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Abstract
We propose a novel hierarchical approach for multiple

rotation averaging, dubbed HARA. Our method incremen-
tally initializes the rotation graph based on a hierarchy of
triplet support. The key idea is to build a spanning tree by
prioritizing the edges with many strong triplet supports and
gradually adding those with weaker and fewer supports.
This reduces the risk of adding outliers in the spanning tree.
As a result, we obtain a robust initial solution that enables
us to filter outliers prior to nonlinear optimization. With
minimal modification, our approach can also integrate the
knowledge of the number of valid 2D-2D correspondences.
We perform extensive evaluations on both synthetic and real
datasets, demonstrating state-of-the-art results.

1. Introduction
We consider the problem of multiple rotation averaging

in the presence of outliers, i.e., finding multiple absolute ro-
tations Ri given a partial set of noisy, outlier-contaminated
constraints on relative rotations Rij = RiR

⊤
j [35]. This

problem has direct application to structure-from-motion
(SfM) [1,13,15,17,18,20,44,47,62,65,67], multiple point
cloud registration [3–5, 28, 32, 36, 46, 56] and simultaneous
localization and mapping (SLAM) [7, 8, 10, 66].

In most global SfM pipelines, multiple rotation averag-
ing is the de facto standard for computing the initial orien-
tations of the cameras: After estimating the relative poses
between image pairs (e.g., by matching feature descriptors
such as SIFT [43] and running the 5-point algorithm [48]
with RANSAC [23]), one can solve the rotation averaging
problem and obtain the absolute rotations with respect to a
common reference frame. These initial rotations are then
used in subsequent operations such as translation estima-
tion [17, 62], pose graph optimization [10, 46], multiview
triangulation [38,41] and bundle adjustment [34,42,57]. As
a result, all these tasks depend critically on the solution pro-
duced by the rotation averaging algorithm.

For this reason, numerous research endeavors have been
made in the past decade to develop reliable and versatile ro-
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tation averaging methods. However, even without any out-
liers in the input, solving a large-scale rotation averaging
problem is nontrivial [60,61]. The problem only gets worse
when the input contains outliers, which is often the case in
practice [12,46,62]. These outliers, if not handled properly,
can easily degrade the estimation accuracy.

Commonly, rotation averaging is formulated as a non-
linear optimization problem and solved iteratively starting
from some initial guess of the absolute rotations [12, 13,
33,54]. If, however, this initial guess is severely affected by
outliers, it becomes extremely difficult to obtain an accurate
result later on. Therefore, a robust initialization is essential
for reliable rotation averaging in the presence of outliers.

In this work, we propose a novel method for robust mul-
tiple rotation averaging. Our main contribution is a hierar-
chical initialization scheme that constructs a spanning tree
of a rotation graph by propagating most reliable constraints
first and less reliable ones later. We establish the hierar-
chy of reliability based on the number of consistent triplet
constraints, as well as their level of consistency. That is, we
consider a constraint to be more reliable if it is strongly sup-
ported by many other constraints and less reliable if it has
weaker or fewer supports. Optionally, we can also incor-
porate the number of valid 2D-2D correspondences into the
hierarchy. Experimental results show that our approach can
significantly improve the robustness of rotation averaging.
To download our code and the supplementary material, go
to https://seonghun-lee.github.io.

2. Related Work

Early works on motion averaging demonstrated various
methods for estimating absolute rotations from pairwise
constraints [25, 29, 30, 44, 52]. In recent works, the focus
has been on either (1) achieving the global optimality in the
absence of outliers, or (2) obtaining a robust solution in the
presence of outliers. This work belongs to the second group.

(1) Globally optimal methods in outlier-free scenarios:
In [9,24], globally optimal methods using Lagrangian dual-
ity are proposed. In later works, more advanced optimiza-
tion methods have been proposed to enhance the speed and
scalability, while guaranteeing the global optimality of the
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solution [21, 22, 51]. For more recent works on optimal
methods, we refer to [19, 45, 49].

(2) Robust methods in the presence of outliers:
Various methods have been proposed to handle outliers (see
[58] for a survey). First, there are methods that attempt to
detect and remove outliers, e.g., [14, 31, 64]. Govindu [31]
uses a RANSAC-based method by sampling random span-
ning trees. Zach et al. [64] employ a more tractable ap-
proach based on Bayesian inference from sampled loop in-
consistencies. In [14], Crandall et al. use discrete belief
propagation on a Markov random field to obtain the initial
solution and remove edges with large errors.

On the other hand, some methods do not completely re-
move outliers, but instead suppress large errors during opti-
mization. For example, Hartley et al. [33] apply single ro-
tation averaging under the L1 norm to update each absolute
rotation in a distributed manner. Wang and Singer [59] use
semidefinite relaxation and an alternating direction method
to minimize a cost function based on the L1 norm. Chat-
terjee and Govindu [11, 12] apply the Lie-algebraic aver-
aging [30] using the iteratively reweighted least squares
(IRLS) method with a robust loss function. In [3], Arrigoni
et al. demonstrate that the spectral decomposition method
in [1] can be robustified using the IRLS method. Recently,
Shi and Lerman [54] proposed an alternative optimization
method, called message passing least squares, and demon-
strated its advantages over the IRLS approach [12].

Other robust methods directly model the presence of out-
liers in the optimization problem: Boumal et al. [6] take
into account the outliers in the noise model and compute the
maximum likelihood estimate via Riemannian trust-region
optimization. Arrigoni et al. [2, 3] intrinsically include the
outliers in the cost function and estimate the rotations via
low-rank and sparse matrix decomposition.

Another popular approach is to exploit additional visual
information (e.g., the number of inlier feature matches or
the similarity score) to identify inlier edges and obtain a
robust initial solution [13, 16, 20, 26, 27, 53].

Recently, learning-based approaches have been proposed
in [50, 63]. Although these supervised methods may not al-
ways generalize well to unfamiliar settings, they show im-
pressive performance on data similar to the training data.

3. Preliminaries and Notation
We denote the Euclidean and the Frobenius norm of a

3D vector v by ∥v∥ and ∥v∥F , respectively. We represent
a rotation with a rotation matrix R ∈ SO(3) or a rotation
vector u = θû where θ and û are the angle and the unit axis
of the rotation, respectively. The two representations are
related by Rodrigues’ formula, and we denote the mapping
between them by Exp(·) and Log(·) [55]:

R = Exp(u), u = Log(R). (1)

In the context of SfM, the absolute rotation and translation
of camera i are denoted as Ri and ti, respectively. To-
gether, they transform a 3D point from the world frame to
the camera reference frame: xi = Rixw + ti. We de-
note with Rjk the relative rotation between Rj and Rk,
i.e., Rjk = RjR

⊤
k .

The angular distance between Rj and Rk is defined as
the angle of the rotation RjR

⊤
k , i.e.,

d(Rj ,Rk) = ∥Log
(
RjR

⊤
k

)
∥. (2)

The chordal distance is related to the angular distance by
the following equation [35]:

dchord(Rj ,Rk) :=∥Rj −Rk∥F (3)

=2
√
2 sin (d(Rj ,Rk)/2). (4)

If both Rj and Rk have a small angle, their relative rotation
can be approximated using the Baker-Campbell-Hausdorff
(BCH) formula [30]:

RjR
⊤
k ≈ Exp(uj − uk). (5)

⇒ Log
(
RjR

⊤
k

)
≈ uj − uk. (6)

In the following, we list some important terminology:
• Nodes and edges: Multiple absolute rotations are related

to each other in pairs, so the underlying structure can be
represented by a graph. In this context, the nodes repre-
sent the unknown absolute rotations, and the edges repre-
sent the known pairwise constraints.

• Neighbors: When two nodes are connected by an edge,
they are each other’s neighbors.

• Fixed nodes and family: Once a node is initialized with
some absolute rotation, we call it fixed. A family refers to
the set of all fixed nodes. The goal of the initialization is
to have all nodes included in the family.

• Base node: One of the fixed nodes can be chosen as the
base node at any time during the initialization. This is the
node from which the yet-incomplete spanning tree will
branch out if a certain condition is met.

• Consistent triplet: Node i, j and k form a consistent
triplet if and only if the input relative rotations satisfy

dchord(R
in
ij ,R

in
ikR

in
kj) < ϵ, (7)

where ϵ is called a loop threshold. A triplet that satisfies
Eq. (7) under small ϵ is described as “strong”, and one
that does it under relatively large ϵ is described as “weak”.
If a triplet contains one or more outlier edges, it is most
likely to be inconsistent and fail to meet Eq. (7).

• Number of triplet supports: Suppose that a base node
has several non-family neighbors, including node i. The
number of triplet supports of neighbor i refers to the num-
ber of consistent triplets formed by the base node, node i
and another neighbor of the base node. A simple example
is illustrated in Fig. 1.
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4. Method
The proposed method consists of three steps:

1. Robust initialization of the absolute rotations by build-
ing a spanning tree in a hierarchical manner. If the
number of inlier matches is known for all edges, we
can optionally incorporate it in the initialization.

2. Filtering the edges that do not conform to the initial
solution to remove as many outliers as possible.

3. Iterative local refinement using nonlinear optimization.
To make the initialization step easier to understand, we first
describe the simplified version in Section 4.1 and then the
full version in Section 4.2. We explain the edge filtering and
the local refinement in Section 4.3 and 4.4, respectively.

4.1. Hierarchical initialization (simplified version)

We initialize the absolute rotations by constructing a
spanning tree of the graph. As we expand the tree incre-
mentally, we want to avoid as many outlier edges as possi-
ble, so we start adding the most reliable edges first. In our
method, there are two modes of tree expansion: (1) based
on the triplet support, or (2) via single rotation averaging.

First, we set a certain integer threshold s (called a sup-
port threshold) and check if the base node has any non-
family neighbors with s or more triplet supports. If so, we
add these neighbors to the family and obtain their rotations
(Rest

N ) by propagating from the base node (Rest
B ), i.e.,

Rest
N ← Rin

NBR
est
B . (8)

For example, if s = 2 in Fig. 1, we would add node 5 and 7 in
the family, but not 6. If all non-family neighbors of the fam-
ily have fewer than s triplet supports, we update s← s− 1
and, for the next base node, choose the family member that
has the most non-family neighbors with s or more supports.
We repeat the same propagation process afterwards.

Another way to expand the tree is to add a node via sin-
gle rotation averaging when all non-family neighbors of the
family have zero triplet support. In this case, we let every
family member vote for their non-family neighbors, and the
one with the most votes is added to the family. This node
also becomes the next base. To determine its rotation, we
first obtain the candidate rotations by propagating from the
family nodes that voted for it. Then, we average these ro-
tations using the robust single rotation averaging method
in [40]. Finally, the candidate rotation that is closest to the
result is assigned to the node. Fig. 2 shows an example.

At each iteration, our initialization algorithm decides be-
tween the two aforementioned modes of tree expansion. We
first try expanding based on the triplet support by adapting
the support threshold s, and when s = 0, we expand the tree
via voting and single rotation averaging. Every time a node
is added to the family, we reset s to the initial value. Alg. 1
summarizes the procedure and Fig. 3 shows a toy example.

Inlier edge

Outlier edge

Unfixed node

Fixed node

Base node
1 2 3

7

5

64

family = {1, 2, 3, 4}

Figure 1. In this example, the base node (4) has three non-family
neighbors (5, 6 and 7). We check the triplet consistency (Eq. (7))
without directly inferring the outlier edge: Node 5 has two triplet
supports, i.e., (3, 4, 5) and (4, 5, 7), 6 has one support, i.e., (4, 6,
7), and 7 has three supports, i.e., (3, 4, 7), (4, 5, 7) and (4, 6, 7).

Inlier edge

Outlier edge

Unfixed node

Fixed node

1 2 3

6 7

4 5

Figure 2. Here, no matter which family member is chosen as the
base node, we cannot form a consistent triplet. In this case, we
let every family member vote for their non-family neighbors and
add the one with the most votes (node 6) to the family. Among the
candidate rotations propagated from node 1, 3 and 5, we choose
the one that is closest to their robust average (obtained using [40]).

Algorithm 1: Hierarchical Initialization (simplified)
1 s← sinit, family← {}, newFamily← {};
2 Add the node with the most neighbors to family and

newFamily, and set its rotation to identity;
3 while not all nodes are in family do
4 while newFamily is not empty do
5 Choose a member of newFamily as the base node

and remove it from newFamily;
6 Propagate away from the base node to its non-family

neighbors using Eq. (8), and add those with s or
more triplet supports to family and newFamily;

7 if at least one node is added to newFamily then
8 s← sinit;
9 end

10 end
11 For the next base node, choose the family member that has

the most non-family neighbors with s or more supports;
12 if the base node has at least one non-family neighbor with

s or more supports then
13 Add the base node to newFamily.
14 else
15 s← s− 1;
16 end
17 if s = 0 then
18 Let every family member vote for their non-family

neighbors, add the one with the most votes to
family and newFamily, and set its rotation via
single rotation averaging (see Fig. 2);

19 s← sinit;
20 end
21 end
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Figure 3. [Top left] A toy example. We show the steps of our initialization algorithm with s = 2 and a fixed loop threshold.
(i) First, we choose the node with the most neighbors (node 1) as the base node and set its rotation to identity. This node is the first

member of the family. By propagating away from this node using Eq. (8), its neighbors get tentative rotations. For each neighbor, we count
the number of triplet supports (i.e., the number of other neighbors supporting it), and if it has s or more supports, we add it to the family.
In this example, node 3 is supported by two other neighbors (node 2 and 4), and it is the only one added to the family. Node 3 becomes the
next base node, and we fix its rotation. Also, the edge (1, 3) turns into a spanning tree edge.

(ii) We repeat the same process by propagating away from the new base node (node 3). The only non-family neighbor that has s or
more supports is node 11, so we fix its rotation, add it to the family, and select it as the next base node.

(iii) We propagate away from the new base node (node 11), but no neighbor has enough supports. In this case, we update s ← s − 1
and check for each family member how many neighbors have s or more supports: node 1 has two (node 2 and 4), node 3 has four (node 2,
4, 9, 10), and node 11 has two (node 9 and 10). Since node 3 has the most, it becomes the next base node. Note that in the full version of
the algorithm, we do this counting as soon as the base node changes and store the results for reuse (more details in Section 4.2).

(iv) We propagate away from the new base node (node 3), and the non-family neighbors with s (= 1) supports are node 2, 4, 9 and 10.
These four nodes are added to the family, and their rotations are fixed.

(v) With node 1–4 and 9–11 in the family, none of their non-family neighbors has a single support. In this case, each family member
votes for their non-family neighbors, and the one with the most votes is added to the family. This node (node 12) also becomes the next
base node. To determine its rotation, we first average the candidate rotations propagated from node 1, 3 and 11 using [40]. Then, the
candidate rotation that is closest to the result is assigned to node 12, and the corresponding edge becomes a spanning tree edge. In this
example, let us suppose that it is the edge (1, 12).

(vi) Every time a node is added to the family, we reset s to the initial value (s← 2). Afterwards, we repeat the process of propagating
away from the base node and adding the neighbors with s or more supports to the family. In this example, node 12 has three non-family
neighbors (node 13, 14, 15) and they all have s supports. Therefore, all three of them are added to the family and their rotations are fixed.

(vii) With node 1–4 and 9–13 in the family, none of their non-family neighbors has s (= 2) supports. We update s ← s − 1 and check
again, but none has a single support. Now, as in Step (v), we let every family member vote for their non-family neighbors, and add the
one with the most votes. Repeating this procedure adds node 5–8 to the family one by one. Finally, all nodes are in the family and their
rotations are fixed. The algorithm returns the estimated rotations of all nodes.
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4.2. Hierarchical initialization (full version)

The simplified algorithm described in the previous sec-
tion constructs a spanning tree by adding the most supported
edges first. In the full version, we consider two more as-
pects: the loop threshold ϵ in Eq. (7), and optionally, the
number of valid 2D-2D correspondences. We highlight the
differences between the two versions in Alg. 2.

In the simplified version, the consistency of a triplet de-
pends entirely on a single threshold ϵ we set. In the full ver-
sion, we set multiple thresholds (ϵ1, ϵ2, . . . , ϵm in ascending
order) and adaptively switch between them. Specifically,
we start from the smallest (the strictest) threshold and grad-
ually move on to larger (less strict) thresholds. As a result,
the following hierarchy is established:

1. Neighbor nodes with many triplet supports under small
ϵi are added to the family first.

2. Those with many supports under large ϵi are added next.
3. Those with few supports under small ϵi are added next.
4. Those with few supports under large ϵi are added last.

Another change from the simplified version is that we
store the number of supported neighbors each time we try
propagating away from the base node. This data is stored in
a supported neighbors table (SN table), a 3D array whose
dimensions correspond to the base node index, the thresh-
old index, and the number of triplet supports. We organize
this table such that the entry at position (x, y, z) corre-
sponds to the number of non-family neighbors of base node
x that have z or more supports under the y-th threshold ϵy .
Note that each time we update the SN table for the cur-
rent base node, we update it for all y = 1, 2, . . . ,m and
z = 1, 2, . . . , sinit. This is done in line 10 of Alg. 2.

The advantage of maintaining this table is that we can
reuse it to promptly find the node with the most number of
supported neighbors for any given s and ϵ (line 15 of Alg.
2). This operation is necessary when we have to choose the
next base node after s is decremented. Although the data
in the SN table may sometimes be outdated (because some
non-family neighbors can turn into family members later),
we can at least avoid having to evaluate the neighbors of all
family members repeatedly (i.e., line 11 of Alg. 1).

Our approach can also seamlessly integrate the knowl-
edge of the number of valid 2D-2D correspondences. This
can be done with minimal modification of Alg. 2: Let d1,
d2, . . . , dk (in descending order) be some thresholds we
set for the number of valid 2D-2D correspondences. Then,
we run the outer loop (line 6–29) while pretending that all
edges whose valid correspondences are fewer than d1 do not
exist. When the number of total votes becomes zero in line
26, we reset s, ϵ and the SN table to the initial state, switch
the correspondence threshold to the next one (d2) and con-
tinue. This process ensures that the edges with very few
valid correspondences are added last.

Algorithm 2: Hierarchical Initialization (full version)
1 s← sinit, family← {}, newFamily← {};
2 Add the node with the most neighbors to family and

newFamily, and set its rotation to identity;
3 Determine the loop thresholds ϵ1, ϵ2, . . . , ϵm;
4 i← 1, ϵ← ϵi;
5 snTable← Zero 3D array of dimension n×m×s;

(n is #nodes, m is #loop thresholds, s is a support threshold)
6 while not all nodes are in family do
7 while newFamily is not empty do
8 Choose a member of newFamily as the base node

and remove it from newFamily;
9 Propagate away from the base node to its non-family

neighbors using Eq. (8) and add those with s or
more triplet supports to family and newFamily;

10 Update snTable for the base node;
11 if at least one node is added to newFamily then
12 s← sinit, i← 1, ϵ← ϵi;
13 end
14 end

15

In snTable, find the family member that has the most
non-family neighbors with s or more triplet supports under
the current threshold ϵ. Choose it as the base node;

16 if the base node has at least one non-family neighbor with
s or more supports then

17 Add the base node to newFamily.
18 else
19 if i < m then
20 i← i+ 1, ϵ← ϵi;
21 else
22 s← s− 1, i← 1, ϵ← ϵi;
23 end
24 end
25 if s = 0 then
26 Let every family member vote for their non-family

neighbors, add the one with the most votes to
family and newFamily, and set its rotation via
single rotation averaging (see Fig. 2);

27 s← sinit, i← 1, ϵ← ϵi;
28 end
29 end

Implementation details:
1. In line 5 of Alg. 1 and line 8 of Alg. 2, if newFamily

has multiple members, we choose the one with the most
neighbors as the base node. This is because we want to
add well-connected nodes first to minimize drift.

2. In all of our experiments in this paper, we fix sinit = 10,
d1 = 5 and d2 = 0.

3. For good performance, the loop thresholds should reflect
the noise level of the inlier edges. To this end, we use a
simple heuristic method to determine their values in line
3 of Alg. 2: For each edge (i, j), we sample at most
10 common neighbors of node i and j, forming up to
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10 triplets (i, j, k). We compute the loop errors (7) of
all triplets from all edges and collect only those below
1. Then, we set the loop thresholds ϵ1, ϵ2 and ϵ3 to the
10th, 20th and 30th percentile of the collected errors.

4.3. Edge filtering

Having obtained an initial solution (Rest
i for i = 1, 2,

. . . , n) from the spanning tree in Section 4.2, we next filter
potential outlier edges in the full rotation graph before op-
timizing the solution. This is done by checking whether or
not each edge conforms to the initial solution. Specifically,
we consider edge (j, k) as an outlier and exclude it from the
further operations if the following condition is met:

dchord

(
Rin

jk,R
est
j Rest

k
⊤
)
> τ, (9)

where τ is some threshold (we set τ = 1 in this work).
While this filtering step often enhances the robustness for

moderate outlier ratios (< 0.3), we found that it sometimes
worsens the accuracy for higher outlier ratios. Therefore,
we skip this step when we deem the outlier ratio to be too
high. In practice, we assume that this is the case when the
median of the loop errors from all sampled triplets is larger
than 1 (see the implementation detail 3 of Section 4.2).

4.4. Local refinement

Given the initial solution and the filtered constraints
(Rin

jk for (j, k) ∈ filtered edges), we perform an iterative
local refinement using the optimization method proposed
in [12]. In the following, we briefly summarize this method.

The goal here is to find the optimal updates such that the
updated solution fits the constraints better, i.e.,

Rin
jk =

(
Rest

j ∆Rj

) (
Rest

k ∆Rk

)⊤
. (10)

Rearranging this and taking the Log (1) of both sides gives

Log
(
Rest⊤

j Rin
jkR

est
k

)
= Log

(
∆Rj∆R⊤

k

)
. (11)

Assuming that the updates are small, we can use the approx-
imation in Eq. (6) on the right-hand side and obtain

Log
(
Rest⊤

j Rin
jkR

est
k

)
≈ ∆uj −∆uk, (12)

where ∆uj and ∆uk are the rotation vectors of ∆Rj and
∆Rk, respectively. Since the left-hand side of Eq. (12)
is known, stacking these equations for all filtered edges re-
sults in a linear system of equations, which we solve us-
ing a linear algebra library. We update the rotations, i.e.,
Rest

i ← Rest
i ∆Ri for all i, plug them back into Eq. (12) and

repeat the same process until convergence. In practice, we
carry out the optimization using the IRLS method with the
ℓ 1

2
loss function, as in [12]. Also, to reduce the total num-

ber of arithmetic operations, all rotations (both absolute and
relative) are parameterized as quaternions. For more details,
we refer to the original work [12].

5. Results
We compare our method with the following methods: R-

GoDec1 [2, 3], Eig-IRLS2 [3], IRLS-ℓ 1
2

3 [12], MPLS4 [54]
and Hybrid RA5 [13]. Since the implementation of the view
graph filtering (VGF) in Hybrid RA is not publicly avail-
able, we reproduced this part by ourselves. Note that this
part is only applicable if 2D-2D correspondences are given
for all edges. All methods are implemented in MATLAB,
except Hybrid RA which is written in C++. We run all
methods on a laptop with Intel’s 4th Gen i7 CPU (2.8 GHz).

We evaluate the accuracy using two error metrics:

θ1 = min
Ralign

1

n

n∑
i=1

d
(
Rgt

i ,R
est
i Ralign

)
, (13)

θ2 = min
Ralign

√√√√ 1

n

n∑
i=1

d
(
Rgt

i ,R
est
i Ralign

)2
. (14)

They respectively represent the optimal mean and RMS er-
ror after aligning the estimated rotations to the ground truth.
The rotation Ralign in Eq. (13) and (14) can be obtained by
solving the single rotation averaging problem under the L1

and L2 norm, respectively [33, 35].

5.1. Synthetic data

For a controlled study of various factors, we run Monte
Carlo simulations in multiple settings: We generate n ran-
dom rotations in a circular order and obtain the relative ro-
tation of p% of all possible pairs. The edges are established
as follows: First, we connect all successive nodes (i.e. node
1&2, 2&3, ..., n&1). Then, we connect those separated by
one node (i.e. node 1&3, 2&4, ..., n − 1&1, n&2), and af-
terwards, those separated by two nodes, three nodes, and so
forth. We continue this process until p% are connected in
total. This leads to all nodes being connected to their lo-
cal neighbors in a sliding window fashion. Next, we turn
q% of the edges into outliers, i.e., random relative rotations.
We exclude the edges between successive nodes, so that ev-
ery node gets at least two inlier edges. Finally, all edges are
perturbed byN (0, σ2) and their order is randomized. These
edges are used as input to the rotation averaging algorithms.
The simulation is configured by setting {n, p, q, σ} to
one of the following values: n = {100, 200} rotations,
p = {50, 20}%, q = {0, 5, 10, ..., 50}%, σ = {5, 10} deg.
For each setting, we generate 100 independent datasets.

Fig. 4 and 5 present the results for 100 and 200 rotations,
respectively. We see that MPLS and HARA are the two best
performing methods, especially at high outlier ratios.

1http://www.diegm.uniud.it/fusiello/demo/gmf/
2The code was kindly provided by the authors of [3].
3http://www.ee.iisc.ac.in/labs/cvl/research/

rotaveraging/
4https://github.com/yunpeng-shi/MPLS
5https://github.com/AIBluefisher/GraphOptim
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Figure 4. Simulation results (100 rotations): We plot the optimal
mean errors, θ1 in Eq. (13). For dense graphs (p = 50%), IRLS-
ℓ 1

2
, MPLS and HARA perform similarly well. For sparse graphs

(p = 20%), MPLS and HARA are more robust to outliers than the
rest, with MPLS being slightly better at high outlier ratios.

5.2. Real data

Without using the number of inlier feature matches:
We evaluate the performance on the following real-world
datasets: 1DSfM datasets6 [62], ‘Notre Dame 715’ (ND2)
dataset3 [12], ‘Acropolis’ (ACP), ‘Arts Quad’ (ARQ) and
‘San Francisco’ (SNF) datasets7 [14]. As in [12], only those
cameras whose ground truth is available are used to evaluate
the accuracy, even though those without the ground truth
are still included in the input for rotation averaging. Table
1 reports the results. It shows that in most cases HARA
achieves state-of-the-art accuracy at a comparable speed.

Using the number of inlier feature matches:
For this experiment, we only use the 1DSfM dataset6 [62],
as the other datasets do not provide the 2D-2D correspon-
dences. The feature matches are only available for those
cameras with the ground truth, so we disregard the rest. To
check the validity of the correspondences, we put a thresh-
old (0.01) on the sine of the L1-optimal angular reprojec-
tion error [37, 39]. Table 2 presents the results. It shows
that HARA achieves state-of-the-art results, with or with-
out incorporating the number of inlier matches.

6http://www.cs.cornell.edu/projects/1dsfm/
7http://vision.soic.indiana.edu/projects/disco/
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Figure 5. Simulation results (200 rotations): We plot the optimal
mean errors, θ1 in Eq. (13). IRLS-ℓ 1

2
, MPLS and HARA perform

similarly well, except that for sparse graphs (p = 20%), IRLS-ℓ 1
2

is outperformed by the other two at high outlier ratios.

6. Limitations
The main limitation of our method is that it is sensitive to

the parameters we set, especially the loop thresholds. Cur-
rently, we determine their values using a simple heuristic
based on the sampled loop errors (Section 4.2). We noticed
that, in some of the real datasets, a small change in this
heuristic introduces a non-negligible fluctuation in the ini-
tialization accuracy. In future work, we plan to replace this
heuristic with a more robust and reliable method.

7. Conclusion
We presented HARA, a hierarchical approach for robust

multiple rotation averaging. For robust initialization of the
rotation graph, we incrementally build a spanning tree based
on a hierarchy of triplet support. That is, the edges sup-
ported by many strong triplets are added in the tree sooner
than those with fewer or weaker triplets. This approach sig-
nificantly reduces the influence of outliers on the initial so-
lution, allowing us to filter outliers prior to nonlinear opti-
mization. Also, we showed that we can optionally integrate
the knowledge of the number of valid 2D-2D correspon-
dences into our approach. An extensive evaluation demon-
strates that HARA achieves state-of-the-art results.
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Datasets R-GoDec [3] Eig-IRLS [3] IRLS-ℓ 1
2

[12] MPLS∗ [54] Hybrid RA [13] HARA w/o
w/o VGF† #inlier matches

Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 627 49.5% 6.3 16.3 4s 3.9 12.2 21s 4.2 12.6 27s 3.7 12.1 29s 4.3 12.7 – 3.5 11.5 45s
ELS 247 66.8% 4.1 10.7 1s 3.3 11.5 3s 2.9 10.3 4s 2.8 10.9 7s 3.1 10.5 – 2.1 7.4 7s
GDM 742 17.5% 51.3 64.8 17s 65.8 74.2 29s 37.5 62.3 12s 40.7 68.7 74s 44.7 60.0 – 43.8 72.5 26s
MDR 394 30.7% 10.2 18.5 1s 10.9 22.4 5s 7.0 17.1 4s 5.2 14.7 5s 6.4 16.2 – 4.8 14.5 14s
MND 474 46.8% 6.2 18.4 3s 1.9 11.2 7s 1.5 7.4 10s 1.2 3.9 9s 1.5 6.9 – 1.1 2.1 20s
ND1 553 68.1% 5.2 15.5 6s 3.6 14.8 16s 3.5 14.6 28s 2.7 13.5 27s 3.5 14.7 – 1.6 6.3 55s
NYC 376 29.3% 6.4 9.9 6s 3.8 8.2 5s 3.0 7.0 3s 3.0 8.2 7s 3.2 7.4 – 2.9 7.7 10s
PDP 354 39.5% 11.4 22.0 2s 4.0 9.3 8s 4.1 8.1 4s 3.5 8.2 4s 5.3 10.4 – 3.4 7.4 9s
PIC 2508 10.2% 24.8 40.0 150s 81.0 91.2 687s 6.8 18.6 467s 4.6 14.6 295s 7.0 20.1 – 4.4 13.1 289s
ROF 1134 10.9% 12.6 19.5 61s 3.4 10.4 52s 3.1 10.2 12s 2.8 10.0 13s 3.1 9.2 – 2.7 8.5 31s
TOL 508 18.5% 6.4 13.1 8s 4.5 10.7 10s 3.9 9.0 2s 4.0 9.4 6s 4.4 10.5 – 4.3 10.0 13s
TFG 5433 4.6% 42.1 54.2 722s 59.4 67.1 833s 3.6 9.8 976s 4.5 10.8 1945s 15.1 17.8 – 3.5 10.7 925s
USQ 930 5.9% 12.0 23.7 27s 6.7 12.8 22s 9.3 22.2 10s 6.3 14.7 11s 9.3 21.7 – 6.0 12.3 9s
VNC 918 24.6% 16.1 36.9 25s 8.6 28.4 27s 8.3 27.5 28s 6.2 18.2 53s 8.4 27.2 – 6.1 18.1 47s
YKM 458 26.5% 6.1 11.3 7s 3.8 9.4 8s 3.5 8.4 3s 3.5 9.2 7s 3.5 8.4 – 3.0 6.9 16s
ND2 715 25.3% 2.7 10.0 10s 1.2 4.0 13s 1.1 3.5 13s 1.1 4.0 12s 1.1 3.5 – 1.3 5.5 23s
ACP 463 10.7% 0.8 1.2 6s 1.1 1.7 4s 1.2 1.7 1s 1.4 2.0 2s 1.2 1.7 – 1.2 1.7 7s
ARQ 5530 1.5% 29.7 56.5 1111s 70.1 79.7 4894s 4.0 7.1 173s 3.2 6.3 118s 3.9 6.9 – 3.6 6.8 137s
SNF 7866 0.3% Out of memory 77.3 87.3 3.8h 3.6 4.2 180s 4.4 5.5 154s 4.3 6.2 – 3.6 4.2 44s
θ1 (deg): Optimal mean error in Eq. (13), θ2 (deg): Optimal RMS error in Eq. (14), %edges = #edges/#possible pairs of views in %.

∗Due to the non-deterministic nature of MPLS [54], we report the median of five independent runs.
†The computation times of Hybrid RA [13] are not included for comparison, since it is the only method implemented in C++.

Table 1. Results on the real datasets without the knowledge of the 2D-2D correspondences: For all datasets, HARA gives either better
or comparable results to the state of the art. Interestingly, for the SNF dataset, it takes substantially less time than the rest. The results of
MPLS [54] are mostly competitive with ours, except for the ELS, ND1, TFG and SNF datasets where HARA performs noticeably better.
We run Hybrid RA [13] without view graph filtering because this requires the number of valid 2D-2D correspondences. As a result, this
method does not provide much gain in accuracy compared to IRLS-ℓ 1

2
[12], even though it performs an additional global optimization

prior to local refinement. In fact, Hybrid RA performs much worse than IRLS-ℓ 1
2

on the TFG dataset.

Datasets IRLS-ℓ 1
2

[12] MPLS∗ [54] Hybrid RA [13] Hybrid RA [13] HARA w/o HARA with
w/o VGF† with VGF† #inlier matches #inlier matches

Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 577 58.4% 4.0 12.4 28s 3.7 12.0 24s 4.3 12.8 – 3.0 10.2 – 3.5 11.5 41s 3.4 11.0 40s
ELS 227 78.0% 2.8 10.1 2s 3.0 11.7 6s 3.0 9.9 – 2.1 7.1 – 2.1 7.2 8s 1.8 4.8 6s
GDM 677 20.9% 37.4 62.2 8s 40.7 68.6 81s 34.5 55.3 – 39.9 68.7 – 44.1 72.5 23s 44.3 72.8 16s
MDR 341 40.7% 6.7 16.7 4s 5.1 14.4 4s 6.3 15.8 – 4.4 13.1 – 4.8 14.5 13s 4.8 14.8 11s
MND 450 51.8% 1.5 7.4 6s 1.2 3.9 8s 1.5 6.9 – 1.1 2.2 – 1.1 2.1 21s 1.1 2.1 18s
ND1 553 68.1% 3.5 14.6 29s 2.8 13.6 30s 3.5 14.7 – 1.7 6.1 – 1.6 6.3 61s 1.5 5.9 44s
NYC 332 37.4% 3.1 7.1 3s 3.1 8.2 7s 3.4 7.8 – 3.0 7.1 – 2.9 7.8 8s 2.6 5.8 7s
PDP 338 43.3% 4.1 8.2 4s 3.5 8.2 4s 5.2 10.3 – 3.1 6.4 – 3.5 7.8 8s 3.3 6.6 7s
PIC 2152 13.4% 6.2 17.0 419 4.7 14.6 254s 6.3 18.6 – 4.3 12.1 – 4.1 11.3 269s 4.0 11.3 247s
ROF 1084 11.9% 3.1 10.2 16s 2.8 9.7 13s 3.1 9.4 – 2.5 6.7 – 2.7 8.7 30s 2.5 7.6 25s
TOL 472 21.4% 3.9 8.9 2s 4.0 9.4 4s 4.4 10.4 – 4.0 9.4 – 4.3 10.0 8s 4.0 8.9 11s
TFG 5058 5.3% 3.5 8.9 881s 5.3 11.1 1466s 4.0 9.8 – 5.3 11.8 – 3.5 10.1 948s 3.4 9.6 902s
USQ 789 7.9% 6.7 14.2 5s 6.2 12.9 7s 7.9 17.0 – 6.6 14.8 – 5.9 11.2 10s 5.8 10.8 9s
VNC 836 29.6% 8.4 27.5 32s 6.2 18.2 59s 8.4 27.1 – 6.3 18.0 – 6.2 18.1 54s 6.2 18.1 52s
YKM 437 29.1% 3.5 8.4 2s 3.6 9.4 4s 3.6 8.4 – 3.9 11.8 – 3.0 6.9 11s 3.4 11.2 12s
θ1 (deg): Optimal mean error in Eq. (13), θ2 (deg): Optimal RMS error in Eq. (14), %edges = #edges/#possible pairs of views in %.

∗Due to the non-deterministic nature of MPLS [54], we report the median of five independent runs.
†The computation times of Hybrid RA [13] are not included for comparison, since it is the only method implemented in C++.

Table 2. Results on the real datasets with the knowledge of the number of valid 2D-2D correspondences: The best performing methods
are Hybrid RA [13] (with VGF) and HARA with and without using #inlier feature matches. All three of these methods give competitive
results, but on the TFG and USQ datasets, HARA outperforms Hybrid RA by a noticeable margin.
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[66] Álvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, and Ian
Reid. Visual SLAM: Why bundle adjust? In IEEE Int. Conf.
on Robotics and Automation, pages 2385–2391, 2019. 1
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