block

is shown in Fig. 2 (b). Following common practice, we use
LayerNorm [3] before each self-attention module or feed-
forward network. To further complement the information
interaction across windows, the original window is shifted
by 1

2swin while the large window is shifted by 1
2s

large
win in

the successive Transformer block. This further boosts the
performance as listed in Table 7.

Thanks to the stratified strategy for key sampling, the ef-
fective receptive field is enlarged remarkably and the query
feature is able to effectively aggregate long-range contexts.
Compared to the vanilla version, we merely incur the extra
computations on the sparse distant keys, which only takes
up about 10% of the final keys Ki.

3.3. First-layer Point Embedding

In the first layer, we build a point embedding module.
An intuitive choice is to use a linear layer or MLP to project
the input features to a high dimension. However, we empir-
ically observe relatively slow convergence and poor perfor-
mance by using a linear layer in the first layer, as shown in
Fig. 4. We note that the point feature from a linear layer or
MLP merely comprises the raw information of its own xyz
position and the rgb color, but it lacks local geometric and
contextual information. As a result, in the first Transformer
block, the attention map could not capture high-level rele-
vance between the queries and keys that only contain raw
xyz and rgb information. This negatively affects representa-
tion power and generalization ability of the model.

We contrarily propose to aggregate the features of local
neighbors for each point in the Point Embedding module.

We try a variety of methods for local aggregation, such as
max pooling and average pooling, and find KPConv per-
forms the best, as shown in Table 5. Surprisingly, this mi-
nor modification to the architecture brings about consider-
able improvement as suggested in Exp.I and II as well as
Exp.V and VI of Table 4. It proves the importance of initial
local aggregation in the Transformer-based networks. Note
that a single KPConv incurs negligible extra computations
(merely 2% FLOPs) compared to the whole network.

3.4. Contextual Relative Position Encoding

Compared to 2D spatially regular pixels, 3D points are in
a more complicated continuous space, posing challenges to
exploit the xyz position. [32] claims that position encoding
is unnecessary for 3D Transformer-based networks because
the xyz coordinates have already been used as the input fea-
tures. However, although the input of the Transformer block
has already contained the xyz position, fine-grained position
information may be lost in high-level features when going
deeper through the network. To make better use of the posi-
tion information, we adopt a context-based adaptive relative
position encoding scheme inspired by [51].

Particularly, for the point features x ∈ Rkt×(Nh×Nd)

in the t-th window, we denote the xyz coordinates as p ∈
Rkt×3. So, the relative xyz coordinates r ∈ Rkt×kt×3 be-
tween the queries and keys are formulated as

ri,j,m = pi,m − pj,m, 1 ≤ i, j ≤ kt,m ∈ {1, 2, 3}. (2)

To map relative coordinates to the corresponding posi-
tion encoding, we maintain three learnable look-up tables
tx, ty, tz ∈ RL×(Nh×Nd) corresponding to x, y and z axis,
respectively. As the relative coordinates are continuous
floating-point numbers, we uniformly quantize the range of
ri,j,m, i.e., (−swin, swin) into L discrete parts and map the
relative coordinates ri,j,m to the indices of the tables as

idxi,j,m = ⌊
ri,j,m + swin

squant
⌋, (3)

where swin is the window size and squant = 2·swin

L is the
quantization size, and ⌊·⌋ denotes floor rounding.

We look up the tables to retrieve corresponding embed-
ding with the index and sum them up to obtain the position
encoding of

ei,j = tx[idxi,j,1] + ty [idxi,j,2] + tz [idxi,j,3], (4)

where t[idx] ∈ RNh×Nd means the idx-th entry of the table
t, and e ∈ Rkt×kt×Nh×Nd is the position encoding.

Practically, the tables for query, key and value are not
shared. So we differentiate among them by adding a super-
script, where tqx denotes the x-axis table for the query. Simi-
larly, the position encoding corresponding to query, key and
value is denoted by eq , ek and ev , respectively.

Then the position encoding performs dot product with
the query and key feature to obtain the positional bias
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Input MLP-based cRPE

Figure 5. Visualization of the positional bias of each key at the first
head of the last transformer block given the query point (shown
with green star). The color map is shown on the right.
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Figure 6. Structural illustration of (a) Downsample Layer and (b)
Upsample Layer.

pos bias ∈ Rkt×kt×Nh , which is then added to the at-
tention map. Also, we add the value feature with its corre-
sponding position encoding, followed by the weighted sum
aggregation. Finally, the original equations Eq. (1) are up-
dated to the contextual Relative Position Encoding (cRPE)
version of

pos biascRPE
i,j,h = qi,h · eqi,j,h + kj,h · eki,j,h,

attncRPE
i,j,h = qi,h · kj,h + pos biascRPE

i,j,h ,

ˆattn
cRPE
i,.,h = softmax(attncRPE

i,.,h ),

ycRPE
i,h =

kt∑
j=1

ˆattn
cRPE
i,j,h × (vj,h + evi,j,h).

Compared to the MLP-based position encoding, where
the relative xyz coordinates r ∈ Rkt×kt×3 are directly pro-
jected to the positional bias pe bias ∈ Rkt×kt×Nh via an
MLP, cRPE adaptively generates the positional bias through
the dot product with queries and keys, thus providing se-
mantic information. The positional bias of the MLP-based
and cRPE are visualized in Fig. 5. It reveals the fact that
the positional bias generated by the MLP-based model is
similar among the keys. So it makes little difference to the
attention weights. But for cRPE, the positional bias varies a
lot for different keys. Besides, Exp. III and IV and Exp. V
and VIII of Table 4 also show the superiority of cRPE.

3.5. Downsample and Upsample Layers

The Downsample Layer is shown in Fig. 6 (a). First, the
xyz coordinates ps go through the Sampling & Grouping
module, where we first sample centroid points ps+1 by fa-
thest point sampling (fps) [35] and then use kNN to query
the original points to get the grouping index idxgroup ∈
RNs+1×k. The number of centroid points is 1

4 of the origi-
nal points, i.e., Ns+1 = ⌈ 1

4Ns⌉. Meanwhile, the point fea-

sum
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Figure 7. Memory-efficient implementation includes three steps:
(a) dot product; (b) scatter softmax; (c) weighted sum. It is best
viewed in color and by zoom-in.

tures xs are fed into a Pre-LN [53] linear projection layer.
Further, we exploit max pooling to aggregate the projected
features using the grouping index, yielding the output fea-
tures xs+1.

For the upsample layer, as shown in Fig. 6 (b), the de-
coder features x′

s are firstly projected by a Pre-LN linear
layer. We perform interpolation [35] between current xyz
coordinates ps and the previous ones ps−1. The encoder
point features in the previous stage xs−1 go through a Pre-
LN linear layer. Finally, we sum them up to yield the next
decoder features x′

s−1.

4. Memory-efficient Implementation

In 2D Swin Transformer, it is easy to implement the
window-based attention because the number of tokens is
fixed in each window. Nevertheless, due to the irregular
point arrangements in 3D, the number of the tokens in each
window varies a lot. A simple solution is to pad the tokens
in each window to the maximum token number kmax with
dummy tokens, and then apply a masked self-attention. But
this solution wastes much memory and computations.

Instead, we first pre-compute all pairs of query and key
that need to perform dot product. As shown in Fig. 7 (a),
we use two indices of indexq, indexk ∈ RM , to index
the q and k of shape (N,Nh, Nd), respectively, where N
denotes the total number of input points. Then, we per-
form dot product between the entries indexed by indexq

and indexk, yielding the attention map attn of the shape
(M,Nh). Afterwards, as shown in Fig. 7 (b), we perform
the scatter softmax directly on attn with the query index
indexq , where the softmax function is applied on the en-
tries in attn with the same index in indexq . Further, as
shown in Fig. 7 (c), we use indexk to index the values v
and multiply them with the attention map attn. We finally
sum up the entries with the same index in indexq and save
the results into the output features y. Note that each of the
steps is implemented by a single CUDA kernel. So the inter-
mediate variables inside each step hardly occupy memory.
In this way, we reach the memory complexity of O(M ·Nh),
much less than that used in vanilla implementation. More
detailed memory complexity analysis and discussion of po-
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sition encoding implementation are given in the supplemen-
tary file. Our implementation saves 57% memory compared
to the vanilla one.

5. Experiments

5.1. Experimental Setting

Network Architecture. The main architecture is shown
in Fig. 2. Both the xyz coordinates and rgb colors are used
as inputs. We set the initial feature dimension and number
of heads to 48 and 3 respectively, and they will double in
each downsample layer. As for S3DIS, four stages are con-
structed with the block depths [2, 2, 6, 2]. In contrast, for
ScanNetv2, we note that the point number is larger. So we
add an extra downsample layer on top of the first-layer point
embedding module. Then, the later four stages with block
depths [3, 9, 3, 3] are added. So a total of five stages are
constructed for ScanNetv2.

Implementation Detail. For S3DIS, following previous
work [62], we train for 76, 500 iterations with 4 RTX
2080Ti GPUs. The batch size is set to 8. Following com-
mon practice, the raw input points are firstly grid sampled
with the grid size set to 0.04m. During training, the max-
imum input points number is set to 80, 000, and all extra
ones are discarded if points number reaches this number.
The window size is set to 0.16m initially, and it doubles af-
ter each downsample layer. The downsample scale for the
stratified sampling strategy is set to 8. Unless otherwise
specified, we use z-axis rotation, scale, jitter and drop color
as data augmentation.

For ScanNetv2, we train for 600 epochs with weight de-
cay and batch size set to 0.1 and 8 respectively, and the grid
size for grid sampling is set to 0.02m. At most 120, 000
points of a point cloud are fed into the network during train-
ing. The initial window size is set to 0.1m. And the down-
sample scale for the stratified sampling is set to 4. Except
random jitter, the data augmentation is the same as that on
S3DIS. The implementation details for ShapeNetPart and
the datasets descriptions are given in the supplementary file.

5.2. Results

We make comparisons with recent state-of-the-art se-
mantic segmentation methods. Tables 1 and 2 show the
results on S3DIS and ScanNetv2 datasets. Our method
achieves state-of-the-art performance on both challenging
datasets. On S3DIS, ours outperforms others significantly,
even higher than Point Transformer [62] by 1.6% mIoU. On
ScanNetv2, the validation mIoU of our method surpasses
others including voxel-based methods, with a gap of 2.1%
mIoU. On the test set, ours achieves slightly higher results
than MinkowskiNet [7]. The potential reason may be the
points in ScanNetv2 are relatively sparse. So the loss of

Method Input OA mAcc mIoU

PointNet [34] point - 49.0 41.1
SegCloud [40] point - 57.4 48.9
TangentConv [39] point - 62.2 52.6
PointCNN [22] point 85.9 63.9 57.3
PointWeb [61] point 87.0 66.6 60.3
HPEIN [19] point 87.2 68.3 61.9
GACNet [45] point 87.8 - 62.9
PAT [58] point - 70.8 60.1
ParamConv [46] point - 67.0 58.3
SPGraph [20] point 86.4 66.5 58.0
SegGCN [21] point 88.2 70.4 63.6
MinkowskiNet [7] voxel - 71.7 65.4
PAConv [54] point - - 66.6
KPConv [41] point - 72.8 67.1
PointTransformer [62] point 90.8 76.5 70.4

Ours point 91.5 78.1 72.0

Table 1. Results on S3DIS Area5 for semantic segmentation.

Method Input Val mIoU Test mIoU

PointNet++ [35] point 53.5 55.7
3DMV [11] point - 48.4
PanopticFusion [33] point - 52.9
PointCNN [22] point - 45.8
PointConv [52] point 61.0 66.6
JointPointBased [6] point 69.2 63.4
PointASNL [56] point 63.5 66.6
SegGCN [21] point - 58.9
RandLA-Net [17] point - 64.5
KPConv [41] point 69.2 68.6
JSENet [18] point - 69.9
FusionNet [59] point - 68.8
PointTransformer [62] point 70.6 -
SparseConvNet [15] voxel 69.3 72.5
MinkowskiNet [7] voxel 72.2 73.6

Ours point 74.3 73.7

Table 2. Results on ScanNetv2 for semantic segmentation. More
results and analysis are included in the supplementary file.

accurate position in voxelization is negligible for voxel-
based methods. But on S3DIS where points are denser,
our method outperforms MinkowskiNet with a huge gap,
i.e., 6.6% mIoU. Also, ours outperforms MinkowskiNet by
2.1% mIoU on the validation set and is much more robust
than MinkowskiNet when encountering various perturba-
tions in testing, as shown in Table 9. Notably, it is the first
time for the point-based methods to achieve higher perfor-
mance compared with voxel-based methods on ScanNetv2.

Also, in Table 3, to show the generalization ability, we
also make comparison on ShapeNetPart [5] for the task of
part segmentation. Our method outperforms previous ones
and achieves new state of the art in terms of both category
mIoU and instance mIoU. Although the instance mIoU of
ours is comparable to Point Transformer, ours outperforms
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Method Cat. mIoU Ins. mIoU
PointNet [34] 80.4 83.7
PointNet++ [35] 81.9 85.1
PCNN [2] 81.8 85.1
SpiderCNN [55] 82.4 85.3
SPLATNet [37] 83.7 85.4
DGCNN [50] 82.3 85.2
SubSparseCNN [15] 83.3 86.0
PointCNN [22] 84.6 86.1
PointConv [52] 82.8 85.7
Point2Sequence [23] - 85.2
PVCNN [27] - 86.2
RS-CNN [25] 84.0 86.2
KPConv [41] 85.0 86.2
InterpCNN [30] 84.0 86.3
DensePoint [24] 84.2 86.4
PAConv [54] 84.6 86.1
PointTransformer [62] 83.7 86.6
Ours 85.1 86.6

Table 3. Results on ShapeNetPart for part segmentation.

ID PointEmb Aug cRPE Stratified S3DIS ScanNet
I 56.8 56.8
II ! 61.3 69.6
III ! ! 67.2 70.6
IV ! ! ! 70.1 72.5
V ! ! ! ! 72.0 73.7

VI ! ! ! 70.0 69.7
VII ! ! ! 66.1 72.3
VIII ! ! ! 68.0 71.4

Table 4. Ablation study. PointEmb: First-layer Point Embedding.
Aug: Data Augmentation. cRPE: contextual Relative Position En-
coding. Stratified: Stratified Transformer Block. Metric: mIoU.

Point Transformer by a large margin in category mIoU.

5.3. Ablation Study

We conduct extensive ablation studies to verify the effec-
tiveness of each component in our method, and show results
in Table 4. To make our conclusions more convincing, we
make evaluations on both S3DIS and ScanNetv2 datasets.
From Exp.I to V, we add one component each time. Also,
from Exp.VI to VIII, we make double verification by re-
moving each component from the final model, i.e., Exp.V.

Stratified Transformer. In Table 4, comparing Exp.IV
and V, we notice that with the stratified strategy, the model
improves with 1.9% mIoU on S3DIS and 1.2% mIoU on
ScanNetv2. Combining the visualizations in Fig. 1, we note
that the stratified strategy is able to enlarge the effective re-
ceptive field and boost the performance. Besides, we also
show the effect when setting different downsample scales,
i.e., 4, 8 and 16, in the supplementary file.

First-layer Point Embedding. We compare Exp.I with
II, and find the model improves by a large margin with first-
layer point embedding. Also, we compare Exp.VI and V,

Method Linear PointTrans block Max pool Avg pool KPConv
mIoU 68.9 69.7 70.3 71.0 72.0
∆ - +0.8 +1.4 +2.1 +3.1

Table 5. Comparison among different ways of first-layer point
embedding on S3DIS. PointTrans block: Point Transformer block.

Query ! ! ! !

Key ! ! ! !

Value ! ! ! !

MLP !

mIoU 68.0 68.0 70.2 70.5 70.8 70.8 71.0 70.8 72.0

Table 6. Ablation study on cRPE. We evaluate on the S3DIS
dataset. Query, Key and Value: applying the cRPE on the corre-
sponding features to get positional bias. MLP: MLP-based rela-
tive position encoding.

where the model gets 2.0% mIoU gain on S3DIS and 4.0%
mIoU gain on ScanNetv2 with the equipment of first-layer
point embedding. This minor modification in the architec-
ture brings considerable benefit.

To further explore the role of local aggregation in first-
layer point embedding, we compare different ways of local
aggregation with linear projection in Table 5. Obviously,
all listed local aggregation methods are better than linear
projection for the first-layer point embedding.

Contextual Relative Position Encoding. From Exp.III to
IV, the performance increases by 2.9% mIoU on S3DIS
and 1.9% mIoU on ScanNetv2 after using cRPE. Moreover,
when also using the stratified Transformer, the model still
improves with 4.0% mIoU gain on S3DIS and 2.3% gain
on ScanNetv2 equipped with cRPE, through the compari-
son between Exp.VIII and V.

Further, we testify the contribution of applying cRPE on
each of the query, key or value features. Table 6 shows that
applying cRPE in either feature can make improvement.
When applying cRPE on query, key and value simultane-
ously, the model achieves the best performance.

In addition, we compare our approach with the MLP-
based method as mentioned in Sec. 3.4. As shown in Ta-
ble 6, we find the MLP-based method (the first column)
actually makes no difference with the model without any
position encoding (the second column). Combining the vi-
sualization in Fig. 5, we conclude that the relative position
information purely based on xyz coordinates is not helpful,
since input point features to the network have already incor-
porated the xyz coordinates. In contrast, cRPE is based on
both xyz coordinates and contextual features.

Shifted Window. Shifted window is adopted to comple-
ment information interaction across windows. In Table 7,
we compare the models w/ and w/o shifted window for both
our vanilla version and Stratified Transformer on S3DIS.
Evidently, shifted window is effective in our framework.
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Input Ground Truth Point Transformer Ours (w/o stratified) Ours (w/ stratified)

board bookcase chair clutter column door floor table wall window

Figure 8. Visual comparison between Point Transformer, our baseline model (w/o stratified) and our proposed Stratified Transformer.

Method w/ shift w/o shift shift (original) shift (large)

vanilla 70.1 69.4 N/A N/A

stratified 72.0 70.1 71.0 70.3

Table 7. Ablation study on shifted window. shift (original): ap-
ply shifted window only on original windows. shift (large): apply
shifted window only on large windows. vanilla: vanilla version
Transformer block.

aug type no aug jitter rotate drop color scale all

mIoU 66.1 66.3 66.4 67.0 67.3 72.0
∆ - +0.2 +0.3 +0.9 +1.2 +5.9

Table 8. Ablation study on data augmentation evaluated on S3DIS.

Moreover, even without shifted window, Stratified Trans-
former still yields higher performance, i.e., 70.1% mIoU,
compared to the vanilla version. Also, shifting on both orig-
inal and large windows is beneficial.

Data Augmentation. Data augmentation plays an impor-
tant role in training Transformer-based network. It is also
the case in our framework as shown in Exp.V and VII as
well as Exp.II and III. We also investigate the contribution
of each augmentation in Table 8.

5.4. Robustness Study

To show the anti-interference ability of our model, we
measure the robustness by applying a variety of perturba-
tions in testing. Following [54], we make evaluations in
aspects of permutation, rotation, shift, scale and jitter. As
shown in Table 9, our method is extremely robust to various
perturbations, while previous methods fluctuate drastically
under these scenarios. It is notable that ours performs even
better (+0.63% mIoU) with 90◦ z-axis rotation.

Although Point Transformer also employs the self-
attention mechanism, it yields limited robustness. A poten-
tial reason may be Point Transformer uses special operator

Method None Perm. 90◦ 180◦ 270◦ +0.2 −0.2 ×0.8 ×1.2 jitter

PointNet++ 59.75 59.71 58.15 57.18 58.19 22.33 29.85 56.24 59.74 59.05
Minkowski 64.68 64.56 63.45 63.83 63.36 64.59 64.96 59.60 61.93 58.96

PAConv 65.63 65.64 61.66 63.48 61.80 55.81 57.42 64.20 63.94 65.12
PointTrans 70.36 70.45 65.94 67.78 65.72 70.44 70.43 65.73 66.15 59.67

Ours 71.96 72.02 72.59 72.37 71.86 71.99 71.93 70.42 71.21 72.02

Table 9. Robustness study on S3DIS. We apply the perturbations
of permutation (Perm.), z-axis rotation (90◦, 180◦, 270◦), shift-
ing (±0.2), scaling (×0.8,×1.2) and jitter in testing. PointTrans:
Point Transformer [62].

designs such as “vector self-attention” and “subtraction re-
lation”, rather than standard multi-head self-attention.

5.5. Visual Comparison

In Fig. 8, we visually compare Point Transformer, the
baseline model and ours. It clearly shows the superiority of
our method. Due to the awareness of long-range contexts,
our method is able to recognize the objects highlighted with
yellow box, while others fail.

6. Conclusion

We propose Stratified Transformer and achieve state-of-
the-art results. The stratified strategy significantly enlarges
the effective receptive field. Also, first-layer point embed-
ding and an effective contextual relative position encoding
are put forward. Our work answers two questions. First, it
is possible to build direct long-range dependencies at low
computational costs and yield higher performance. Second,
standard Transformer can be applied to 3D point cloud with
strong generalization ability and powerful performance.
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