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Abstract

Recent works attempt to integrate the non-local opera-
tion with CNNs or Transformer, achieving remarkable per-
formance in image restoration tasks. The global similar-
ity, however, has the problems of the lack of locality and
the high computational complexity that is quadratic to an
input resolution. The local attention mechanism alleviates
these issues by introducing the inductive bias of the local-
ity with convolution-like operators. However, by focusing
only on adjacent positions, the local attention suffers from
an insufficient receptive field for image restoration. In this
paper, we propose a new attention mechanism for image
restoration, called k-NN Image Transformer (KiT), that rec-
tifies the above mentioned limitations. Specifically, the KiT
groups k-nearest neighbor patches with locality sensitive
hashing (LSH), and the grouped patches are aggregated
into each query patch by performing a pair-wise local atten-
tion. In this way, the pair-wise operation establishes non-
local connectivity while maintaining the desired properties
of the local attention, i.e., inductive bias of locality and lin-
ear complexity to input resolution. The proposed method
outperforms state-of-the-art restoration approaches on im-
age denoising, deblurring and deraining benchmarks. The
code will be available soon.

1. Introduction
Image restoration aims to recover a clean image from

various type of degradations (e.g. noise, blur, rain, and
compression artifacts), which has a huge impact on the
performance of downstream tasks such as image classifica-
tion [14,56], object detection [22,46], segmentation [4,10],
and to name a few. It is a highly ill-posed inverse problem
as there may exist multiple number of solutions for a sin-
gle degraded image. Recent restoration works [17, 36, 76]
attempt to establish a mapping relation between clean and
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Figure 1. Comparisons of different attention approaches: (a)
Global attention [18, 45, 57] computes self-similarity between
patches globally, (b) Local attention [33, 59] measures self-
similarity within a single patch at the pixel-level, and (c) the pro-
posed method aggregates similar k patches with a pair-wise local
attention at the pixel-level.

degraded images by leveraging the representation power
of the convolutional neural networks (CNNs). A series
of local operations used in the CNNs is, however, inher-
ently less capable of capturing a long-range dependency,
exhibiting certain limitations in deliberating global infor-
mation over an entire image. To enlarge the receptive field,
increasing network depth [51], dilated convolution [66],
and hierarchical architecture [40] have been proposed, but
the receptive field still does not secure global information
as it is limited to local regions. Recently, non-local op-
eration, which mostly contributed to non-learning based
restoration approaches [5, 15], has again emerged as a
promising solution with the success of non-local neural net-
works [58]. As similar patterns tend to repeat within a nat-
ural image, non-local self-similarity of computing the re-
sponse at a single position by weighted sum of all posi-
tions has served as an important cue for an image restora-
tion [16, 28, 32, 37, 38, 43, 53, 77, 78]. A non-local self-
similarity of [58] could capture the long-range dependency
within deep networks, but the quadratic complexity with re-
spect to the input feature resolution limits the network ca-
pacity. Consequently, it is employed only in relatively low-
resolution feature maps of specific layers [16, 32, 77].

More recently, Vision Transformer (ViT) [18] proposed
a new approach to apply the global attention mechanism,
which can be viewed as the non-local operation, of the
Transformer [55] to vision tasks by splitting an image into
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a set of non-overlapping patches, embedding into the fea-
ture space, and feeding them into multiple transformer lay-
ers to model global self-similarities among patches (Fig. 1
(a)). ViT achieved a pleasing trade-off between accuracy
and computational complexity in the image classification
task, but the quadratic complexity with respect to the input
feature resolution still makes it nearly infeasible to apply the
transformer to dense prediction tasks. To overcome this lim-
itation, different from ViT that maintains feature resolutions
across the entire network, some approaches [45, 57] pro-
posed a hierarchical architecture to exploit multi-scale fea-
ture maps that are suitable for dense prediction tasks. How-
ever, they focus only on capturing global self-similarity, and
their capability in exploring locality that is essential for im-
age restoration is inferior to that of CNNs.

In this context, numerous methods have been proposed to
introduce the inductive bias of locality into transformer ar-
chitectures [30,33,59,61,63]. Among them, local attention
is considered in recent works [31,33,54,59,67] at the cost of
restricting the receptive field in the transformer. These ap-
proaches propose the local self-attention module, achieving
a linear complexity to the input feature resolution (Fig. 1
(b)). Since they constrain the self-attention computation
only within a local patch, a shifting approach [31, 33, 59]
is additionally applied to exchange information across non-
overlapping patches. However, it considers only neighbor-
ing patches and thus still has insufficient receptive field.

In this paper, we propose a novel non-local image
restoration method, called k-NN Image Transformer (KiT),
that successfully captures locality while explicitly establish-
ing non-local connectivity by considering the local attention
of k nearest neighbor (k-NN) patches. To remedy the lack
of the long-range dependency inherent in the local atten-
tion, the proposed method considers k matched patches that
generate non-local connectivity between patches of differ-
ent positions. To be specific, the KiT first searches a set
of similar patches for each base patch with k-NN matching,
and then sets the base patch as query and k matched patches
as key and value for applying pair-wise attention locally, as
shown in Fig. 1 (c). This enables our method to apply the lo-
cal attention over an entire image while maintaining a linear
complexity with respect to the feature resolution. Addition-
ally, the inductive bias of locality enhances local feature ex-
traction capability. As shown in Fig. 2, our method consists
of a series of k-NN transformer block (KTB), and adopts
U-shaped hierarchical architecture for efficiently leveraging
multi-scale features. Comprehensive experiments on var-
ious image restoration tasks demonstrate the effectiveness
of the proposed method over state-of-the-art methods.

2. Related Works
Non-local image restoration. Non-local operation has
been widely used in the image restoration. In classical ap-

proaches [15, 35], a set of pixels grouped by self-similarity
contributes to an output filtered response. Recently, with
the success of non-local neural networks [58], some meth-
ods [16, 32, 77] attempted to integrate the non-local opera-
tion into CNNs for image restoration tasks by establishing
the long-range dependency with the global self-attention.
However, its expensive computational cost limits the spa-
tial resolution of feature maps or network depth. To re-
duce computational cost, sparse connections were used in
[28, 37, 38, 43, 53, 78] instead of full connections within
the input feature map. N3Net [43] and GCDN [53] find
k-nearest neighbors that are close in the embedding space
in a learnable manner, and aggregate them for an efficient
computation. DAGL [38] dynamically selects the num-
ber of neighbors for each query which has distinct distri-
butions according to an image content. IGNN [78] and
CPNet [28] finds k-NN patches among cross-scale feature
maps by considering both sparseness and cross-scale patch
recurrency. Nevertheless, aforementioned approaches have
the quadratic complexity for k-NN matching that heavily
slows the entire process. NLSN [37] reduces the complex-
ity of k-NN matching process to be asymptotic linear by
performing non-local sparse attention with locality sensi-
tive hashing (LSH). But, as the NLSN [37] approximated
full connection of the global attention in pixel-level, local
information can not be captured in their attention module.

Vision Transformer. In [18], the Transformer architec-
ture [55], originally proposed for natural language process-
ing, was applied to the image classification task. This
method, called Vision Transformer (ViT), is remarkable at
capturing the long range dependencies by applying global
attention to image patches, but is not suitable for dense pre-
dictions due to the quadratic complexity to an input spatial
resolution. Unlike ViT that maintains a fixed spatial resolu-
tion across the entire architecture, the hierarchical architec-
ture, where feature resolutions are progressively reduced,
is adopted for conducting the dense prediction more effec-
tively [9, 45, 57, 62]. PvT [57] builds pyramid feature maps
with spatial reduction attention (SPA) layer. IPT [9] and
DPT [45] propose an encoder-decoder architecture to re-
cover fine-grained predictions. However, these approaches
based on the global attention lacks the capability that ex-
plores locality essential for image restoration. Lately, Swin
Transformer [33] leverages the local attention with a shift-
ing approach for patch connection and achieves a competi-
tive performance on object detection and segmentation with
low complexity. As the local attention module generates
attention weights among adjacent elements only, the com-
putational complexity is linear to the spatial resolution and
the inductive bias of locality is injected into the attention.
Uformer [59] and SwinIR [31] adopt the local attention for
image restoration tasks, demonstrating impressive results.
However, the shifting approach still has a limited recep-
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Figure 2. Overall architecture of the k-NN Image Transformer (KiT): (a) U-shaped hierarchical architecture is adopted for image restora-
tion. (b) Each stage has two k-NN Transformer Blocks (KTBs) and an interpolation layer. For a skip-connection, the output feature of i-th
stage in the encoder is concatenated with (4 − i)-th stage in the decoder. (c) The KTB consists of layer normalization (LN), k-NN local
attention (KLA), and feed-forward network (FFN) consisting of depth-wise convolution (DW) and multi-layer perceptron (MLP).

tive field due to the nature of considering neighbor patches,
thereby losing the non-local connectivity. In contrast, the
proposed method establishes non-local connectivity by per-
forming the pair-wise local attention with k-NN patches.
This enables us to impose the non-local connectivity with
a linear complexity with respect to the spatial resolution,
while capturing locality in the attention module.

3. Proposed Method
3.1. Problem Statement and Overview

The non-local self-similarity is known to be effective in
the image restoration task [9, 16, 32, 37, 43, 77]. As simi-
lar patterns are globally distributed within the image, this
requires the capability to capture a long-range dependency.
The ViT [18] applies the attention mechanism of an original
Transformer [55] directly to sequences of image patches.
For a given input X ∈ RHW×Cin , they split it into non-
overlapping patches, and reshape into a sequence of flat-
tened 2D patches Xp ∈ RN×r2Cin , where HW is the spa-
tial resolution of the input feature map, Cin is the channel
of input feature map, N = HW/r2, and r is the patch size.
The global attention with dot-product between split patches
is represented as:

O = softmax
(φ(Xp)θ(Xp)

T

√
C

)
ψ(Xp). (1)

The learnable projection functions φ, θ : RN×r2Cin →
RN×r2C , and ψ : RN×r2Cin → RN×r2Cout project Xp

into the query, key, and value, respectively. The output
O ∈ RN×Cout , where Cout is an output channel size, is ob-
tained as an weighted sum of the projected values using the
affinity matrix computed between the projected query and
key. AsC,Cin andCout are usually set the same, we denote
them as C. Although the global attention mechanism estab-
lishes the long-range dependency well, the quadratic com-
plexity to the input feature resolution,O(r2N2C), makes it

hard to take advantage of global attention for dense predic-
tion tasks.

The local attention mechanism [31, 33, 54, 59, 67] re-
duces the complexity by computing attention within a local
patch. An input feature mapX is split into non-overlapping
patches, satisfying X = {xi ∈ Rr2×C | i = 0, . . . , N −1}.
The local attention is computed within each patch individu-
ally

oi = softmax
(φ(xi)θ(xi)T√

C

)
ψ(xi), (2)

where oi is an output patch corresponding to xi. Note that
the learnable projection functions φ, θ and ψ project r2 el-
ements with a size of C, unlike ViT projecting N elements
with a size of r2C, and are shared for all patches. The local
attention achieves the linear complexity O(r4NC) to the
input feature resolution. However, as Eq. (2) is applied to
each patch separately, no information is exchanged across
patches. Thus, a shifting approach [31, 33, 59] is sequen-
tially applied for imposing patch connectivity among neigh-
bor patches with an enlarged receptive field. Nevertheless,
as only neighbor patches contributes to the query patch, the
receptive field is still limited.

We overcome this limitation by leveraging k-NN in the
computation of the local attention, termed k-NN local at-
tention. In order to impose the non-local connectivity in
computing the local attention, we utilize k-NN search to
seek a set of patch candidates used for computing the local
attention. By conducting the pair-wise local attention be-
tween a query patch and k matched patches, the proposed
method captures locality efficiently while establishing non-
local connectivity essential for image restoration.

3.2. Overall Pipeline

The overall framework for image restoration is shown in
Fig. 2. To restore a degraded image, we first conduct three
convolutions to a degraded input image Id, and then pass it
through three stages of the encoder network and the decoder
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Figure 3. The proposed k-NN local attention (KLA): k-NN search is first conducted for finding k similar patches within an entire feature
map. Here, we use locality sensitive hashing (LSH) for an efficient k-NN search. The LSH assigns hash values to patches, and the patches
are sorted by the hash values in ascending order. The sorted patches are then partitioned with a chunk size of k. In each chunk, the pair-wise
local attention among patches are executed, and the final output is then computed by an weighted sum of the local attention outputs. Here,
the KLA for x̃1 is illustrated when a single chunk is used. In pratice, the previous chunk also contributes to the current chunk containing
the query patch. For more details, please refer to Sec. 3.3.

network. Each stage is comprised of the patch partition, k-
NN Transformer Blocks (KTB), and an interpolation layer.
The patch partition operation splits the input feature map X
into non-overlapping patches with the patch size r, satisfy-
ing X = {xi ∈ Rr2×C | i = 0, . . . , N − 1}.

In the KTB, the split patches are normalized and fed
to k-NN local attention (KLA) for non-local aggregation.
The KLA first establishes k patches based on the fact
that patches with similar patterns frequently appear within
an image and aggregating them is beneficial to the im-
age restoration. Note that the existing sparse attention ap-
proaches [26, 37] cluster pixels into separate groups to ap-
proximate global attention, and thus naturally the lack of the
locality, which is a drawback of the global attention, still re-
mains in their attention module. On the other hand, the pro-
posed method computes the sparse similarity between query
patch and k patches with the pair-wise local attention, and
the inductive bias of the locality is reflected in the proposed
attention module.

The proposed network has a U-shaped hierarchical ar-
chitecture for taking patterns of various scales into account.
The aggregated features pass through an interpolation layer
(downsampling for encoder and upsampling for decoder).
In the each stage of the decoder, input feature maps are con-
catenated with corresponding encoder features for recover-
ing fine details. At the end of the network, three convo-
lutions are conducted to predict a restored image from the
output feature map.

3.3. KTB: k-NN Transformer Block

A layer normalization (LN) is applied to each patch, and
then the k-NN local attention (KLA) conducts local atten-
tion with query patch and matched patches as key and value.
To enhance locality of the network, depth-wise convolution
(DW) [13] is employed together with multi-layer perceptron
(MLP) in the feed-forward network (FFN) [30], as depicted

in Fig. 2 (c). Formally, the KTB is written as:

X̂ l = KLA(LN(X l−1)) +X l−1, (3)

X l = FFN(LN(X̂ l)) + X̂ l, (4)

where FFN(X) = MLP(DW(MLP(X))). In l-th block of
each stage (l = 0, . . . , b− 1), the output feature map X l−1

from the previous block is normalized and fed into KLA.
The intermediate feature X̂ l is computed via a non-local
aggregation of k similar patch features and residual connec-
tion. The bottleneck stage is identical to the KTB, except
that the interpolation layer is not used and k is set to 1.
k-nearest neighbor matching. A brute-force k-NN match-
ing requires computing a pair-wise distance between two
patches. As this pair-wise distance involves the quadratic
complexity to an input length, we leverage the locality sen-
sitive hashing (LSH) [2] that has linear computational com-
plexity. The LSH projects split patches into an unit hyper-
sphere to establish buckets. Assuming there are m hash
buckets, a hash value L(x) is assigned by multiplying ran-
dom rotation matrix R ∈ RN×m/2 to a spherically pro-
jected patch x as:

L(x) = argmax ([xR;−xR]), (5)

where [·; ·] indicates the concatenation of two elements.
With this hashing operation, patches with high correlation
are very likely to receive the same hash value (in the same
hash bucket), and vice versa. However, as LSH depends on
random rotation matrix, similar patches may occasionally
fall in different hash buckets. To cope with this issue, multi-
round LSH is adopted where LSH is applied with different
random rotation matrix h times.
KLA: k-NN local attention. As shown in Fig. 3, similar
patches are grouped according to the assigned hash values.
To make only patches with the same hash value contribute
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to a query patch efficiently, we first sort patches according
to hash values, and then partition the sorted patches into
chunks each involving k patches (equal to the number of
NN patches) for batching purpose, so that the local atten-
tion is performed on only patches in the same chunk. We
denote π : n −→ n be a permutation that sorts the patches in
ascending order of hash values:

π(xp) < π(xq)⇒ L(xp) ≤ L(xq). (6)

For the sake of a simplicity, we define x̃ as a sorted patch
where x̃p is equal to xπ(p). Then, i-th chunk Pi for i =
0, ..., N/k contains k patches,

Pi = {x̃ki, x̃ki+1, x̃ki+2, ..., x̃ki+k−1}. (7)

The local attention is then conducted within patch pairs in
the chunk for non-local aggregation. Sorted input patches
X̃ are projected into query, key and value with the learn-
able projection functions φ, θ and ψ : Rr2×C → Rr2×C ,
respectively. As there are k patches in a chunk, the local at-
tention is conducted k2 times. The pair-wise local attention
output for p-th patch as a query where q-th patch is used as
key and value is defined as:

op,q = softmax(
φ(x̃p)θ(x̃q)

T

√
C

)ψ(x̃q). (8)

For instance, denoting φ(x̃1) as a query patch in chunk P0

of Fig. 3, there are k output patches {o1,j |j = 0, ..., k− 1}.
Different from ViT [18] that performs self-attention of all
patches, we perform the local attention, but k times and in
the pair-wise manner that computes affinity matrix between
two patches (query and key) for enhancing locality as de-
scribed in Fig. 1 (c).

As k output patches for a query patch are computed, the
pair-wise outputs should be aggregated into the query patch.
The output patch op for the input patch x̃p is computed by
weighted sum as:

op =
∑
j∈Np

wp,j · op,j , (9)

where wp,j is a pair-wise relative similarity between
patches, andNp is a set of patch indices of a chunk to which
the query patch x̃p belongs,

wp,q =
φ(
−→̃
xp) · θ(

−→̃
xq)∑

j∈Np
φ(
−→̃
xp) · θ(

−→̃
xj)

. (10)

Here, −→xp ∈ Rr2C represents the flatten patch of x̃p. As
the number of patches in a hash bucket is often indivisible
by chunk size in practice, the patches with the same hash
value may fall into nearby chunks. To deal with it, simi-
lar to [26], we allow the previous chunks to contribute to
the current chunk containing the query patch, e.g. Pi−1 for
Pi. Thus, the local attention is conducted 2k times for each
query patch.

3.4. Training Loss

Following existing image restoration approaches [32,
76], the proposed network also predicts a residual image
Ir from the degraded input image Id. The objective is to
recover clean image I satisfying I = Id + Ir. We lever-
age Charbonnier loss [8] Lchar and an edge loss Ledge for
optimizing the network,

Lchar =
√
‖I − (Id + Ir)‖2 + ε2,

Ledge =
√
‖4I −4(Id + Ir)‖2 + ε2,

L = Lchar + λLedge.
(11)

where ε is empirically set to 10−3 for all experiments and
4 represents the Laplacian function. The total loss L is
defined with Lchar and Ledge, where a hyper-parameter λ
controls the ratio of the two losses.

4. Experiments
4.1. Implementation Details

The proposed KiT was implemented in PyTorch. We
trained the whole networks on the batches of 16 images
cropped to 128 × 128 for 300 epochs using AdamW op-
timizer [34]. The learning rate was set to 1× 10−4 initially,
and the linear warm-up strategy and cosine annealing for
decreasing the learning rate were adopted. The chunk size
k (equal to the number of NN patches) and patch size r
were set to 4 by default. In the bottleneck stage, k is set
to 1 since there are only a few patches (e.g. the number of
patches is 4 × 4 when HW is 256 × 256). The number
of KTB in each stage, b, was set to 2 in all stages. In the
KLA, the number of hashes, h, was set to 4 for multi-round
LSH. We validated the performance of the proposed method
on various image restoration tasks such as image denoising,
debluring and deraining. For the performance evaluation,
the PSNR and SSIM were measured on the RGB space for
denoising and deblurring. In deraining, the evaluation was
done on the Y channel of the YCbCr color space, following
previous works [24, 72]. More results are provided in the
supplementary materials.

4.2. Image Denoising

We trained the KiT with the SIDD [1] dataset contain-
ing 320 high-resolution images with realistic noise. Tab. 1
shows the quantitative evaluation of real noise removal on
the SIDD [1] and DND [42] datasets. The evaluation re-
sults include the classical denoisng method [15], CNN-
based methods [3,6,11,23,25,68,70–72,76], self-attention
based methods [38] and transformer-based methods [59].
As DND [42] dataset does not provide ground-truth labels,
the results were obtained from official benchmark. The pro-
posed method outperforms the state-of-the-art methods both
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Noisy image (a) (b) (c) (d) (e) (f) (g)

(a) (b) (c) (d) (e) (f) (g)

Figure 4. Visual comparisons on the SIDD [1] dataset: (a) Cropped image, (b) RIDNet [3], (c) CycleISP [70], (d) MPRNet [72], (e)
Uformer [59], (f) KiT, and (g) ground truth.

Method SIDD DND
PSNR SSIM PSNR SSIM

BM3D [15] 25.65 0.685 34.51 0.851
DnCNN [76] 23.66 0.583 32.43 0.790
MLP [6] 24.71 0.641 34.23 0.833
CBDNet [23] 30.78 0.801 38.06 0.942
RIDNet [3] 38.71 0.951 39.26 0.953
AINDNet [25] 38.95 0.952 39.37 0.951
VDN [68] 39.28 0.956 39.38 0.952
SADNet [7] 39.46 0.957 39.59 0.952
DANet [69] 39.47 0.957 39.58 0.955
CycleISP [70] 39.52 0.957 39.56 0.956
MPRNet [72] 39.71 0.958 39.80 0.954
MIRNet [71] 39.72 0.958 39.88 0.956
NBNet [11] 39.75 0.973 39.89 0.955
DAGL [38] - - 39.83 0.957
Uformer [59] 39.77 0.970 39.96 0.956
KiT 39.80 0.972 39.96 0.956

Table 1. The quantitative results on SIDD [1] and DND [42]
dataset. The bold and underlined numbers indicate the best and
the second best results, respectively.

on SIDD datasets and achieves competitive performance on
the DND dataset. As the DND dataset does not provide any
training data, the performance in Tab. 1 is achieved using
the network trained on SIDD dataset, proving the robust-
ness of the proposed method. Fig. 4 shows the denoised im-
ages with various state-of-the-art methods. While existing
methods output restored images with loss of details, the pro-
posed method successfully restores degraded images with
fine-detailed structures thanks to the capability of capturing
locality with non-local connectivity.

4.3. Image Deblurring

Tab. 2 reports the image deblurring performance on the
GoPro dataset [39]. The GoPro dataset provides synthetic
blurry images where each image is obtained by averaging
successive sharp images. For training, 2,103 images of the
GoPro [39] dataset were used, and 1,111 images of the Go-

Method GoPro HIDE
PSNR SSIM PSNR SSIM

DeepDeblur [39] 29.23 0.916 25.73 0.874
SRN [52] 30.26 0.934 28.36 0.915
PSS-NSC [21] 30.92 0.942 29.11 0.913
DMPHN [73] 31.20 0.945 29.09 0.924
SAPHN [50] 32.02 0.953 29.98 0.930
MT-RNN [41] 31.15 0.945 29.15 0.918
SPAIR [44] 32.06 0.953 30.29 0.931
MPRNet [72] 32.66 0.959 30.96 0.939
MIMO-UNet [12] 32.68 0.959 - -
KiT 32.70 0.959 30.98 0.942

Table 2. The quantitative results on GoPro [39] and HIDE [49]
dataset. The network was trained on GoPro dataset.

Pro [39], 3,758 images of RealBlur [48] and 2,025 images
of the HIDE [49] datasets were evaluated. The outstanding
performance on the PSNR and SSIM metrics validated that
the proposed method is also beneficial to restoring blurry
images. Fig. 5 shows restored images from blur artifacts in
the GoPro [39] dataset. It is easily found that our results
capture sharp and fine details whereas other methods are
unable to deal with high-frequency details.

4.4. Image Deraining

Following the experimental setup of [24], 13,712 clean-
rain image pairs sampled from multiple datasets [20, 29,
64, 74, 75] were used to train the network for image
deraining. We evaluated the deraining results on five
datasets, Test100 [75], Rain100H [64], Rain100L [64],
Test2800 [20], and Test1200 [74]. While SPAIR [44] that
leverages extra distortion-guided networks shows competi-
tive results with the proposed method in terms of PSNR, the
proposed KIT achieves a higher SSIM, demonstrating that
fine-details can be better restored. As shown in the results
of Fig. 4 and Fig. 6, the proposed method has an advantage
of dealing with repeated textures thanks to the KLA based
aggregation. In rainy images, as many patches with similar
patterns exist in the image, the proposed method shows out-
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Blurry input (a) (b) (c) Ground-truth

Figure 5. Visual comparisons on the GoPro [39] dataset: (a) MPRNet [72], (b) MIMO-UNet [12], and (c) KiT.

Rainy input (a) (b) (c) (d) (e)

Figure 6. Visual results on the Test100 [75] dataset: (a) DerainNet [19], (b) PreNet [47], (c) RESCAN [27], (d) MPRNet [72], and (e) KiT.

standing performance quantitatively and qualitatively com-
pared with evaluated methods.

4.5. Ablation Study

We conducted the ablation studies to analyze the perfor-
mance of our method at various aspects. All experiments
were conducted on SIDD [1] for image denoising task.
Computational complexity. The proposed method is com-
prised of multi-round hashing for k-NN search, feature
projection, and pair-wise local attention. The multi-round
hashing is performed to the input feature patches by mul-
tiplying random rotation matrix R, which has O(hNCm)
complexity. Then, each patch is projected to the query, key,
and value with the learnable projection functions φ, θ and
ψ : Rr2×C → Rr2×C , whose complexity is O(NC2).
The complexity of computing the local attention between

all patch pairs is O(khr4N). Thus, all operations takes lin-
ear computation with respect to the input feature resolution.

Visualization of the k-NN patches. Our method aims to
preserve fine details while achieving non-local connectiv-
ity efficiently, achieved by aggregating patches with similar
characteristics. To visually validate this, we further visual-
ize the patches used for KLA in Fig. 7. The left most images
are divided into non-overlapping patches, where the patches
marked with color boxes represent query patches for visual-
ization. As the KLA leverages LSH for k-NN search, simi-
lar k patches are grouped with a chunk in the right figures.
The k patches belonging to the same chunk are also marked
with the same color boxes. With red and green boxes have
similar patterns, while the patches with blue boxes include
non-textured areas, proving that the LSH finds visually sim-
ilar patches effectively.
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Method Test100 [75] Rain100H [64] Rain100L [64] Test2800 [20] Test1200 [74] Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet [19] 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 22.48 0.796
SEMI [60] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 0.744
DIDMDN [74] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901 24.58 0.770
UMRL [65] 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 28.02 0.880
RESCAN [27] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 0.857
PreNet [47] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.42 0.897
MSPFN [24] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903
MPRNet [72] 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.73 0.921
SPAIR [44] 30.35 0.909 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 32.91 0.926
KiT 30.26 0.904 30.47 0.897 36.65 0.969 33.85 0.941 32.81 0.918 32.81 0.929

Table 3. The quantitative results of image deraining. The widely used five datasets [20, 64, 74, 75] are used for evaluation.

PSNR h
1 2 4 8 16

k

1 38.79 38.92 38.96 38.96 38.96
2 39.58 39.69 39.75 39.76 39.78
4 39.69 39.76 39.80 39.80 39.81
8 39.74 39.78 39.80 39.81 39.82
16 39.75 39.78 39.80 39.81 39.82

Table 4. Ablation study of the number of patches k and hash
rounds h.

The number of k and h. The chunk size k determines the
maximum number of patches used for performing the local
attention with the query patch. The h hash rounds are used
to reduce the probability that similar patches fall into differ-
ent hash buckets. As the two hyper-parameters do not affect
the number of network parameters and are only related to
the memory and computational complexity, the network ca-
pacity can be flexibly adjusted according to computational
resources. Tab. 4 shows the denoising performance of the
proposed method according to the two hyper-parameters.
The best performance was achieved when the two hyper-
parameters are set to 16, but, we set k and h to 4 as it has
comparable performance with relatively low computation.
Sharing query and key. In the existing methods [26, 37]
that leverage LSH for sparse global attention, the projection
functions for query and key should be shared, i.e., φ = θ,
and thus the shared attention masks out the query as the dot-
product of a query with itself almost always overwhelms the
dot product of a query with a key at other positions. Con-
trarily, our method has no such a constraint for sharing the
projection functions. For the purpose of ablation study, we
conducted additional experiments of sharing the projection
functions for query and key in Tab. 5, denoted as KiTS .
When using the shared projection, the overall performance
was slightly reduced.

5. Conclusion
In this paper, we have presented a novel non-local image

restoration method. Specifically, the k-NN local attention

(a) (b)

Figure 7. Visualization of the k-NN patches: (a) input image and
(b) k-NN patches. k-NN patches are discovered by LSH with k =
4. Patches belonging to the same chunk are marked with boxes of
the same color.

Method SIDD
PSNR SSIM

KiT 39.80 0.972
KiTS 39.75 0.969

Table 5. Ablation study of the shared projection φ = θ (KITS).

(KLA) conducts the pair-wise local attention among similar
patches with k-NN matching. The KLA holds the inductive
bias of locality while establishing the non-local connectiv-
ity with the linear computational complexity to the input
spatial resolution. The proposed method outperforms the
state-of-the-art methods on various image tasks, in terms of
quantitative/qualitative performance. As the number of NN
patches and hash rounds that determine the network capac-
ity are independent of the network parameters, the flexible
adjustment of the network capacity is feasible.

Limitations. The proposed method only considers the pair-
wise local attention between patches of the same scale. The
cross-scale attention can be an interesting methodology that
further improves the restoration performance. We will con-
tinue to investigate network that integrates in cross-scale at-
tention for our cross-position based model.

2146



References
[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S

Brown. A high-quality denoising dataset for smartphone
cameras. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1692–1700,
2018. 5, 6, 7

[2] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razen-
shteyn, and Ludwig Schmidt. Practical and optimal lsh for
angular distance. arXiv preprint arXiv:1509.02897, 2015. 4

[3] Saeed Anwar and Nick Barnes. Real image denoising with
feature attention. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3155–3164,
2019. 5, 6

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE transactions on pattern anal-
ysis and machine intelligence, 39(12):2481–2495, 2017. 1

[5] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local
algorithm for image denoising. In 2005 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), volume 2, pages 60–65. IEEE, 2005. 1

[6] Harold C Burger, Christian J Schuler, and Stefan Harmeling.
Image denoising: Can plain neural networks compete with
bm3d? In 2012 IEEE conference on computer vision and
pattern recognition, pages 2392–2399. IEEE, 2012. 5, 6

[7] Meng Chang, Qi Li, Huajun Feng, and Zhihai Xu. Spatial-
adaptive network for single image denoising. In European
Conference on Computer Vision, pages 171–187. Springer,
2020. 6

[8] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and
Michel Barlaud. Two deterministic half-quadratic regular-
ization algorithms for computed imaging. In Proceedings
of 1st International Conference on Image Processing, vol-
ume 2, pages 168–172. IEEE, 1994. 5

[9] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 2, 3

[10] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 1

[11] Shen Cheng, Yuzhi Wang, Haibin Huang, Donghao Liu,
Haoqiang Fan, and Shuaicheng Liu. Nbnet: Noise basis
learning for image denoising with subspace projection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4896–4906, 2021. 5,
6

[12] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,
and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-
gle image deblurring. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4641–4650,
2021. 6, 7

[13] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages
1251–1258, 2017. 4

[14] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-
column deep neural networks for image classification. In
2012 IEEE conference on computer vision and pattern
recognition, pages 3642–3649. IEEE, 2012. 1

[15] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on image
processing, 16(8):2080–2095, 2007. 1, 2, 5, 6

[16] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and
Lei Zhang. Second-order attention network for single im-
age super-resolution. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11065–11074, 2019. 1, 2, 3

[17] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super-resolution. In European conference on computer vi-
sion, pages 184–199. Springer, 2014. 1

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2, 3, 5

[19] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3146–
3154, 2019. 7, 8

[20] Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao
Ding, and John Paisley. Removing rain from single images
via a deep detail network. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3855–3863, 2017. 6, 8

[21] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dy-
namic scene deblurring with parameter selective sharing and
nested skip connections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3848–3856, 2019. 6

[22] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1

[23] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1712–
1722, 2019. 5, 6

[24] Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin
Huang, Yimin Luo, Jiayi Ma, and Junjun Jiang. Multi-scale
progressive fusion network for single image deraining. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8346–8355, 2020. 5, 6,
8

[25] Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik
Cho. Transfer learning from synthetic to real-noise denois-
ing with adaptive instance normalization. In Proceedings of

2147



the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3482–3492, 2020. 5, 6

[26] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Confer-
ence on Learning Representations, 2019. 4, 5, 8

[27] Xia Li, Jianlong Wu, Zhouchen Lin, Hong Liu, and Hongbin
Zha. Recurrent squeeze-and-excitation context aggregation
net for single image deraining. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 254–
269, 2018. 7, 8

[28] Yao Li, Xueyang Fu, and Zheng-Jun Zha. Cross-patch graph
convolutional network for image denoising. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4651–4660, 2021. 1, 2

[29] Yu Li, Robby T Tan, Xiaojie Guo, Jiangbo Lu, and Michael S
Brown. Rain streak removal using layer priors. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2736–2744, 2016. 6

[30] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc
Van Gool. Localvit: Bringing locality to vision transformers.
arXiv preprint arXiv:2104.05707, 2021. 2, 4

[31] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1833–1844,
2021. 2, 3

[32] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and
Thomas S Huang. Non-local recurrent network for image
restoration. arXiv preprint arXiv:1806.02919, 2018. 1, 2, 3,
5

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 1, 2, 3

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[35] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro,
and Andrew Zisserman. Non-local sparse models for image
restoration. In 2009 IEEE 12th international conference on
computer vision, pages 2272–2279. IEEE, 2009. 2

[36] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image
restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. Advances in neu-
ral information processing systems, 29:2802–2810, 2016. 1

[37] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. Image super-
resolution with non-local sparse attention. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3517–3526, 2021. 1, 2, 3, 4, 8

[38] Chong Mou, Jian Zhang, and Zhuoyuan Wu. Dynamic at-
tentive graph learning for image restoration. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4328–4337, 2021. 1, 2, 5, 6

[39] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3883–3891,
2017. 6, 7

[40] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
1

[41] Dongwon Park, Dong Un Kang, Jisoo Kim, and Se Young
Chun. Multi-temporal recurrent neural networks for progres-
sive non-uniform single image deblurring with incremental
temporal training. In European Conference on Computer Vi-
sion, pages 327–343. Springer, 2020. 6

[42] Tobias Plotz and Stefan Roth. Benchmarking denoising
algorithms with real photographs. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1586–1595, 2017. 5, 6
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