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Abstract

For autoregressive (AR) modeling of high-resolution im-
ages, vector quantization (VQ) represents an image as a se-
quence of discrete codes. A short sequence length is im-
portant for an AR model to reduce its computational costs
to consider long-range interactions of codes. However,
we postulate that previous VQ cannot shorten the code se-
quence and generate high-fidelity images together in terms
of the rate-distortion trade-off. In this study, we propose the
two-stage framework, which consists of Residual-Quantized
VAE (RQ-VAE) and RQ-Transformer, to effectively generate
high-resolution images. Given a fixed codebook size, RQ-
VAE can precisely approximate a feature map of an image
and represent the image as a stacked map of discrete codes.
Then, RQ-Transformer learns to predict the quantized fea-
ture vector at the next position by predicting the next stack
of codes. Thanks to the precise approximation of RQ-VAE,
we can represent a 256×256 image as 8×8 resolution of
the feature map, and RQ-Transformer can efficiently reduce
the computational costs. Consequently, our framework out-
performs the existing AR models on various benchmarks of
unconditional and conditional image generation. Our ap-
proach also has a significantly faster sampling speed than
previous AR models to generate high-quality images.

1. Introduction
Vector quantization (VQ) becomes a fundamental tech-

nique for autoregerssive (AR) models to generate high-
resolution images [5, 11, 12, 33, 40]. Specifically, an image
is represented as a sequence of discrete codes, after the fea-
ture map of the image is quantized by VQ and rearranged by
an ordering such as raster-scan [30]. After the quantization,
AR model is trained to sequentially predict the codes in the

*Equal contribution
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Figure 1. Examples of our conditional generation for 256×256
images. The images in the first row are generated from the classes
of ImageNet. The images in the second row are generated from
text conditions (“A cheeseburger in front of a mountain range cov-
ered with snow.” and “a cherry blossom tree on the blue ocean”).
The text conditions are unseen during the training.

sequence. That is, AR models can generate high-resolution
images without predicting whole pixels in an image.

We postulate that reducing the sequence length of codes
is important for AR modeling of images. A short sequence
of codes can significantly reduce the computational costs
of an AR model, since an AR uses the codes in previous
positions to predict the next code. However, previous stud-
ies have a limitation to reducing the sequence length of im-
ages in terms of the rate-distortion trade-off [38]. Namely,
VQ-VAE [40] requires an exponentially increasing size of
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codebook to reduce the resolution of the quantized feature
map, while conserving the quality of reconstructed images.
However, a huge codebook leads to the increase of model
parameters and the codebook collapse problem [8], which
makes the training of VQ-VAE unstable.

In this study, we propose a Residual-Quantized VAE
(RQ-VAE), which uses a residual quantization (RQ) to pre-
cisely approximate the feature map and reduce its spatial
resolution. Instead of increasing the codebook size, RQ
uses a fixed size of codebook to recursively quantize the
feature map in a coarse-to-fine manner. After D iterations
of RQ, the feature map is represented as a stacked map of
D discrete codes. Since RQ can compose as many vectors
as the codebook size to the power of D, RQ-VAE can pre-
cisely approximate a feature map, while conserving the in-
formation of the encoded image without a huge codebook.
Thus, RQ-VAE can further reduce the spatial resolution of
the quantized feature map than previous studies [12,33,40].
For example, our RQ-VAE can use 8×8 resolution of fea-
ture maps for AR modeling of 256×256 images.

In addition, We propose RQ-Transformer to predict
the codes extracted by RQ-VAE. For the input of RQ-
Transformer, the quantized feature map in RQ-VAE is con-
verted into a sequence of feature vectors. Then, RQ-
Transformer predicts the next D codes to estimate the fea-
ture vector at the next position. Thanks to the reduced res-
olution of feature maps by RQ-VAE, RQ-Transformer can
significantly reduce the computational costs and easily learn
the long-range interactions of inputs. We also propose two
training techniques for RQ-Transformer, soft labeling and
stochastic sampling for the codes of RQ-VAE. They fur-
ther improve the performance by resolving the exposure
bias [34] in the training of RQ-Transformer. Consequently,
our model can generate high-quality images in Figure 1.

Our main contributions are summarized as follows.
1) We propose RQ-VAE, which represents an image
as a stacked map of discrete codes, while producing
high-fidelity reconstructed images. 2) We propose RQ-
Transformer to effectively predict the codes of RQ-VAE and
its training techniques to resolve the exposure bias. 3) We
show that our approach outperforms previous AR models
and significantly improves the quality of generated images,
computational costs, and sampling speed.

2. Related Work
AR Modeling for Image Synthesis AR models have
shown promising results of image generation [5, 11, 12, 29,
35, 40] as well as text [4] and audio [8] generation. AR
modeling of raw pixels is possible [5, 30, 31, 36], but it is
infeasible for high-resolution images due to the slow speed
and low quality of generated images. Thus, previous stud-
ies incorporate VQ-VAE [12], which uses VQ to represent
an image as discrete codes, and uses an AR model to pre-

dict the codes of VQ-VAE. VQ-GAN [12], improves the
perceptual quality of reconstructed images using adversar-
ial [14, 20] and perceptual loss [25]. However, when the
resolution of the feature map is further reduced, VQ-GAN
cannot precisely approximate the feature map of an image
due to the limited size of codebook.

VQs in Other Applications Composite quantizations
have been used in other applications to represent a vector
as a composition of codes for the precise approximation un-
der a given codebook size [1,13,15,26–28]. For the nearest
neighbor search, product quantization (PQ) [15] approxi-
mates a vector as the sum of linearly independent vectors
in the codebook. As a generalized version of PQ, addi-
tive quantization (AQ) [1] uses the dependent vectors in
the codebook, but finding the codes is an NP-hard task [6].
Residual quantization (RQ, also known as stacked quantiza-
tion) [22, 28] iteratively quantizes a vector and its residuals
to represent the vector as a stack of codes, which has been
used for neural network compression [13, 26, 27]. Our RQ-
VAE adopts RQ to discretize the feature map of an image
for AR modeling of images and uses a single shared code-
book for all quantization steps.

3. Methods
We propose the two-stage framework with RQ-VAE and

RQ-Transformer for AR modeling of images (see Figure 2).
RQ-VAE uses a codebook to represent an image as a stacked
map of D discrete codes. Then, our RQ-Transformer au-
toregressively predicts the next D codes at the next spatial
position. We also introduce how our RQ-Transformer re-
solves the exposure bias [34] in the training of AR models.

3.1. Stage 1: Residual-Quantized VAE

In this section, we first introduce the formulation of VQ
and VQVAE. Then, we propose RQ-VAE, which can pre-
cisely approximate a feature map without increasing the
codebook size, and explain how RQ-VAE represents an im-
age as a stacked map of discrete codes.

3.1.1 Formulation of VQ and VQ-VAE

Let a codebook C be a finite set {(k, e(k))}k∈[K], which
consists of the pairs of a code k and its code embedding
e(k) ∈ Rnz , where K is the codebook size and nz is the
dimensionality of code embeddings. Given a vector z ∈
Rnz , Q(z; C) denotes VQ of z, which is the code whose
embedding is nearest to z, that is,

Q(z; C) = argmin
k∈[K]

‖z− e(k)‖22. (1)

After VQ-VAE encodes an image into a discrete code
map, VQ-VAE reconstructs the original image from the en-
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Figure 2. An overview of our two-stage image generation framework composed of RQ-VAE and RQ-Transformer. In stage 1, RQ-VAE
uses the residual quantizer to represent an image as a stack of D = 4 codes. After the stacked map of codes is reshaped, RQ-Transformer
predicts the D codes at the next position. More details are available in Section 3.

coded code map. Let E and G be an encoder and a decoder
of VQ-VAE. Given an image X ∈ RHo×Wo×3, VQ-VAE
extracts the feature map Z = E(X) ∈ RH×W×nz , where
(H,W ) = (Ho/f,Wo/f) is the spatial resolution of Z,
and f is a downsampling factor. By applying the VQ to
each feature vector at each position, VQ-VAE quantizes Z
and returns its code map M ∈ [K]H×W and its quantized
feature map Ẑ ∈ RH×W×nz as

Mhw = Q(Zhw; C), Ẑhw = e(Mhw), (2)

where Zhw ∈ Rnz is a feature vector at (h,w), and Mhw is
its code. Finally, the input is reconstructed as X̂ = G(Ẑ).

We remark that reducing the spatial resolution of Ẑ,
(H,W ), is important for AR modeling, since the compu-
tational cost of an AR model increases with HW . How-
ever, since VQ-VAE conducts a lossy compression of im-
ages, there is a trade-off between reducing (H,W ) and con-
serving the information of X. Specifically, VQ-VAE with
the codebook size K uses HW log2K bits to represent an
image as the codes. Note that the best achievable recon-
struction error depends on the number of bits in terms of the
rate-distortion theory [38]. Thus, to further reduce (H,W )
to (H/2,W/2) but preserve the reconstruction quality, VQ-
VAE requires the codebook of size K4. However, VQ-VAE
with a large codebook is inefficient due to the codebook col-
lapse problem [8] with unstable training.

3.1.2 Residual Quantization

Instead of increasing the codebook size, we adopt a residual
quantization (RQ) to discretize a vector z. Given a quanti-
zation depth D, RQ represents z as an ordered D codes

RQ(z; C, D) = (k1, · · · , kD) ∈ [K]D, (3)

where C is the codebook of size |C| = K, and kd is the
code of z at depth d. Starting with 0-th residual r0 = z, RQ
recursively computes kd, which is the code of the residual
rd−1, and the next residual rd as

kd = Q(rd−1; C),
rd = rd−1 − e(kd),

(4)

for d = 1, · · · , D. In addition, we define ẑ(d) =∑d
i=1 e(ki) as the partial sum of up to d code embeddings,

and ẑ := ẑ(D) is the quantized vector of z.
The recursive quantization of RQ approximates the vec-

tor z in a coarse-to-fine manner. Note that ẑ(1) is the closest
code embedding e(k1) in the codebook to z. Then, the re-
maining codes are subsequently chosen to reduce the quan-
tization error at each depth. Hence, the partial sum up to d,
ẑ(d), provides a finer approximation as d increases.

Although we can separately construct a codebook for
each depth d, a single shared codebook C is used for every
quantization depth. The shared codebook has two advan-
tages for RQ to approximate a vector z. First, using separate
codebooks requires an extensive hyperparameter search to
determine the codebook size at each depth, but the shared
codebook only requires to determine the total codebook size
K. Second, the shared codebook makes all code embed-
dings available for every quantization depth. Thus, a code
can be used at every depth to maximize its utility.

We remark that RQ can more precisely approximate a
vector than VQ when their codebook sizes are the same.
While VQ partitions the entire vector space Rnz into K
clusters, RQ with depth D partitions the vector space into
KD clusters at most. That is, RQ with D has the same
partition capacity as VQ with KD codes. Thus, we can in-
creaseD for RQ to replace VQ with an exponentially grow-
ing codebook.
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3.1.3 RQ-VAE

In Figure 2, we propose RQ-VAE to precisely quantize a
feature map of an image. RQ-VAE is also comprised of
the encoder-decoder architecture of VQ-VAE, but the VQ
module is replaced with the RQ module above. Specifi-
cally, RQ-VAE with depth D represents a feature map Z
as a stacked map of codes M ∈ [K]H×W×D and extracts
Ẑ(d) ∈ RH×W×nz , which is the quantized feature map at
depth d for d ∈ [D] such that

Mhw = RQ(E(X)hw; C, D),

Ẑ
(d)
hw =

d∑
d′=1

e(Mhwd′).
(5)

For brevity, the quantized feature map Ẑ(D) at depth D is
also denoted by Ẑ. Finally, the decoder G reconstructs the
input image from Ẑ as X̂ = G(Ẑ).

Our RQ-VAE can make AR models to effectively gen-
erate high-resolution images with low computational costs.
For a fixed downsampling factor f , RQ-VAE can produce
more realistic reconstructions than VQ-VAE, since RQ-
VAE can precisely approximate a feature map using a given
codebook size. Note that the fidelity of reconstructed im-
ages is critical for the maximum quality of generated im-
ages. In addition, the precise approximation by RQ-VAE
allows more increase of f and decrease of (H,W ) than
VQ-VAE, while preserving the reconstruction quality. Con-
sequently, RQ-VAE enables an AR model to reduce its com-
putational costs, increase the speed of image generation,
and learn the long-range interactions of codes better.

Training of RQ-VAE To train the encoder E and the de-
coder G of RQ-VAE, we use the gradient descent with re-
spect to the loss L = Lrecon+βLcommit with a multiplicative
factor β > 0, The reconstruction loss Lrecon and the com-
mitment loss Lcommit are defined as

Lrecon = ‖X− X̂‖22, (6)

Lcommit =

D∑
d=1

∥∥∥Z− sg
[
Ẑ(d)

]∥∥∥2
2
, (7)

where sg[·] is the stop-gradient operator, and the straight-
through estimator [40] is used for the backpropagation
through the RQ module. Note that Lcommit is the sum of
quantization errors from every d, not a single term ‖Z −
sg[Ẑ]‖22. It aims to make Ẑ(d) sequentially decrease the
quantization error of Z as d increases. Thus, RQ-VAE ap-
proximates the feature map in a coarse-to-fine manner and
keeps the training stable. The codebook C is updated by the
exponential moving average of the clustered features [40].

Adversarial Training of RQ-VAE RQ-VAE is also
trained with adversarial learning to improve the perceptual
quality of reconstructed images. The patch-based adversar-
ial loss [20] and the perceptual loss [21] are used together as
described in the previous study [12]. We include the details
in the supplementary material.

3.2. Stage 2: RQ-Transformer

In this section, we propose RQ-Transformer in Figure 2
to autoregressively predict a code stack of RQ-VAE. After
we formulate the AR modeling of codes extracted by RQ-
VAE, we introduce how our RQ-Transformer efficiently
learns the stacked map of discrete codes. We also propose
the training techniques for RQ-Transformer to prevent the
exposure bias [34] in the training of AR models.

3.2.1 AR Modeling for Codes with Depth D

After RQ-VAE extracts a code map M ∈ [K]H×W×D, the
raster-scan order [30] rearranges the spatial indices of M to
a 2D array of codes S ∈ [K]T×D where T = HW . That is,
St, which is a t-th row of S, contains D codes as

St = (St1, · · · ,StD) ∈ [K]D for t ∈ [T ]. (8)

Regarding S as discrete latent variables of an image, AR
models learn p(S) which is autoregressively factorized as

p(S) =

T∏
t=1

D∏
d=1

p(Std |S<t,d,St,<d). (9)

3.2.2 RQ-Transformer Architecture

A naı̈ve approach can unfold S into a sequence of length
TD using the raster-scan order and feed it to the conven-
tional transformer [41]. However, it neither leverages the
reduced length of T by RQ-VAE and nor reduces the com-
putational costs. Thus, we propose RQ-Transformer to effi-
ciently learn the codes extracted by RQ-VAE with depth D.
As shown in Figure 2, RQ-Transformer consists of spatial
transformer and depth transformer.

Spatial Transformer The spatial transformer is a stack
of masked self-attention blocks to extract a context vector
that summarizes the information in previous positions. For
the input of the spatial transformer, we reuse the learned
codebook of RQ-VAE with depthD. Specifically, we define
the input ut of the spatial transformer as

ut = PET (t) +
D∑
d=1

e(St−1,d) for t > 1, (10)

where PET (t) is a positional embedding for spatial posi-
tion t. Note that the second term is equal to the quantized
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feature vector of an image in Eq. 5. For the input at the
first position, we define u1 as a learnable embedding, which
is regarded as the start of a sequence. After the sequence
(ut)

T
t=1 is processed by the spatial transformer, a context

vector ht encodes all information of S<t as

ht = SpatialTransformer(u1, · · · ,ut). (11)

Depth Transformer Given the context vector ht, the
depth transformer autoregressively predicts D codes
(St1, · · · ,StD) at position t. At position t and depth d, the
input vtd of the depth transformer is defined as the sum of
the code embeddings of up to depth d− 1 such that

vtd = PED(d) +

d−1∑
d′=1

e(Std′) for d > 1, (12)

where PED(d) is a positional embedding for depth d and
shared at every position t. We do not use PET (t) in vtd,
since the positional information is already encoded in ut.
For d = 1, we use vt1 = PED(1)+ht. Note that the second
term in Eq. 12 corresponds to a quantized feature vector
Ẑ

(d−1)
hw at depth d− 1 in Eq. 5. Thus, the depth transformer

predicts the next code for a finer estimation of Ẑt based
on the previous estimations up to d − 1. Finally, the depth
transformer predicts the conditional distribution ptd(k) =
p(Std = k|S<t,d,St,<d) as

ptd = DepthTransformer(vt1, · · · ,vtd). (13)

RQ-Transformer is trained to minimize LAR, which is the
negative log-likelihood (NLL) loss:

LAR = ESEt,d [− log p(Std|S<t,d,St,<d)] . (14)

Computational Complexity Our RQ-Transformer can
efficiently learn and predict the T ×D code maps of RQ-
VAE, since RQ-Transformer has lower computational com-
plexity than the naı̈ve approach, which uses the unfolded
1D sequence of TD codes. When computing TD length
of sequences, a transformer with N layers has O(NT 2D2)
of computational complexity [41]. On the other hand, let
us consider a RQ-Transformer with total N layers, where
the number of layers in the spatial transformer and depth
transformer is Nspatial and Ndepth, respectively. Then, the
spatial transformer requires O(NspatialT

2) and the depth
transformer requires O(NdepthTD

2), since the maximum
sequence lengths for the spatial transformer and depth trans-
former are T and D, respectively. Hence, the compu-
tational complexity of RQ-Transformer is O(NspatialT

2 +
NdepthTD

2), which is much less than O(NT 2D2). In Sec-
tion 4.3, we show that our RQ-Transformer has a faster
speed of image generation than previous AR models.

3.2.3 Soft Labeling and Stochastic Sampling

The exposure bias [34] is known to deteriorate the perfor-
mance of an AR model due to the error accumulation from
the discrepancy of predictions in training and inference.
During inference, the prediction errors can also accumulate
along with the depth D, since finer estimation of the feature
vector becomes harder as d increases.

Thus, we propose soft labeling and stochastic sampling
of codes from RQ-VAE to resolve the exposure bias. Sched-
uled sampling [2] is a way to reduce the discrepancy. How-
ever, it is unsuitable for a large-scale AR model, since multi-
ple inferences are required at each training step and increase
the training cost. Instead, we leverage the geometric rela-
tionship of code embeddings in RQ-VAE. We define a cate-
gorical distribution on [K] conditioned by a vector z ∈ Rnz

as Qτ (k|z), where τ > 0 is a temperature

Qτ (k |z) ∝ e−‖z−e(k)‖
2
2/τ for k ∈ [K]. (15)

As τ approaches zero,Qτ is sharpened and converges to the
one-hot distribution Q0(k |z) = 1[k = Q(z; C)].

Soft Labeling of Target Codes Based on the distance be-
tween code embeddings, soft labeling is used to improve
the training of RQ-Transformer by explicit supervision on
the geometric relationship between the codes in RQ-VAE.
For a position t and a depth d, let Zt be a feature vector of
an image and rt,d−1 be a residual vector at depth d − 1 in
Eq. 4. Then, the NLL loss in Eq. 14 uses the one-hot label
Q0(·|rt,d−1) as the supervision of Std. Instead of the one-
hot labels, we use the softened distribution Qτ (·|rt,d−1).

Stochastic Sampling for Codes of RQ-VAE Along with
the soft labeling above, we propose stochastic sampling of
the code map from RQ-VAE to reduce the discrepancy in
training and inference. Instead of the deterministic code
selection of RQ in Eq. 4, we select the code Std by sam-
pling from Qτ (·|rt,d−1). Note that our stochastic sampling
is equivalent to the original code selection of RQ in the limit
of τ → 0. The stochastic sampling provides different com-
positions of codes S for a given feature map of an image.

4. Experiments
In this section, we empirically validate our model for

high-quality image generation. We evaluate our model on
unconditional image generation benchmarks in Section 4.1
and conditional image generation in Section 4.2. The com-
putational efficiency of RQ-Transformer is shown in Sec-
tion 4.3. We also conduct an ablation study to understand
the effectiveness of RQ-VAE in Section 4.4.

For a fair comparison, we adopt the model architec-
ture of VQ-GAN [12]. However, since RQ-VAEs convert
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Figure 3. Generated images by our models. First row: LSUN-{cat, bedroom, church}. Second row: FFHQ, ImageNet and CC-3M. The
text conditions of CC-3M are “Mountains and hills reflecting over a surface,” and “Businessman with a paper bag on head,” respectively.

Table 1. Comparison of FIDs for unconditional image generation
on LSUN-{Cat, Bedroom, Church} [43] and FFHQ [23].

Cat Bedroom Church FFHQ
DDPM [19] 19.75 4.90 7.89 -
ImageBART [11] 15.09 5.51 7.32 9.57
StyleGAN2 [24] 7.25 2.35 3.86 3.8
DCT [29] - 6.40 7.56 13.06
VQ-GAN [12] 17.31 6.35 7.81 11.4
RQ-Transformer 8.64 3.04 7.45 10.38

256×256×3 RGB images into 8×8×4 codes, we add an en-
coder and decode block to RQ-VAE and further decreases
the resolution of the feature map by half. We include other
details of implementation in the supplementary material.

4.1. Unconditional Image Generation

The results of unconditional image generation is eval-
uated on the LSUN-{cat, bedroom, church} [43] and
FFHQ [23] datasets. The codebook size K is 2048 for
FFHQ and 16384 for LSUN. For FFHQ, RQ-VAE is trained
from scratch during 100 epochs, and early stopping is
used for RQ-Transformer when the validation loss is min-
imized, since the small size of FFHQ leads to overfitting
of AR models. For the LSUN datasets, we use a pre-
trained RQ-VAE on ImageNet and finetune the model for
one epoch on each dataset. Considering the dataset size,
we use RQ-Transformer of 612M parameters for LSUN-
{cat, bedroom} and 370M parameters for LSUN-church
and FFHQ. For the evaluation measure, we use Frechet In-
ception Distance (FID) [18] between 50K generated sam-
ples and all training samples. We also use top-k and top-p
sampling to report the best performance [11, 12].

Table 1 shows that our model outperforms the other AR
models on unconditional image generation. For small-scale

datasets such as LSUN-church and FFHQ, our model out-
performs DCT [29] and VQ-GAN [12] with marginal im-
provements. However, for a larger scale of datasets such
as LSUN-{cat, bedroom}, our model significantly outper-
forms other AR models and diffusion-based models [11,
19]. We conjecture that the performance improvement
comes from the shorter sequence length by RQ-VAE, since
SQ-Transformer can easily learn the long-range interactions
between codes in the short length of the sequence. In the
first two rows of Figure 3, we show that RQ-Transformer
can unconditionally generate high-quality images.

4.2. Conditional Image Generation

We use ImageNet [7] and CC-3M [39] for a class- and
text-conditioned image generation, respectively. We train
RQ-VAE with K=16,384 on ImageNet training data for 10
epochs and reuse the trained RQ-VAE for CC-3M. For Im-
ageNet, we also use RQ-VAE trained for 50 epochs to ex-
amine the effect of improved reconstruction quality on im-
age generation quality of RQ-Transformer in Table 2. For
conditioning, we append the embeddings of class and text
conditions to the start of input for spatial transformer. The
texts of CC-3M are represented as a sequence of at most 32
tokens using a byte pair encoding [37, 42].

Table 2 shows that our model significantly outperforms
previous models on ImageNet. Our RQ-Transformer of
480M parameters outperforms the previous AR models in-
cluding VQ-VAE2 [35], DCT [29], and VQ-GAN [12]
without rejection sampling, although our model has 3×
less parameters than VQ-GAN. Our stochastic sampling
is also effective for performance improvement, while RQ-
Transformer without it still outperforms other AR models.
RQ-Transformer of 1.4B parameters achieves 11.56 of FID
score without rejection sampling. When we improve the re-
construction quality of RQ-VAE by increasing its training

11528



Table 2. Comparison of FIDs and ISs for class-conditioned im-
age generation on ImageNet [7]. † denotes a model without our
stochastic sampling and soft labeling. ‡ denotes the use of re-
jection sampling or gradient guidance by pretrained classifier. ∗
denotes the use of RQ-VAE trained for 50 epochs.

Params FID IS
without rejection sampling or gradient guidance
ADM [9] 554M 10.94 101.0
ImageBART [11] 3.5B 21.19 61.6
BigGAN [3] 164M 7.53 168.6
BigGAN-deep [3] 112M 6.84 203.6
VQ-VAE2 [35] 13.5B ∼31 ∼45
DCT [29] 738M 36.5 n/a
VQ-GAN [12] 1.4B 15.78 74.3
RQ-Transformer 480M 15.72 86.8±1.4
RQ-Transformer† 821M 14.06 95.8±2.1
RQ-Transformer 821M 13.11 104.3±1.5
RQ-Transformer 1.4B 11.56 112.4±1.1
RQ-Transformer∗ 1.4B 8.71 119.0±2.5
RQ-Transformer∗ 3.8B 7.55 134.0±3.0
with rejection sampling or gradient guidance
ADM‡ [9] 554M 4.59 186.7
ImageBART‡ [11] 3.5B 7.44 273.5±4.1
VQ-GAN‡ [12] 1.4B 5.20 280.3±5.5
RQ-Transformer‡ 1.4B 4.45 326.0±3.5
RQ-Transformer∗‡ 1.4B 3.89 337.5±4.6
RQ-Transformer∗‡ 3.8B 3.80 323.7±2.8

Table 3. Comparison of FID and CLIP score [32] on the validation
data of CC-3M [39] for text-conditioned image generation.

Params FID CLIP-s
VQ-GAN [12] 600M 28.86 0.20
ImageBART [11] 2.8B 22.61 0.23
RQ-Transformer 654M 12.33 0.26

Table 4. Comparison of FIDs between ImageNet validation im-
ages and their reconstructed images according to codebook size
(K) and the shape of code map H ×W ×D. † denotes the repro-
duced performance, and ∗ denotes 50 epochs of training.

H ×W ×D K rFID
VQ-GAN [12] 16×16×1 16,384 4.90
VQ-GAN† 16×16×1 16,384 4.32
VQ-GAN 8×8×1 16,384 17.95
VQ-GAN 8×8×1 65,536 17.66
VQ-GAN 8×8×1 131,072 17.09
RQ-VAE 8×8×2 16,384 10.77
RQ-VAE 8×8×4 16,384 4.73
RQ-VAE∗ 8×8×4 16,384 3.20
RQ-VAE 8×8×8 16,384 2.69

epoch from 10 to 50, RQ-Transformer of 1.4B parameters
achieves 8.71 of FID. Moreover, when we further increase

Figure 4. The sampling speed of RQ-Transformer with 1.4B pa-
rameters according to batch size and code map shape.

the model size to 3.8B, RQ-Transformer achieves 7.55 of
FID score without rejection sampling and is competitive
with BigGAN [3]. When ResNet-101 [16] is used for re-
jection sampling with 5% and 12.5% of acceptance rates for
1.4B and 3.8B parameters, respectively, our model outper-
forms ADM [9] and achieves the state-of-the-art FID score.

RQ-Transformer can also generate high-quality im-
ages based on various text conditions of CC-3M. RQ-
Transformer shows significantly higher performance than
VQ-GAN with a similar number of parameters. In addi-
tion, although RQ-Transformer has 23% of parameters, our
model significantly outperforms ImageBART [11] on both
FID and CLIP score [32] (with ViT-B/32 [10]). Figure 3
shows that RQ-Transformer trained on CC-3M can generate
high-quality images using various text conditions. In addi-
tion, the text conditions in Figure 1 are novel compositions
of visual concepts, which are unseen in training.

4.3. Computational Efficiency of RQ-Transformer

In Figure 4, we evaluate the sampling speed of RQ-
Transformer to compare with VQ-GAN. Both the models
have 1.4B parameters. The shape of the input code map for
VQ-GAN and RQ-Transformer are set to be 16×16×1 and
8×8×4, respectively. We use a single NVIDIA A100 GPU
for each model to generate 5000 samples with 100, 200, and
500 of batch size. The reported speeds in Figure 4 do not
include the decoding time of the stage 1 model to focus on
the effect of RQ-Transformer architecture. The decoding
time of VQ-GAN and RQ-VAE is about 0.008 sec/image.

For the batch size of 100 and 200, RQ-Transformer
shows 4.1× and 5.6× speed-up compared with VQ-GAN.
Moreover, thanks to the memory saving from the short se-
quence length of RQ-VAE, RQ-Transformer can increase
the batch size into 500, which is not allowed for VQ-GAN.
RQ-Transformer can further accelerate the sampling speed
up to 0.02 seconds per image, which is 7.3× faster than VQ-
GAN with batch size 200. Thus, RQ-Transformer is more
computationally efficient than previous AR models, while
achieving state-of-the-art results of image generation.
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Figure 5. The examples of coarse-to-fine approximation by RQ-VAE. The first example is the original image, and the others are recon-
structed from Ẑ(d). As d increases, the reconstructed images become clear and include fine-grained details of the original image.

4.4. Ablation Study on RQ-VAE

We conduct an ablation study to understand the effect of
RQ with respect to the codebook size (K) and the shape of
the code map (H ×W ×D). We measure the rFID, which
is FID between original images and reconstructed images,
on ImageNet validation data. Table 4 shows that increasing
the quantization depth D is more effective to improve the
reconstruction quality than increasing the codebook sizeK.
Here, we remark that RQ-VAE with D=1 is equivalent to
VQ-GAN. For a fixed codebook size K=16,384, the rFID
significantly deteriorates as the spatial resolution H ×W is
reduced from 16×16 to 8×8. Even when the codebook size
is increased to K=131,072, the rFID cannot recover the
rFID with 16×16 feature maps, since the restoration of rFID
requires the codebook of size K=16,3844 in terms of the
rate-distortion trade-off. Contrastively, note that the rFIDs
are significantly improved when we increase the quanti-
zation depth D with a codebook of fixed size K=16,384.
Thus, our RQ-VAE can further reduce the spatial resolution
than VQ-GAN, while conserving the reconstruction qual-
ity. Although RQ-VAE with D > 4 can further improve the
reconstruction quality, we use RQ-VAE with 8×8×4 code
map for AR modeling of images, considering the compu-
tational costs of RQ-Transformer. In addition, the longer
training of RQ-VAE can further improve the reconstruction
quality, but we train RQ-VAE for 10 epochs as the default
due to its increased training time.

Figure 5 substantiates our claim that RQ-VAE conducts
the coarse-to-fine estimation of feature maps. For example,
Figure 5 shows the reconstructed imagesG(Ẑ(d)) of a quan-
tized feature map at depth d in Eq. 4. When we only use the
codes at d = 1, the reconstructed image is blurry and only
contains coarse information of the original image. However,
as d increases and the information of remaining codes is
sequentially added, the reconstructed image includes more
clear and fine-grained details.

5. Conclusion
Discrete representation of visual images is important for

an AR model to generate high-resolution images. In this

work, we have proposed RQ-VAE and RQ-Transformer for
high-quality image generation. Under a fixed codebook
size, RQ-VAE can precisely approximate a feature map of
an image to represent the image as a short sequence of
codes. Thus, RQ-Transformer effectively learns to predict
the codes to generate high-quality images with low compu-
tational costs. Consequently, our approach outperforms the
previous AR models on various image generation bench-
marks such as LSUNs, FFHQ, ImageNet, and CC-3M.

Our study has three main limitations. First, our model
does not outperform StyleGAN2 [24] on unconditional im-
age generation, especially with a small-scale dataset such
as FFHQ, due to overfitting of AR models. Thus, regular-
izing AR models is worth exploration for high-resolution
image generation on a small dataset. Second, our study
does not enlarge the model and training data for text-to-
image generation. As a previous study [17,33] shows that a
huge transformer can effectively learn the zero-shot text-to-
image generation, increasing the number of parameters is
an interesting future work. Third, AR models can only cap-
ture unidirectional contexts to generate images compared to
other generative models. Thus, modeling of bidirectional
contexts can further improve the quality of image genera-
tion and enable AR models to be used for image manipula-
tion such as image inpainting and outpainting [11].

Although our study significantly reduces the computa-
tional costs for AR modeling of images, training of large-
scale AR models is still expensive, consumes high amounts
of electrical energy, and can leave a huge carbon footprint,
as the scale of model and training dataset becomes large.
Thus, efficient training of large-scale AR models is still
worth exploration to avoid environmental pollution.
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[31] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Condi-
tional image generation with pixelcnn decoders. In Proceed-
ings of the 30th International Conference on Neural Infor-
mation Processing Systems, pages 4797–4805, 2016. 2

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 8748–8763.
PMLR, 18–24 Jul 2021. 7

[33] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 8821–8831.
PMLR, 18–24 Jul 2021. 1, 2, 8

[34] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. Sequence level training with recurrent
neural networks. In Yoshua Bengio and Yann LeCun, edi-
tors, 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. 2, 4, 5

[35] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with vq-vae-2. In Advances
in neural information processing systems, pages 14866–
14876, 2019. 2, 6, 7

[36] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.
Kingma. Pixelcnn++: A pixelcnn implementation with dis-
cretized logistic mixture likelihood and other modifications.
In ICLR, 2017. 2

[37] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neu-
ral machine translation of rare words with subword units.

In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
pages 1715–1725, 2016. 6

[38] Claude E Shannon et al. Coding theorems for a discrete
source with a fidelity criterion. IRE Nat. Conv. Rec, 4(142-
163):1, 1959. 1, 3

[39] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556–2565, Melbourne, Australia, July 2018. Association
for Computational Linguistics. 6, 7

[40] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu.
Neural discrete representation learning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 1, 2, 4

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 4,
5

[42] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
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