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Abstract

Robust visual recognition under adverse weather condi-
tions is of great importance in real-world applications. In
this context, we propose a new method for learning seman-
tic segmentation models robust against fog. Its key idea is
to consider the fog condition of an image as its style and
close the gap between images with different fog conditions
in neural style spaces of a segmentation model. In particu-
lar, since the neural style of an image is in general affected
by other factors as well as fog, we introduce a fog-pass filter
module that learns to extract a fog-relevant factor from the
style. Optimizing the fog-pass filter and the segmentation
model alternately gradually closes the style gap between
different fog conditions and allows to learn fog-invariant
features in consequence. Our method substantially outper-
forms previous work on three real foggy image datasets.
Moreover, it improves performance on both foggy and clear
weather images, while existing methods often degrade per-
formance on clear scenes.

1. Introduction

We have witnessed great advances in semantic segmen-
tation for the last decade. However, most of existing mod-
els and datasets focus merely on improving accuracy under
controlled environments, without considering image degra-
dation caused by adverse weather conditions (e.g., fog, rain,
and snow), over- and under-exposure, motion blur, sensor
noise, efc. The robustness of semantic segmentation mod-
els against these factors is of great importance in safety-
critical applications and recently has gained increasing at-
tention [3, 6, 8,50-52,56,66].

Motivated by this, we study semantic segmentation of
foggy scenes, whose goal and results are illustrated in Fig. 1.
The task is challenging since fog often damages visibility of
images seriously, leading to substantial performance degra-
dation. Attaching a fog removal network to the front of
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Figure 1. A summary of our results. Predictions of FIFO are
accurate for both clear weather and real foggy images while the
baseline, an ordinary segmentation model trained on clear weather
images, fails to handle foggy images.

an existing model is not always useful for mitigating this
issue [47,52] as well as being heavy in computation and
memory. The other reason for the difficulty is the absence
of fully annotated data for the task. Collecting a large set of
foggy scenes is not straightforward since they can be cap-
tured under only a specific condition, and it is hard to label
them due to their limited visibility.

Existing methods [8, 51, 52] tackle these issues through
synthetic foggy image datasets, which are obtained by ap-
plying realistic fog effects to fully annotated clear weather
images and are used for supervised learning of seman-
tic segmentation. Furthermore, they introduce curriculum
learning approaches [8, 51] that gradually adapt a model
from light synthetic fog to dense real fog using unlabeled
real foggy images additionally. Although these methods
have achieved impressive robustness, there remains room
for further improvement in that their training strategies are
limited to ordinary supervised learning. In addition, the cur-
riculum adaptation demands external modules to control the
fog density of real foggy images in training, and tends to
make the final model biased to foggy scenes; it thus requires
extra computation and additional hyper-parameters in train-
ing, and often degrades performance on clear images.

To resolve the above issues, we propose a new method
that learns Fog-Invariant features for FOggy scene segmen-
tation, dubbed FIFO. Its overall pipeline is illustrated in
Fig. 2. FIFO considers the fog condition of an image as its
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Figure 2. Overall pipeline of FIFO. For each iteration of training, the fog-pass filtering module and the segmentation network are updated
alternately. (fop) Given Gram matrices of feature maps of the segmentation network as input, the fog-pass filtering module learns to
extract fog factors so that fog conditions of images are discriminated by their fog factors. (botfom) The segmentation network is trained by
reducing the gap between fog factors of images with different fog conditions as well as by the segmentation loss. Note that the fog-pass

filters are auxiliary modules used only in training.

style, ideally independent of its content, and aims to learn
a segmentation model insensitive to fog style variation of
input image. To this end, we first define three different
domains of training images, i.e., clear weather (CW), syn-
thetic fog (SF), and real fog (RF), where images of the first
two domains are labeled while those of the last one are not.
FIFO then encourages the segmentation network to close
the style discrepancy between different fog domains in fea-
ture spaces so that it learns fog-invariant features.

Then the success of FIFO depends heavily on the quality
of the fog style representation. Unfortunately, existing style
representation schemes [17, 60] are not desirable for our
task since they are manually designed to capture the holistic
style of an image that is affected also by factors other than
fog (e.g., when and where the image was taken) and even
the content of the image [6]; the direct use of these neural
styles thus introduce side-effects like content alteration and
result in suboptimal solutions consequently.

To address this issue, we present fog-pass filters, learn-
able modules that take an ordinary neural style—the Gram
matrix of a feature map [17] as input and extract only a fog-
relevant information from the style precisely in the form of
embedding vectors, called fog factors. In particular, they
learn to draw fog factors of the same domain together and
hold those of different domains apart so that they discrim-
inate fog conditions of input images through their fog fac-
tors. The segmentation model is in turn encouraged to re-
duce the gap between fog factors of images from differ-
ent domains during training. The alternating optimization
of the fog-pass filter and the segmentation network gradu-
ally closes the fog style gap between different domains and
eventually leads to fog-invariant features of the segmenta-
tion network. Note that the fog-pass filters are auxiliary

modules for training only, thus not required in testing.

FIFO has advantages over the previous work [8,51, 52]
in terms of both simplicity in training and efficacy in test-
ing. Unlike the previous work, FIFO does not need to con-
trol fog density levels of synthetic and real foggy images in
training, thus allowing end-to-end learning of a segmenta-
tion model with fewer hyper-parameters. More importantly,
for the same reason, it demands no extra module for esti-
mating and manipulating fog density of real foggy images
in training. Regarding the effectiveness, FIFO clearly out-
performs all existing records and improves performance on
both foggy and clear weather domains, while existing meth-
ods often degrade performance on clear scenes.

2. Related Work

Semantic Foggy Scene Segmentation. Previous work [8,
51, 52] has developed fog simulators that are applied to
clear images with full annotations to obtain labeled syn-
thetic foggy images. Since supervised learning on the syn-
thetic data limits performance due to the visual gap between
synthetic and real foggy images, recent methods [8,51] fur-
ther employ curriculum learning to gradually adapt a model
from light synthetic fog to dense real fog. However, the
curriculum adaptation often degrades performance on clear
weather images and demands extra modules to control den-
sity levels of real foggy images during training.

Image Dehazing. Fog damages visibility of image, and
accordingly, degrades visual recognition performance sub-
stantially. Numerous dehazing algorithms have been pro-
posed so far to restore latent clean image from foggy in-
put [2,5,11,12,21, 36,40, 67]. However, they are usu-
ally too heavy in computation to be attached to the front of
recognition models. Further, recent studies [47,52] suggest
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CW-SF CW-RF SF-RF | FZ FDD FD CW
v 437 38.6 46.1 67.6

v 377 403 472 66.0

v 393 428 497 61.6

v v 49.7 460 499 658

v v 46.0 476 50.0 623

v v 474 382 470 643

v v v 484 489 50.7 648

Table 2. Analysis on the impact of domain pairs. CW, SF and RF
denote clear weather, synthetic fog, and real fog, respectively.

Method FZ FDD FD B8 FZ FDD FD
Baseline 285 359 436 0 377 403 472
FIFO w/o Ly 317 385 45.1 0.0025 455 404 45.0
FIFO w/o Leon  41.6 454 489 0.01 424 454 50.0
FIFO w/ Gram 41.3 438 49.1 0.02 429 425 48.6
FIFO 484 489 50.7 0.005 484 489 50.7

Table 3. Analysis on the impact Table 4. Analysis on the im-
of the fog style matching loss, the pact of synthetic fog densi-
prediction consistency loss, and the ties. 8 = 0 denotes a model
fog-pass filtering modules. trained with CW and RF.

5.6. Ablation Study

We conduct extensive experiments while varying domain
pairs of FIFO to investigate their effects. Table 2 summa-
rizes the results. We found that using more pairs in general
boosts performance, which suggests that all the three pairs
contribute to performance on real foggy images.

We also investigate contributions of the fog style match-
ing loss L, the prediction consistency loss Lo, and the
fog-pass filtering modules to the performance. Table 3 com-
pares FIFO with its variants with and without Ley, Leon,
and the fog-pass filters in terms of segmentation quality on
real foggy images. Note that FIFO w/o Ly, is trained by the
segmentation and prediction consistency losses only, drop-
ping the fog style matching loss, while FIFO w/ Gram uses
Gram matrices instead of fog factors when matching fog
styles. The results in the tables suggest that all the losses
and the fog-pass filtering contribute to the performance on
all the three real foggy datasets, but the impact of the fog
style matching is substantially larger than the others. Also,
the gap between FIFO and FIFO w/ Gram demonstrates the
superiority of fog factors over Gram matrices, which justi-
fies the use of the fog-pass filters.

In addition, we demonstrate the effect of our chosen
value of 3, which is the attenuation coefficient used for gen-
erating synthetic fog [52]. Note that our method exploits a
single value of 3 to resolve the issue of the curriculum adap-
tation [8,51]. Table 4 summarizes the performance of vari-
ants of FIFO trained using different values of 3; the optimal
value for (3 is 0.005.

Finally, we examine the impact of the layers to which

Fz FDD FD Method RC

C1 453 410 483  'Baseline [24] 59.0
RI 451 391 470  Cutmix [15] 61.9
Cl+R1 (Ours) 484 489 50.7 TLP-BNN [14] 60.7
fSuperpixel-mix [13]  61.9

Table 5. Analysis on the layers to which Baseline [46] 576

the fog style matching loss is applied. FIFO 67.6
C1 and RI1 indicate the output of the

first convolution layer and that of the first Table 6. Quantitative results
residual block, respectively. on Rainy Cityscapes (RC).

Input Image FIFO Groundtruth

e

Figure 7. Qualitative results under rain and frost conditions.

the fog style matching loss L., is applied. Specifically,
L ¢sm is applied to the output of the first convolutional layer
(C1), the first residual block (R1), or both of them (C1+R1).
As summarized in Table 5, the performance improves as
more feature maps are affected by the loss. Overall, C1+R1,
which is our final model, shows the best performance.

5.7. Generalization to Other Weather Conditions

We investigate the generalization ability of FIFO on
other weather conditions, rain and frost. To this end,
RefineNet-lw trained by FIFO in Sec. 4 is evaluated as-
is on rainy [27] and frosty [23] versions of the Cityscapes
dataset. On the rainy Cityscapes dataset, our model is com-
pared with existing methods reported in [13] that aim at im-
proving robustness using CW images only. As summarized
in Table 6, our model largely outperforms the previous work
based on a stronger segmentation network (i.e., DeepLab
v3+ [4], indicated by t in the table). Fig. 7 demonstrates
that FIFO generalizes to the frosty images also. More re-
sults can be found in the supplementary material.

6. Conclusion

We have presented FIFO, a new approach to learning
fog-invariant features for foggy scene segmentation. It pre-
cisely quantifies the fog style of an image through the fog-
pass filtering modules and learns a segmentation network
for closing the gap between images of different fog condi-
tions in the fog style space. FIFO outperforms previous arts
without sacrificing performance on clear weather images.
Moreover, unlike the current best-performing method, it en-
ables end-to-end learning and demands no extra module nor
human intervention for training.

Acknowledgement: This work was supported by Samsung Re-
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