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Abstract

Recently few-shot segmentation (FSS) has been exten-
sively developed. Most previous works strive to achieve
generalization through the meta-learning framework de-
rived from classification tasks; however, the trained models
are biased towards the seen classes instead of being ide-
ally class-agnostic, thus hindering the recognition of new
concepts. This paper proposes a fresh and straightforward
insight to alleviate the problem. Specifically, we apply an
additional branch (base learner) to the conventional FSS
model (meta learner) to explicitly identify the targets of base
classes, i.e., the regions that do not need to be segmented.
Then, the coarse results output by these two learners in par-
allel are adaptively integrated to yield precise segmentation
prediction. Considering the sensitivity of meta learner, we
further introduce an adjustment factor to estimate the scene
differences between the input image pairs for facilitating
the model ensemble forecasting. The substantial perfor-
mance gains on PASCAL-5i and COCO-20i verify the effec-
tiveness, and surprisingly, our versatile scheme sets a new
state-of-the-art even with two plain learners. Moreover, in
light of the unique nature of the proposed approach, we also
extend it to a more realistic but challenging setting, i.e.,
generalized FSS, where the pixels of both base and novel
classes are required to be determined. The source code is
available at github.com/chunbolang/BAM.

1. Introduction

Benefiting from the well-established large-scale datasets
[8, 9, 29], a wealth of convolutional neural network (CNN)
based computer vision techniques have undergone rapid de-
velopment over the past few years [15–17, 27, 28, 35, 43–
45, 48]. However, collecting sufficient labeled data is no-
toriously time-consuming and labor-intensive, especially
for dense prediction tasks, such as instance segmentation
[2,3,15,21,59] and semantic segmentation [1,25,35,40,45].
In striking contrast with the machine learning paradigms,

*Gong Cheng is the corresponding author.

Figure 1. Comparison of our BAM and previous work. (a) Con-
ventional approaches typically employ meta-learning frameworks
to train the FSS models, which is inevitably biased towards base
classes rather than being ideally class-agnostic, thus hindering the
recognition of target objects for novel class (e.g., cat (•)). (b)
Our BAM introduces an additional branch, namely base learner,
to explicitly predict the regions of base classes. In this way, the
distractor objects (e.g., person (•) and sofa (•)) in the query im-
age can be suppressed significantly after the ensemble module. (c)
Extension of our BAM under the generalized FSS settings, where
the pixels of both base and novel classes are required to be deter-
mined. The refined results are again merged with the output of the
base learner to generate comprehensive predictions.

humans can easily recognize new concepts or patterns from
a handful of examples, which greatly stimulates the research
interest of the community [39,52,53]. Thus, few-shot learn-
ing (FSL) is proposed to address this problem by building
a network that can be generalized to unseen domains with
scarce annotated samples available [7, 42, 54, 57].

In this paper, we undertake the application of FSL in
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the field of semantic segmentation, termed as few-shot seg-
mentation (FSS), where the model leverages only very few
labeled training data to segment the targets of a specific
semantic category from the raw image [46]. Fueled by
the success of few-shot classification, most existing FSS
approaches strive to achieve generalization through meta-
learning frameworks [23, 30–34, 36–38, 47, 55, 56, 58, 61,
62, 64–67]. A series of learning tasks (episodes) are sam-
pled from the base dataset to mimic the few-shot scenar-
ios of novel classes, i.e., match training and testing con-
ditions. However, it is woefully inadequate and underpow-
ered. Meta-training on the base dataset with abundant anno-
tated samples inevitably introduces a bias towards the seen
classes rather than being ideally class-agnostic, thus hin-
dering the recognition of new concepts [10]. Notably, when
countering hard query samples that share similar categories
with base data, the generalization performance might be on
the verge of collapse.

We argue that aside from designing more powerful fea-
ture extraction modules [23, 60, 61], adjusting the use of
base datasets containing sufficient training samples is also
an alternative method to alleviate the above-mentioned bias
problem, which has been neglected in previous works. To
this end, we introduce an additional branch (base learner)
to the conventional FSS model (meta learner) to explicitly
predict the targets of base classes (see Fig. 1). Then, the
coarse results output by these two learners in parallel are
adaptively integrated to generate accurate predictions. The
central insight behind such an operation is to identify con-
fusable regions in the query image through a high-capacity
segmentation model trained within the traditional paradigm,
further facilitating the recognition of novel objects. Inciden-
tally, the proposed scheme is named BAM as it consists of
two unique learners, i.e., base and the meta.

Moreover, we notice that meta learners are typically sen-
sitive to the quality of support images, and the large vari-
ances between the input image pairs could lead to severe
performance degradation. On the contrary, base learners
tend to provide highly reliable segmentation results and
stable performance due to the single query image as in-
put. Based on this observation, we further propose to lever-
age the evaluation results of the scene differences between
query-support image pairs to adjust the coarse predictions
derived from meta learners. Inspired by the style loss that
is extensively adopted in the domain of image style trans-
fer [12,13,20], we first calculate the difference of the Gram
matrices of the two input images and then utilize the Frobe-
nius norm to obtain the overall indicator for guiding the ad-
justment process. As illustrated in Fig. 1(b), the distrac-
tor objects of base classes (e.g., person and sofa) in the
query image are suppressed significantly after the ensem-
ble module, achieving accurate localization of novel objects
(e.g., cat). Furthermore, in light of the unique character

of the proposed approach, we also extend the current task
to a more realistic but challenging setting (i.e., generalized
FSS), where the pixels of both base and novel classes are
required to be determined, as presented in Fig. 1(c). To sum
up, our primary contributions can be concluded as follows:
• We propose a simple but efficient scheme to address

the bias problem by introducing an additional branch to ex-
plicitly predict the regions of base classes in the query im-
ages, which sheds light on future works.
• We propose to estimate the scene differences between

the query-support image pairs through the Gram matrix for
mitigating the adverse effects caused by the sensitivity of
meta learner.
• Our versatile scheme sets new state-of-the-arts on FSS

benchmarks across all settings, even with two plain learners.
• We extend the proposed approach to a more chal-

lenging setting, i.e., generalized FSS, which simultaneously
identifies the targets of base and novel classes.

2. Related Works
Semantic Segmentation. Semantic segmentation is a

fundamental computer vision task that aims to recognize
each pixel of the given images according to a set of pre-
defined semantic categories [45]. Recently, tremendous
progress has been made in this field benefited from the
advantages of fully convolutional networks (FCNs) [35].
Various robust network designs have been proposed suc-
cessively, also bringing with them some fundamental tech-
niques, such as dilated convolution [63], encoder-decoder
structure [45], multi-level feature aggregation [26], atten-
tion mechanism [18], etc. However, conventional segmen-
tation models require sufficient annotated samples to pro-
duce satisfactory results and hardly generalize to unseen
categories without fine-tuning, thereby hindering to some
extent their practical applications. In this work, atrous spa-
tial pyramid pooling (ASPP) module [4] based on dilated
convolution is introduced into the meta learner to enlarge
the receptive filed, and PSPNet [68] is served as the base
learner to predict the distractor objects of base categories.

Few-Shot Learning. The computer vision community
has made ongoing efforts over the years to render a network
with the ability to generalize to novel categories. Most cur-
rent methods in the few-shot learning (FSL) domain fol-
low the meta-learning framework proposed in [54], where
a set of learning tasks (episodes) are sampled from the
base dataset to mimic the few-shot scenarios. On this ba-
sis, FSL approaches can be further subdivided into three
branches: (i) metric-based [24, 49, 50], (ii) optimization-
based [11, 19, 42], and (iii) augmentation-based [5, 6]. Our
work is closely related to the metric-based approach that
determines the affinity between the support prototypes [49]
and query features with a specific distance measure, such
as Euclidean distance and cosine distance. Inspired by the
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generalized setting in FSL [22], we attempt to help recog-
nize new targets by predicting the regions of base classes in
the query images, and the segmentation task in a low-data
regime is also extended to this setting.

Few-Shot Segmentation. Few-shot segmentation (FSS)
is a natural application of the FSL technique for dense pre-
diction tasks, and it has received increased attention in re-
cent years. Previous approaches typically employ a two-
branch structure, i.e., support branch and query branch, to
transfer annotation information and interact between ex-
tracted features. Shaban et al. [46] proposed the pioneer-
ing work in this field, termed OSLSM, in which the sup-
port (conditional) branch is utilized to generate the classi-
fier weights for query branch prediction. Later on, Zhang
et al. [67] exploited the masked average pooling operation
to obtain representative support features, which also served
as the fundamental technology for subsequent works. More
recently, some relevant research abandoned the training pro-
cess of heavy backbone networks in favor of building pow-
erful blocks on the fixed ones to boost performance, such as
CANet [66], PFENet [51], ASGNet [23], SAGNN [60], and
MM-Net [58].

However, the generalization performance of these meth-
ods heavily depends on the meta-learning framework,
which could be fragile even with the fine-tuning process.
More specifically, the trained FSS models are biased to-
wards base classes due to the unbalanced data distribution
and large domain shift. We observe that very few works
in this field explicitly study the generalization degradation
problem but focus on designing high-capacity interaction
modules between the two branches. Tian et al. [51] lever-
ages the high-level features extracted from the fixed back-
bone network to evaluate the similarity, providing important
segmentation cues for the query images. Such a parameter-
free approach could help the network learn to capture more
generic patterns, thereby improving generalization. Instead,
this paper concentrates on a more fundamental perspective
to address the bias problem by explicitly identifying the
confusable regions of base classes.

3. Problem Definition
Few-shot segmentation aims at performing segmentation

with only a few labeled data. Current approaches typi-
cally train models within the meta-learning paradigm, also
known as episodic training. Specifically, given two image
setsDtrain andDtest that are disjoint in terms of object cate-
gories, the models are expected to learn transferable knowl-
edge on Dtrain with sufficient annotated samples and thus
exhibit good generalization on Dtest with scarce annotated
examples. In particular, both sets are composed of numer-
ous episodes, each of which contains a small support set
S = {(xs

i ,m
s
i)}

K
i=1 and a query set Q = {(xq,mq)},

where x∗ and m∗ represent a raw image and its correspond-

ing binary mask for a specific category c, respectively. The
models are optimized during each training episode to make
predictions for the query image xq under the condition of
the support set S. Once the training is complete, we will
evaluate their few-shot segmentation performance on Dtest

across all the test episodes, without further optimization.

4. Proposed Method
To alleviate the bias problem of current FSS methods, we

propose to build an additional network to explicitly predict
the regions of base classes in the query images, thereby fa-
cilitating the segmentation of novel objects. Without loss of
generality, we present the overall architecture of our model
under the 1-shot setting (see Fig. 2). The proposed BAM
consists of three major components including two comple-
mentary learners (i.e., base learner and meta learner) and an
ensemble module. The two learners with a shared backbone
are used to recognize the base and novel classes, respec-
tively. Then, the ensemble module receives their coarse pre-
dictions and an adjustment factor ψ to suppress the falsely
activated regions of base classes, further producing accu-
rate segmentation. Moreover, we also propose to learn the
fusion weights of different support images under the K-shot
setting based on ψ, aiming to provide better guidance for
the query branch.

4.1. Base Learner

As mentioned in Sec. 2, current FSS models are biased
towards the seen classes, which impedes the recognition of
novel concepts. Based on this observation, we propose to
introduce an additional branch, i.e., the base learner, to ex-
plicitly predict the regions of base classes in the query im-
ages. Specifically, given a query image xq ∈ R3×H×W , we
first apply the encoder network E and convolutional block
to extract its intermediate feature maps fq

b , which can be
formulated as:

fq
b = Fconv (E (xq)) ∈ Rc×h×w, (1)

where Fconv denotes the sequential convolution opera-
tions*. c, h, w are the channel dimension, height, and width,
respectively, and h×w indicates the minimum resolution
among all extracted feature maps.

Then, the decoder networkDb progressively enlarges the
spatial scale of intermediate feature maps fq

b , and finally
yields the prediction results, which can be defined as:

pb = softmax (Db (fq
b )) ∈ R(1+Nb)×H×W , (2)

where softmax(·) operation is conducted along the channel
dimension to generate probability maps pb. Nb represents
the number of base categories†.

*Taking ResNet [16] feature extractor as an example, Fconv is the last
convolutional block, namely block4.

†Typically, Nb = 15 for PASCAL-5i [46] and 60 for COCO-20i [38].
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Figure 2. Overall architecture of the proposed BAM, which is composed of three essential components: a base learner, a meta learner, and
an ensemble module. In each training episode, the two learners extract the features of input image pairs (xs,xq) with a shared encoder
and make predictions for the specific base category c (note that c denotes the novel category in the meta-testing phase) and the remaining
base categories, respectively. Then, the coarse predictions are fed to the ensemble module along with an adjustment factor ψ to suppress
the falsely activated regions of base categories, further producing accurate segmentation results. For ease of understanding, we present the
probability maps in the form of segmentation masks, but they are actually two-dimensional floating-point matrices, i.e., p ∈ [0, 1]H×W .
MAP represents the masked average pooling operation [67].

Unlike the episodic learning paradigm widely adopted
in few-shot scenarios, we follow the standard supervised
learning paradigm to train the base learner. The cross en-
tropy (CE) loss is leveraged to evaluate the difference be-
tween the prediction pb and the ground-truth mq

b at all spa-
tial locations, which can be denoted as:

Lbase =
1

nbs

nbs∑
i=1

CE
(
pb;i,m

q
b;i

)
, (3)

where nbs is the number of training samples in each batch.
Why not train two learners jointly? A natural way to
predict the regions of base classes in the query images is to
follow the standard semantic segmentation network, such as
PSPNet [68], DeepLab [4], etc. However, it is unrealistic to
additionally build such a large network on the basis of the
original few-shot model, which will introduce too many pa-
rameters and slow down the inference speed. Therefore, we
attempt to design a unified framework in which two learners
share the same backbone network. Nevertheless, we notice
that the advanced FSS methods [23, 51, 66] typically freeze
the backbone network during training to enhance general-
ization. Such an operation is inconsistent with the learning
scheme of the standard segmentation model and will un-
doubtedly affect the performance of the base learner. More
importantly, it is unknown whether the base learner can be
trained well with the episodic learning paradigm, so a two-
stage training strategy is eventually adopted. In Sec. 5.3,
we will discuss the effects of different training methods and
network designs on segmentation accuracy.

4.2. Meta Learner

Given a support set S = {xs,ms} and a query image
xq, the goal of the meta learner is to segment the objects
in xq that share the same category as the annotation mask

ms under the guidance of S. In our work, we first follow
[51,66] to concatenate the features derived from block2 and
block3. Then, a 1×1 convolution is applied to reduce the
channel dimension and generate intermediate feature maps:

f s
m = F1×1 (E (xs)) ∈ Rc×h×w, (4)

fq
m = F1×1 (E (xq)) ∈ Rc×h×w, (5)

where E is the encoder network shared with both base and
meta learners, and F1×1 denotes the 1×1 convolution that
encodes the input features to 256 dimensions. Further-
more, we calculate the prototype through the masked av-
erage pooling (MAP) [67] w.r.t. (f s

m,m
s) to provide crucial

class-related cues:

vs = Fpool (f s
m � I (ms)) ∈ Rc, (6)

where Fpool is the average-pooling operation, � represents
Hadamard product, and I is a function that reshapes ms to
be the same shape as f s

m through interpolation and expan-
sion techniques such that I : RH×W → Rc×h×w. After-
wards, the target regions in fq

m are activated under the guid-
ance of vs, and the final prediction results are generated
through the decoder network, which can be summarized as:

pm = softmax (Dm (Fguidance (vs, f
q
m))) ∈ R2×H×W ,

(7)
where Dm denotes the decoder network of the meta learner.
Fguidance is an essential module of FSS that passes the an-
notation information from the support branch to the query
branch to provide specific segmentation cues. It represents
the “expand & concatenate” operations [66] in our work.
Similarly, we calculate the BCE loss between pm and mq

to update all parameters of the meta learner:

Lmeta =
1

ne

ne∑
i=1

BCE
(
pm;i,m

q
i

)
, (8)
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Figure 3. The calculation process of the adjustment factor ψ for
the low-level features f slow and fqlow.

where ne denotes the number of training episodes in each
batch.

4.3. Ensemble

Considering that meta learners are typically sensitive to
the quality of support images, we further propose to lever-
age the evaluation results of the scene differences between
query-support image pairs to adjust the coarse predictions
derived from meta learners. Specifically, we first inte-
grate the foreground probability maps generated by the base
learner to obtain the prediction of the background region
relative to the few-shot task:

pf
b =

Nb∑
i=1

pib, (9)

where the superscript of pf
b stands for the foreground, and

the subscript “b” stands for the base learner.
Then, we leverage the low-level features f s

low, f
q
low ∈

RC1×H1×W1 extracted from the fixed backbone network to
calculate the Gram matrices of support and query images,
respectively (see Fig. 3). Please note that the relevant oper-
ations of these two input images are similar, and that of the
support one can be summarized as:

As = Freshape (f s
low) ∈ RC1×N , (10)

Gs=AsA
T
s ∈ RC1×C1 , (11)

where N=H1×W1 and Freshape reshapes the size of the
input tensor to C1×N . With the calculated Gram matrices ,
the Frobenius norm is evaluated on their difference to obtain
the overall indicator ψ for guiding the adjustment process:

ψ = ‖Gs −Gq‖F , (12)

where ‖ · ‖F denotes the Frobenius norm of the input ma-
trix. After that, the coarse results of the two learners are
integrated under the guidance of adjustment factor ψ, fur-
ther yielding the final segmentation predictions pf :

p0
f = Fensemble

(
Fψ
(
p0

m

)
,pf

b

)
, (13)

pf=p0
f ⊕Fψ

(
p1

m

)
, (14)

where pm,pb denote the predictions of the meta learner and
base learner respectively. The superscript “0” and “1” rep-
resent the background and foreground respectively. Both

Fψ andFensemble are 1×1 convolution operations with spe-
cific initial parameters. The goal of the former is to adjust
the coarse results of the meta learner, while the goal of the
latter is to integrate the two learners. ⊕ indicates the con-
catenation operation along channel dimension. Finally, the
overall loss during the meta-training phase can be evaluated
by:

L = Lfinal + λLmeta, (15)

Lfinal =
1

ne

ne∑
i=1

BCE (pq
i ,m

q
i ), (16)

where λ is set to 1.0 in all experiments, and Lmeta is the
loss function of the meta learner defined by Eq. (8).

4.4. K-Shot Setting

When the task is extended to the K-shot (K>1) set-
ting, more than one annotated (support) images are avail-
able. Current FSS methods typically average the prototypes
extracted from the support branch and then utilize the aver-
aged features to guide the subsequent segmentation process,
which assumes that the contribution of each sample is the
same [51, 56]. However, such an approach might be sub-
optimal since the samples with significant scene differences
from the query images cannot provide more-targeted guid-
ance. Therefore, we further propose to adaptively estimate
the weight of each support image based on the adjustment
factor ψ, where a smaller value indicates a greater contribu-
tion and vice versa.

Specifically, given the adjustment factor ψi of each sup-
port sample, we first integrate them into a unified vector
ψt ∈ RK through the concatenation operation. Then, two
fully connected (FC) layers are applied to generate the fu-
sion weights η of the support images:

η = soft max
(
wT

2 ReLU
(
wT

1ψt

))
∈ RK , (17)

where w1 ∈ RK×K
r ,w2 ∈ RK

r ×K are the weights of the
FC layers, and r represents the dimensionality reduction
factor. At last, we make a weighted summation to achieve
the final ψ for ensemble.

4.5. Extension to Generalized FSS

The proposed BAM is originally designed for standard
FSS tasks, but it could be easily extended to generalized
settings, where the regions of base and novel classes in the
query images are required to be determined. In this work,
we simply fuse the results of the base learner and the final
results after ensemble according to a predefined threshold τ
to obtain the holistic segmentation predictions m̂g, which
can be formulated as:

m̂(x,y)
g =


1 p

1;(x,y)
f > τ

m̂
(x,y)
b p

1;(x,y)
f ≤ τ and m̂

(x,y)
b 6= 0

0 otherwise

,

(18)
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Backbone Method
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

VGG16

SG-One (TCYB’19) [67] 40.20 58.40 48.40 38.40 46.30 41.90 58.60 48.60 39.40 47.10
PANet (ICCV’19) [56] 42.30 58.00 51.10 41.20 48.10 51.80 64.60 59.80 46.50 55.70
FWB (ICCV’19) [56] 47.00 59.60 52.60 48.30 51.90 50.90 62.90 56.50 50.10 55.10

CRNet (CVPR’20) [33] - - - - 55.20 - - - - 58.50
PFENet (TPAMI’20) [51] 56.90 68.20 54.40 52.40 58.00 59.00 69.10 54.80 52.90 59.00

HSNet (ICCV’21) [37] 59.60 65.70 59.60 54.00 59.70 64.90 69.00 64.10 58.60 64.10
Baseline 59.90 67.51 64.93 55.72 62.02 64.02 71.51 69.39 63.55 67.12

BAM (ours) 63.18 70.77 66.14 57.53 64.41 67.36 73.05 70.61 64.00 68.76

ResNet50

CANet (ICCV’19) [66] 52.50 65.90 51.30 51.90 55.40 55.50 67.80 51.90 53.20 57.10
PGNet (ICCV’19) [65] 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50

CRNet (CVPR’20) [33] - - - - 55.70 - - - - 58.80
PPNet (ECCV’20) [34] 48.58 60.58 55.71 46.47 52.84 58.85 68.28 66.77 57.98 62.97

PFENet (TPAMI’20) [51] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
HSNet (ICCV’21) [37] 64.30 70.70 60.30 60.50 64.00 70.30 73.20 67.40 67.10 69.50

Baseline 65.68 71.41 65.56 58.93 65.40 67.28 72.38 69.16 66.25 68.77
BAM (ours) 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.79 67.20 70.91

Table 1. Performance comparison on PASCAL-5i in terms of mIoU. “Baseline” means the meta learner that shares the encoder network E
pre-trained by the base learner. Results in bold denote the best performance, while the underlined ones indicate the second best.

Backbone Method
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

VGG16

FWB [38] 18.35 16.72 19.59 25.43 20.02 20.94 19.24 21.94 28.39 22.63
PFENet [51] 35.40 38.10 36.80 34.70 36.30 38.20 42.50 41.80 38.90 40.40
PRNet [32] 27.46 32.99 26.70 28.98 29.03 31.18 36.54 31.54 32.00 32.82
Baseline 38.42 43.75 44.32 39.84 41.58 45.93 48.88 47.87 46.96 47.41
BAM (ours) 38.96 47.04 46.41 41.57 43.50 47.02 52.62 48.59 49.11 49.34

ResNet50

HFA [31] 28.65 36.02 30.16 33.28 32.03 32.69 42.12 30.35 36.19 35.34
ASGNet [23] - - - - 34.56 - - - - 42.48
HSNet [37] 36.30 43.10 38.70 38.70 39.20 43.30 51.30 48.20 45.00 46.90
Baseline 41.92 45.35 43.86 41.24 43.09 46.98 51.87 49.49 47.81 49.04
BAM (ours) 43.41 50.59 47.49 43.42 46.23 49.26 54.20 51.63 49.55 51.16

Table 2. Performance comparison on COCO-20i in terms of mIoU. “Baseline” means the meta
learner with pre-trained E in our work.

Backbone Method
FB-IoU (%)

1-shot 5-shot

VGG16

OSLSM [46] 61.30 61.50
co-FCN [41] 60.10 60.20
PFENet [51] 72.00 72.30
HSNet [37] 73.40 76.60
BAM (ours) 77.26 81.10

ResNet50

PGNet [65] 69.90 70.50
PPNet [34] 69.19 75.76
PFENet [51] 73.30 73.90
HSNet [37] 76.70 80.60
BAM (ours) 79.71 82.18

Table 3. Averaged FB-IoU over 4
folds on PASCAL-5i.

where (x, y) denotes the spatial location. m̂b represents the
base segmentation masks, which can be calculated by:

m̂b= arg max (pb) ∈ {0, 1, ..., Nb}H×W
, (19)

where arg max(·) is performed along the channel dimen-
sion.

5. Experiments
5.1. Setup

Datasets. We evaluate the performance of our approach
on two widely-used FSS datasets, namely PASCAL-5i [46]
and COCO-20i [38]. PASCAL-5i is proposed by Sha-
ban et al. and created from PASCAL VOC 2012 [9] with
additional annotations from SDS [14], while COCO-20i

is presented in [38] and built from MSCOCO [29]. The
object categories of both datasets are evenly divided into
four folds, and the experiments are conducted in a cross-
validation manner. For each fold, we randomly sample
1,000 pairs of support and query images for validation.
Evaluation metrics. Following the previous works [34,
51, 61], we adopt mean intersection-over-union (mIoU)
and foreground-background IoU (FB-IoU) as the evaluation
metrics for experiments.
Implementation details. The training process of the pro-
posed approach can be divided into two stages, i.e., pre-
training and meta-training. For the first stage, we adopt

the standard supervised learning paradigm to train the
base learner on each fold of the FSS dataset, which con-
sists of 16/61 classes (including background) for PASCAL-
5i/COCO-20i. PSPNet [68] is served as the base learner in
our work, and it is trained on PASCAL-5i for 100 epochs
and COCO-20i for 20 epochs. SGD optimizer with ini-
tial learning rate 2.5e-3 is used for updating the parame-
ters, and the training batch size is set to 12. For the second
stage, we jointly train the meta learner and ensemble mod-
ule in an episodic learning fashion, and the parameters of
the base learner are fixed in this stage. Note that two learn-
ers share the same encoder to extract the features of input
images, which is also not optimized to facilitate generaliza-
tion. The rest of the network layers are trained with SGD
optimizer on PASCAL-5i for 200 epochs and COCO-20i

for 50 epochs. The batch size and learning rate are set to
8 and 5e-2 respectively on both datasets. We follow the
data augmentation techniques in [51] for training. A vari-
ant of PFENet [51] is served as the meta learner in our work,
where the FEM is replaced by ASPP [4] to reduce complex-
ity. We average the results of 5 trails with different random
seeds. The proposed model is implemented in PyTorch and
runs on NVIDIA RTX 2080Ti GPUs.

5.2. Comparison with State-of-the-Arts

Quantitative results. Tables 1 and 2 present the mIoU re-
sults of different approaches on PASCAL-5i and COCO-20i
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Figure 4. Qualitative results of the proposed BAM and baseline approach under 1-shot setting. The left panel is from PASCAL-5i, and
the right one is from COCO-20i. Each row from top to bottom represents the support images with ground-truth (GT) masks (blue), query
images with GT masks (green), baseline results (red), and our results (red), respectively.

Figure 5. Ablation studies on the low-level features flow with
ResNet50 backbone. Bi denotes the feature maps extracted from
the i-th convolutional blocks of backbone network. FLOPs means
floating point operations per second.

benchmarks. It can be found that our BAM outperforms the
advanced FSS models with a considerable margin and sets
new state-of-the-arts under all settings. With VGG16 back-
bone, the proposed method achieves 4.71%p (1-shot) and
4.66%p (5-shot) of mIoU improvements over previous best
results on PASCAL-5i. As for COCO-20i, our 1-shot and
5-shot results respectively surpass the best competitor, i.e.,
HSNet, by 7.03%p and 4.26%p mIoU with ResNet50 back-
bone, demonstrating its remarkable capability of handling
complex tasks. Moreover, we also make comparisons of
our model with other advanced approaches in terms of FB-
IoU on PASCAL-5i (see Tab. 3). Once again, the proposed
BAM achieves substantial improvements, especially for the
1-shot results with ResNet50 backbone.
Qualitative results. To better analyze and understand the
proposed model, we further take several episodes during
the meta-testing phase and visualize the corresponding seg-
mentation results, as shown in Fig. 4. It can be found in
our results (4th row), the falsely activated targets of base
classes are significantly suppressed compared to the base-
line method (3rd row), which verify the effectiveness of the
base learner and ensemble module.

PT Lmeta Init. ψ mIoU FB-IoU
57.61 70.75

3 59.12 71.94
3 3 59.76 72.79
3 3 3 62.49 75.43
3 3 3 3 64.41 77.26

Table 4. Ablation studies of different design choices under the 1-
shot setting. “PT” denotes the pre-training for base learner. “Init.”
represents the specific initial weights of the ensemble module.

Method mIoU (%) ∆

1-shot baseline 64.41 0
Mask-OR [46] 65.15 0.74
Mask-Avg [66] 65.92 1.51
Feature-Avg [41] 66.83 2.42
Reweighting (ours) 68.76 4.35

Table 5. Ablation studies on the 5-
shot fusion scheme.

Annotation
mIoU (%)

1-shot 5-shot
Pixel-wise labels 64.41 68.76
Bounding boxes 62.25 66.17

Table 6. Ablation studies
on support annotations.

5.3. Ablation Study

We conduct a series of ablation studies to investigate the
impact of each component on segmentation performance.
Note that the experiments in this section are performed on
PASCAL-5i dataset using VGG16 backbone unless speci-
fied otherwise.
Ablation study on two learners. As mentioned in Sec. 4.1,
the two learners could be trained jointly or separately. In
our experiments, the latter scheme exhibits better perfor-
mance, as shown in the first two rows of Tab. 4. We attribute
this phenomenon to different utilization of the backbone by
the two learners. Specifically, one tends to fix the parame-
ters to enhance generalization, while the other tends to up-
date the parameters to extract more discriminative features,
which is challenging to balance in the end-to-end training
paradigm. Moreover, we notice that the performance of
the model without Lmeta becomes slightly worse, indicat-
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Backbone Method
1-shot 5-shot

mIoUn mIoUb mIoUa mIoUn mIoUb mIoUa

VGG16
BAM (w/o E) 37.54 67.03 59.65 41.49 67.03 60.64
BAM 43.19 67.03 61.07 46.15 67.02 61.80

ResNet50
BAM (w/o E) 42.37 72.72 65.13 43.71 72.72 65.46
BAM 47.93 72.72 66.52 49.17 72.72 66.83

Table 7. Quantitative results on PASCAL-5i under generalized FSS setting. “E” denotes the ensemble module.

Figure 6. Segmentation results of the proposed approach under
generalized FSS setting. Note that white in the query mask repre-
sents the novel category, while the other colors represent the base
categories. Best viewed in color and zoom in, especially the bicy-
cle in the 2nd row.

ing the necessity of constraining the prediction results of
meta learner.
Ablation study on ensemble module. The initial weights
of the model have a significant influence on the training pro-
cess and even the final result. Thus, we conduct relevant ab-
lation studies on this aspect of the ensemble module, which
can be regarded as a crucial component of BAM. In our ex-
periments, the ensemble module with initial weights 1 and
0 for meta learner and base learner respectively is markedly
superior to other schemes, achieving 2.73% mIoU improve-
ments over the module with randomly initialized weights,
as presented in the 3rd and 4th rows of Tab. 4. Furthermore,
we also investigate the effect of the adjustment factor ψ on
performance, the results of which indicates that adjusting
the coarse predictions of the meta learner according to ψ
plays an essential role in model ensemble forecasting. Fig-
ure 5 presents the comparison results between the methods
using different low-level features to estimate ψ, where the
case with B2 features shows a better trade-off between seg-
mentation accuracy and computational complexity.
Ablation study on K-shot fusion schemes. As described in
Sec. 4.4, we propose to adaptively adjust the fusion weight
of each support sample according to the value of ψ. Com-
pared with other solutions, the proposed scheme achieves
a sizeable gain (see Tab. 5) under 5-shot setting, further
demonstrating the significance of such a factor that mea-

sures the differences between images for FSS task.
Ablation study on support annotations. To evaluate the
performance of BAM in complex scenarios, we perform ex-
periments with different support annotations. Specifically,
in addition to the standard dense mask annotation, bounding
box annotation is also introduced for comparison. As can be
noticed in Tab. 6, the model with bounding box annotations
produces competitive results compared to the model with
costly pixel-wise annotations, indicating strong robustness
of the proposed scheme.

5.4. Generalized Few-Shot Segmentation

In light of the unique nature of the proposed approach,
we extend it to a more realistic but challenging setting, i.e.,
generalized FSS. We simply merge the final output with the
output of the base learner according to a predefined thresh-
old τ to generate the overall segmentation results without
any learnable parameters (Eq. (18)). Inspired by the work
related to few-shot classification and detection [10, 22], we
also define three metrics to evaluate the performance under
generalized setting: mIoUn, mIoUb, and mIoUa, denoting
the mIoU scores of the novel classes, base classes, and all
classes, respectively. As shown in Tab. 7, with the ensem-
ble module, the performance of the segmentation model is
enhanced across the board, not just for novel classes. More-
over, the qualitative results in Fig. 6 also illustrate its satis-
factory capability of handling generalized FSS tasks.

6. Conclusion
We proposed a novel scheme to alleviate the bias

problem of FSS models towards the seen concepts. The
core idea of our scheme is to leverage the base learner to
identify the confusable (base) regions in the query images
and further refine the prediction of the meta learner. Sur-
prisingly, even with two plain learners, our scheme also sets
new state-of-the-arts on FSS benchmarks. Moreover, we
extended the current task to a more challenging generalized
setting and produced strong baseline results. We hope that
our work could shed light on future research to address the
bias or semantic confusion problems.
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