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Abstract

We propose the first reference-based video super-
resolution (RefVSR) approach that utilizes reference videos
for high-fidelity results. We focus on RefVSR in a triple-
camera setting, where we aim at super-resolving a low-
resolution ultra-wide video utilizing wide-angle and tele-
photo videos. We introduce the first RefVSR network that re-
currently aligns and propagates temporal reference features
fused with features extracted from low-resolution frames. To
facilitate the fusion and propagation of temporal reference
features, we propose a propagative temporal fusion mod-
ule. For learning and evaluation of our network, we present
the first RefVSR dataset consisting of triplets of ultra-wide,
wide-angle, and telephoto videos concurrently taken from
triple cameras of a smartphone. We also propose a two-
stage training strategy fully utilizing video triplets in the
proposed dataset for real-world 4× video super-resolution.
We extensively evaluate our method, and the result shows
the state-of-the-art performance in 4× super-resolution.

1. Introduction

Recent mobile devices such as Apple iPhone or Sam-
sung Galaxy series are manufactured with at least two or
three asymmetric multi-cameras typically having different
but fixed focal lengths. In a triple camera setting, each ultra-
wide, wide-angle, and telephoto camera has a different field
of view (FoV) and optical zoom factor. One advantage of
such configuration is that, compared to an ultra-wide cam-
era, a wide-angle camera captures a subject with more de-
tails and higher resolution, and the advantage escalates even
further with a telephoto camera. A question naturally fol-
lows is why not leverage higher-resolution frames of a cam-
era with a longer focal length to improve the resolution of
frames of a camera with a short focal length.

Utilizing a reference (Ref) image to reconstruct a high-
resolution (HR) image from a low-resolution (LR) image
has been widely studied in previous reference-based image

Code and dataset: https://github.com/codeslake/RefVSR
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Figure 1. Comparison on 8K 4×SR video results from a real
HD video between state-of-the-art (SOTA) RefSR approach [26]
and the proposed RefVSR approach. Our method learns to super-
resolve an LR video by utilizing relevant high-quality patches of
reference frames and robustly recovers sharp textures of both in-
side and outside the overlapped FoV between the input ultra-wide
and reference wide-angle frames (white dashed box).

super-resolution (RefSR) approaches [2,23,26,28,29,32,34,
35]. However, it has not been explored yet to utilize a Ref
video for video super-resolution (VSR). In this paper, we
expand the RefSR to the VSR task and introduce reference-
based video super-resolution (RefVSR) that can be applied
for videos captured in an asymmetric multi-camera setting.

RefVSR inherits objectives of both RefSR and VSR
tasks and utilizes a Ref video for reconstructing an HR
video from an LR video. Applying RefVSR for a video cap-
tured in an asymmetric multi-camera setting requires con-
sideration of the unique relationship between LR and Ref
frames in multi-camera videos. In the setting, a pair of LR
and Ref frames at each time step shares almost the same
content in their overlapped FoV (top and middle rows of the
leftmost column in Fig. 1). Moreover, as a video exhibits a
motion, neighboring Ref frames might contain high-quality
contents useful for recovering the outside the overlapped
FoV (the bottom row of the leftmost column in Fig. 1).
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For successful RefVSR in an asymmetric multi-camera
setting, we take advantage of temporal Ref frames in re-
constructing regions both inside and outside the overlapped
FoV. In previous RefSR approaches [26, 28, 29, 32], global
matching has been a common choice for establishing non-
local correspondence between a pair of LR and Ref images.
However, given a pair of LR and Ref video sequences, it
is not straightforward to directly apply global matching be-
tween an LR frame and multiple Ref frames. To utilize as
many frames as possible in the global matching for large
real-world videos (e.g., HD videos), we need a framework
capable of managing Ref frames in a memory-efficient way.

We propose the first end-to-end learning-based RefVSR
network that can generally be applied for super-resolving
an LR video using a Ref video. Our network adopts a bidi-
rectional recurrent pipeline [4, 7, 8] to recurrently align and
propagate Ref features that are fused with the features of
LR frames. Our network is efficient in terms of computa-
tion and memory consumption because the global matching
needed for aligning Ref features is performed only between
a pair of LR and corresponding Ref frames at each time
step. Still, our network is capable of utilizing temporal Ref
frames, as the aligned Ref features are continuously fused
and propagated in the pipeline.

As a key component for managing Ref features in the
pipeline, we propose a propagative temporal fusion module
that fuses and propagates only well-matched Ref features.
The module leverages the matching confidence computed
during the global matching between LR and Ref features
as the guidance to determine well-matched Ref features to
be fused and propagated. The module also accumulates the
matching confidence throughout the pipeline and uses the
accumulated value as the guidance when fusing the propa-
gated temporal Ref features.

To train and validate our model, we present the first Re-
fVSR dataset consisting of 161 video triplets of ultra-wide,
wide-angle, and telephoto videos simultaneously captured
with triple cameras of a smartphone. Wide-angle and tele-
photo videos have the same size as ultra-wide videos but
their resolutions are 2× and 4× the resolution of ultra-wide
videos, respectively. With the RefVSR dataset, we train our
network to super-resolve an ultra-wide video 4× to produce
an 8K video with the same resolution as a telephoto video.
To this end, we propose a two-stage training strategy that
fully utilizes video triplets in the proposed dataset. We show
that, with our training strategy, our network can success-
fully learn super-resolution of a real-world HD video and
produce a high-fidelity 8K video.

To summarize, our contributions include:
• the first RefVSR framework with the focus on videos

recorded in an asymmetric multi-camera setting,
• the propagative temporal fusion module that effec-

tively fuses and propagates temporal Ref features,

• the RealMCVSR dataset, which is the first dataset for
the RefVSR task, and

• the two-stage training strategy fully utilizing video
triplets for real-world 4×VSR.

2. Related Work
Reference-based Super-Resolution (RefSR) Previous
RefSR approaches [2,23,26,28,29,32,34,35] have focused
on establishing non-local correspondence between LR and
Ref features. For establishing correspondence, either offset-
based matching (optical flow [35] and deformable convolu-
tion [23]) or patch-based matching (patch-match [1, 2, 32,
34], learnable patch-match [28, 29], learnable patch-match
with affine correction [26]) are employed.

Video Super-Resolution (VSR) Previous VSR methods
have focused on how to effectively utilize highly related
but unaligned LR frames in a video sequence. With re-
spect to how LR frames in video sequences are handled
by a model, previous VSR approaches can be catego-
rized into either sliding window-based [3, 14, 15, 25, 27]
or recurrent framework-based [4, 7, 8, 9, 21] approaches.
For handling unaligned LR frames, warping using optical
flow [3,4,21], patch-based correlation [15], and deformable
convolution [25, 27] have been employed.

The aforementioned previous studies in RefSR and VSR
have developed various components. In this paper, to match
and align Ref features to an LR frame, we adopt the learn-
able patch-match-based reference alignment module [26,
28,29]. To handle video sequences, we adopt a bidirectional
recurrent framework [4, 7, 8]. However, for RefVSR, we
modify the components to handle both LR and Ref videos.
We also equip our network with the propagative temporal
fusion module, designed to effectively and efficiently ex-
ploit temporal Ref features in reconstructing HR frames.

Recently, a RefVSR method [33], in which only the first
frame of an HR video is used as a reference to super-resolve
an LR video downsampled from the HR video, has been
concurrently proposed alongside our work. However, to the
best of our knowledge, ours is the first RefVSR frame-
work that utilizes multiple frames in a Ref video for super-
resolving a real-world LR video.

3. Multi-Camera Video Super-Resolution
3.1. Framework Overview

Fig. 2 shows an overview of the proposed network,
which can generally be applied to a RefVSR task for super-
resolving an LR video utilizing a Ref video. Our network
follows a typical bidirectional propagation scheme [4, 7],
consisting of bidirectional recurrent cells Ff and Fb, where
the subscripts f and b indicate forward and backward prop-
agation branches, respectively (Fig. 3). Our network is dis-
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Figure 2. Overview of our RefVSR framework.

tinguished from previous ones in additional inputs, interme-
diate features, and modules to utilize a Ref video sequence.

Specifically, for a time step t, each recurrent cell Ff or
Fb takes not only low-resolution LR frames ILR

t±1 at the pre-
vious time step and ILR

t at the current time step, but also
a Ref frame IRef

t at the current time step. Each cell is also
recurrently fed with aggregated LR and Ref features h{f,b}

t±1

and accumulated confidence maps c{f,b}t±1 propagated from
the previous time step. Here, the accumulated confidence
maps are utilized for fusing well-matched Ref features later
in each recurrent cell. Finally, each recurrent cell propagates
the resulting features h{f,b}

t and the accumulated matching
confidences c{f,b}t to the next cell. Formally, we have:

{hf
t , c

f
t }=Ff (I

LR
t−1, I

LR
t , IRef

t , hf
t−1, c

f
t−1),

{hb
t , c

b
t}=Fb(I

LR
t+1, I

LR
t , IRef

t , hb
t+1, c

b
t+1).

(1)

For reconstructing an SR result ISR
t , the upsampling

module U first takes the intermediate features h{f,b}
t and ac-

cumulated matching confidences c{f,b}t of both forward and
backward branches. Then, the features are aggregated and
upsampled with multiple convolution and pixel-shuffle [22]
layers to produce ISR

t . Mathematically, we have:

ISR
t =U(hf

t , h
b
t , c

f
t , c

b
t). (2)

For the upsampling module U to accurately reconstruct
ISR
t , the intermediate features h{f,b}

t should contain de-
tails integrated from both LR and Ref frames in a video se-
quence. To this end, each recurrent cell Ff and Fb performs
inter-frame alignment between the previous and current LR
input frames, then aggregates and propagates the features
(Sec. 3.2). To exploit multiple Ref frames, each recurrent
cell aligns the current Ref features to the current LR frame
and fuses the aligned Ref features to the aggregated features
of the previous Ref, LR, and current LR frames using a ref-
erence alignment and propagation module (Sec. 3.3). In this
way, features of temporally distant LR input and Ref frames
can be recurrently integrated and propagated.

, 

, 

w
ar

p

, 

, w
arp

Figure 3. Forward (top) and backward (bottom) recurrent cells.

3.2. Bidirectional Recurrent Cells

In each recurrent cell Ff and Fb (Fig. 3), we first use a
flow estimation network S [20] to estimate the optical flow
between the LR frame ILR

t at the current time step and ILR
t±1

at the previous time step to align propagated features h{f,b}
t±1

to ILR
t . Then, using a residual block R, we aggregate an

LR frame ILR
t into the aligned features to obtain temporally

aggregated features ĥ{f,b}
t . Specifically, we have:

w
{f,b}
t =S(ILR

t , ILR
t±1),

h̃
{f,b}
t =warp(h

{f,b}
t±1 , w

{f,b}
t ),

ĥ
{f,b}
t =R{f,b}(I

LR
t , h̃

{f,b}
t ),

(3)

where warp(, ) denotes warping operation, and w{f,b}
t is

the optical flow estimated by the flow estimation network
S. Note that the temporally aggregated features ĥ{f,b}

t con-
tains details aggregated from multiple LR features, as well
as temporal Ref features propagated from neighboring cells.

Now we propose the reference alignment and propaga-
tion module for each cell Ff and Fb to fuse the current Ref
frame IRef

t into temporally aggregated features ĥ{f,b}
t .

3.3. Reference Alignment and Propagation

Our reference alignment and propagation module
(Fig. 4) consists of three sub-modules: cosine similarity,
reference alignment, and propagative temporal fusion mod-
ules. The cosine similarity module computes a cosine sim-
ilarity matrix between the Ref frame IRef

t and target LR
frames ILR

t and computes an index map pt and a confidence
map ct needed for the other two sub-modules. The reference
alignment module extracts a feature map from the current
Ref frame IRef

t and warps the feature map to ILR
t using the

index map pt. Then, the propagative temporal fusion mod-
ule fuses the aligned Ref features with the temporally ag-
gregated features ĥ{f,b}

t . In the following, we describe each
module in more detail.
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Figure 4. The reference alignment and propagation module.

Cosine Similarity Module To compute an index map pt
and a confidence map ct, we first embed ILR

t and IRef
t↓ into

the feature space by a shared encoder ϕ [24], where ↓ de-
notes the downsampling operator. Then, we extract 3× 3
patches from the LR and Ref feature maps with stride 1 and
compute a cosine similarity matrix C between them, such
that Ci,j is a similarity between the i-th patch of the LR
feature map and the j-th patch of the Ref feature map. The
matching index map p and confidence map c is then com-
puted as:

pt,i=argmax
j

Ci,j , ct,i=max
j

Ci,j , (4)

where pt,i is the patch index of Ref features ϕ(IRef
t↓ ) that is

the most relevant to the i-th patch of LR features ϕ(ILR
t ),

and ct,i is their matching confidence, respectively.
Reference Alignment Module We use the reference
alignment module proposed in [26] to obtain Ref features
aligned to ILR

t , which will be used for the fusion later.
The module first takes IRef

t and extracts Ref features hRef
t .

Then, using the matching index map pt (Eq. 4), we warp
patches of Ref features hRef

t to coarsely align the features to
the current LR frame ILR

t [28,29]. Finally, the module com-
pensates for possible inter-patch misalignment (e.g., scale
and rotation) in the coarsely aligned Ref features using the
patch-wise affine spatial transformer [5, 10]. We denote the
final aligned Ref features as h̃Ref

t .
Propagative Temporal Fusion Module Finally, we pro-
pose the propagative temporal fusion module that fuses the
aligned Ref features h̃Ref

t with the temporally aggregated
features ĥ{f,b}

t and propagates the fused features h{f,b}
t to

the next cell (Fig. 5). Note that aligned Ref features h̃Ref
t

contain Ref features at the current time step, while the tem-
porally aggregated features ĥ{f,b}

t contain aggregated tem-
poral Ref features propagated from neighboring recurrent
cells. For the successful fusion, the propagative temporal
fusion module has to fuse ĥ{f,b}

t and h̃Ref
t in the way of

selecting the Ref features better aligned to the target frame
so that well-matched Ref features can keep propagating to
the next cell. Otherwise, erroneous Ref features can be ac-
cumulated in the pipeline, leading to blurry results.
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Figure 5. The propagative temporal fusion module.

However, a naı̈ve fusion of the Ref features h̃Ref
t is error-

prone, as matching is not necessarily accurate. Inspired
by [26, 29], we thus perform feature fusion guided by the
matching confidences ct, which guides the fusion module to
select only well-matched features in h̃Ref

t . The fusion mod-
ule also needs a guidance for propagated Ref features aggre-
gated in ĥ{f,b}

t . The guidance should accommodate tempo-
ral information that coincides with propagated Ref features
maintained in the propagation pipeline. To this end, we ac-
cumulate matching confidences throughout the propagation
pipeline and use the accumulated confidence as the guid-
ance for the temporally aggregated features ĥ{f,b}

t during
the fusion. Formally, we have:

c̃
{f,b}
t =warp(c

{f,b}
t±1 , w

{f,b}
t ), (5)

where c{f,b}t±1 is the accumulated matching confidence prop-
agated from neighboring cells. We align the confidence to
obtain c̃ {f,b}

t using the optical flow pre-computed in Eq. 3.
For the fusion, we provide matching confidence ct com-

puted between the current target and reference frames,
and we also provide aligned matching confidence c̃ {f,b}

t

propagated from neighboring recurrent cells as guidance.
The matching confidences are embedded with a convo-
lution layer to consider matching scores of neighboring
patches for providing more accurate guidance during the fu-
sion [26]. Formally, the fusion process is defined as:

h
{f,b}
t ={conv([ct, c̃ {f,b}

t ]) ⊗

conv([h̃Ref
t , ĥ

{f,b}
t ])}+ ĥ

{f,b}
t ,

(6)

where [, ] and ⊗ indicate concatenation operation and
element-wise multiplication, respectively.

For the next cell, we use max(, ) operation to accumulate
ct into c̃ {f,b}

t and pick up a larger confidence score. The
accumulation process is defined as:

c
{f,b}
t =max(ct, c̃

{f,b}
t ). (7)

Max operation between ct and c̃ {f,b}
t indirectly imposes the

propagative temporal fusion module to selectively fuse and
propagate the better matched features between correspond-
ing features, h̃Ref

t and ĥ{f,b}
t , respectively.
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4. Training Strategy for Real-World 4×VSR
To train our network, we propose the RealMCVSR

dataset, which consists of triplets of ultra-wide, wide-angle,
and telephoto videos, where wide-angle and telephoto
videos have the same size as ultra-wide videos, but their
resolutions are 2× and 4× that of ultra-wide videos. The
detail of the dataset is given in Sec. 5. Given video triplets,
we train our network to perform 4× super-resolution of an
ultra-wide HD video with a wide-angle video as a Ref video
for obtaining an 8K video. The resulting 8K video has the
same resolution as a telephoto video, but 16× larger in size.

It is worth noting that we use only a wide-angle video
as a Ref video. While it may look reasonable to use a tele-
photo video as an additional Ref video to achieve the resolu-
tion of a telephoto video, we found that it does not improve
the super-resolution quality much because a telephoto video
covers only 1/16 the area of an ultra-wide video. A detailed
discussion and experiments are provided in the supplement.

Training our network to produce 8K videos is not triv-
ial as there are no ground-truth 8K videos. While we have
wide-angle and telephoto videos, they neither cover the en-
tire area nor perfectly align with an ultra-wide video. To
overcome this, we propose a novel training strategy that
fully exploits wide-angle and telephoto videos.

Our training strategy consists of pre-training and adapta-
tion stages. In the pre-training stage, we downsample ultra-
wide and wide-angle videos 4×. We then train the network
to 4× super-resolve a downsampled ultra-wide video us-
ing a downsampled wide-angle video as a reference. The
training is done in a supervised manner using the original
ultra-wide video as the ground-truth. Finally, in the adap-
tation stage, we fine-tune the network to adapt it to real-
world videos of the original sizes. This stage uses a tele-
photo video as supervision to train the network to recover
high-frequency details of a telephoto video. The following
subsections describe each stage in more detail.

4.1. Pre-training Stage

In this stage, we train our network using two loss func-
tions: a reconstruction loss motivated by [18, 19, 26] and a
multi-Ref fidelity loss. The reconstruction loss minimizes
the low- and high-frequency differences between a super-
resolved ultra-wide frame ISR

t and the ground-truth ultra-
wide frame IHR

t . The reconstruction loss ℓrec is defined as:

ℓrec=∥ISR
t,blur − IHR

t,blur∥+ λrec

∑
i

δi(I
SR
t , IHR

t ), (8)

where the subscript blur indicates a filtering operation with
a 3×3 Gaussian kernel with σ=1.0 and λrec is a weight for
the second term. δi(X,Y )=minj D(xi, yj) is the contextual
loss [19] that measures the distance between the pixel xi in
X and its most similar pixel yj in Y under some feature
distance measure D, e.g., a perceptual distance [18, 19, 30].

In the first term on the right-hand side in Eq. (8), fil-
tering frames with Gaussian kernels imposes results to fol-
low low-frequency structures of a ground-truth ultra-wide
frame IHR

t . The second term enforces the network to follow
the high-frequency details of IHR

t . Note that in the second
term, we use the contextual loss even for aligned pairs ISR

t

and IHR
t , as the loss is verified to be better in boosting the

perceptual quality than the perceptual loss [11] designed for
aligned pairs [18].

To guide the network to take advantage of multiple Ref
frames, we encourage Ref features to keep propagating
from one to the next cells. Motivated by [26], we propose
a multi-Ref fidelity loss. Given a super-resolved ultra-wide
frame ISR

t and ground-truth wide-angle frames IRefHR
t∈Ω , the

multi-Ref fidelity loss is defined as:

ℓMfid =

∑
t′∈Ω

∑
i δi(I

SR
t , IRefHR

t′ ) · ct′,i∑
t′∈Ω

∑
i ct′,i

, (9)

where Ω=[t-k−1
2 , . . . , t+k−1

2 ] is set of frame indices in a
temporal window of size k. We use k=7 in practice. Here,
ct′,i is the matching confidence used for weighting the dis-
tance δi(ISR

t , IRefHR
t′ ). Specifically, during training, pixels

of ISR
t with higher matching confidence ct′,i are assigned

with larger weights for optimization. Eq. 9 enables our net-
work to effectively utilize multiple Ref frames IRef

t∈Ω and
keep the details of multiple Ref frames to flow through the
propagation pipeline. Our loss for the pre-training stage is
defined as:

ℓpre=ℓrec(I
SR
t , IHR

t ) + λpreℓMfid(I
SR
t , IRefHR

t∈Ω ). (10)

where λpre is a weight for the multi-Ref fidelity loss for the
pre-training stage.

4.2. Adaptation Stage for Real-world 4×VSR

For adaptation, our network takes real-world ultra-wide
IUW
t and wide-angle IWide

t HD frames as LR and Ref
frames, respectively. As in the pre-training stage, the adap-
tation stage separately handles low- and high-frequency of
a super-resolved ultra-wide frame ISR

t . However, as there
is no ground-truth frame available for ISR

t , we downsample
ISR
t and use the input ultra-wide frame IUW

t as the super-
vision for recovering low-frequency structures. For recov-
ering high-frequency details, we directly utilize telephoto
frames ITele

t∈Ω as the supervision for the proposed multi-Ref
fidelity loss ℓMfid . The adaptation loss is defined as:

ℓ8K = ||ISR
t↓,blur − IUW

t,blur||+ λ8K ℓMfid(I
SR
t , ITele

t∈Ω ), (11)

where λ8K is a weight for the multi-Ref fidelity loss for
the adaptation stage. The first term imposes our network
to reconstruct low-frequency structures of input ultra-wide
frames, and the second term trains our network to transfer
the finest high-frequency details of telephoto frames.
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ℓMfid PTF PSNR↑ SSIM↑ Params (M)
30.71 0.894 4.2768

✓ 31.31 0.913 4.2768
✓ ✓ 31.68 0.914 4.2772

Table 1. Quantitative ablation study. The first row corresponds to
the baseline model. ℓMfid and PTF indicate the models trained with
Eq. 9 and propagative temporal fusion module, respectively.

5. Experiments
RealMCVSR Dataset Our RealMCVSR dataset provides
real-world HD video triplets concurrently recorded by Ap-
ple iPhone 12 Pro Max equipped with triple cameras hav-
ing fixed focal lengths: ultra-wide (30mm), wide-angle
(59mm), and telephoto (147mm). To concurrently record
video triplets, we built an iOS app that provides full con-
trol over exposure parameters (i.e., shutter speed and ISO)
of the cameras. For recording each scene, we set the cam-
eras in the auto-exposure mode, where the shutter speeds
of the three cameras are synced to avoid varying motion
blur across a video triplet. ISOs are adjusted accordingly
for each camera to pick up the same exposure. Each video
is saved in the MOV format using HEVC/H.265 encoding
with the HD resolution (1080×1920). The dataset contains
triplets of 161 video clips with 23,107 frames in total. The
video triplets are split into training, validation, and testing
sets, each of which has 137, 8, and 16 triplets with 19,426,
1,141, and 2,540 frames, respectively.

Implementation The network is trained using rectified-
Adam [16] with an initial learning rate 2.0×10-4, which is
steadily decreased to 1.0×10-6 using the cosine annealing
strategy [17]. The network is trained for 300k and 50k itera-
tions for the pre-training and adaptation stages, respectively,
with λrec = 0.01, λpre = 0.05, and λ8K = 0.1. For each iter-
ation, we randomly sample batches of frame triplets from
the RealMCVSR training set. For the pre-training stage,
we downsample ultra-wide LR and wide-angle Ref frames
4× using bicubic downsampling provided by MATLAB
function imresize. We crop patches from each frame in a
triplet to have overlapped contents and apply random trans-
lation on each crop window. Then, ultra-wide LR frames
are cropped to 64×64 and 128×128 patches for the pre-
training and adaptation stages, respectively. Wide-angle and
telephoto Ref frames are cropped into patches of 2× and 4×
the patch size of LR patches, respectively.

5.1. Ablation Study

To analyze the effect of each component of our model,
we conduct ablation studies. First, we validate the effects of
the propagative temporal fusion module (Eq. 6) and multi-
Ref fidelity loss ℓMfid (Eq. 9). To this end, we compare the
stripped-out baseline model with its two variants. The base-
line model is trained with ℓrec and ℓMfid , but we set the
temporal window size k=1 for ℓMfid , indicating only a sin-

LR↑ / Ref↓ Bicubic Baseline ℓMfid ℓMfid+PTF

Figure 6. Qualitative ablation study. The first column shows LR
and Ref real-world HD inputs. For the rest of the columns, we
show zoomed-in cropped 4×SR results of different combinations
of modules (Table 1). Red and green boxes indicate inside and out-
side the overlapped FoV between LR and Ref frames, respectively.

gle ground-truth Ref frame is used for computing the loss.
Regarding the propagative temporal fusion module, we use
a modified one for the baseline model. Specifically, Eq. 6
becomes:

h
{f,b}
t = {conv(ct)⊗ conv([h̃Ref

t , ĥ
{f,b}
t ])}+ ĥ

{f,b}
t .

For the other variants, we recover the key components one
by one from the baseline model. For the variant with ℓMfid ,
we train the baseline model with ℓrec and ℓMfid with win-
dow size k=7. For the last variant, we attach the propagative
temporal fusion module. For quantitative and qualitative
comparison, we compare pre-trained models (Sec. 4.1) and
their fine-tuned models (Sec. 4.2) on the proposed RealM-
CVSR test set, respectively.

Table 1 shows quantitative results. The table indicates
that compared to the baseline model (the first row in the ta-
ble), the model trained with ℓMfid (the second row) shows
much better VSR performance. The model additionally
equipped with the propagative temporal fusion module (the
third row) achieves the best results in every measure.

Fig. 6 shows a qualitative comparison. As shown in the
figure, the model trained with ℓMfid (the fourth column of
the figure) enhances details inside (red box) and outside
(green box) the overlapped FoV much better compared to
the results of the baseline model (the third column). The re-
sult confirms that ℓMfid enforces temporal Ref features to
keep streaming through the propagation pipeline to be uti-
lized in reconstructing high-fidelity results. The model at-
tached with the propagative temporal fusion module shows
accurately recovered structures and enhanced details for
both inside and outside the overlapped FoV (the last col-
umn). This demonstrates the propagative temporal fusion
module promotes well-matched Ref features to be fused and
to flow through the propagation pipeline.
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LR↑ / Ref↓ Bicubic ℓpre ℓ8K

Figure 7. Ablation study on the two-stage training strategy.

We also validate the effects of the proposed training
strategy. Specifically, we qualitatively compare between the
model pre-trained with the pre-training loss ℓpre (Eq. 10)
and the model fine-tuned with the adaptation loss ℓ8K
(Eq. 11). For comparison, we show 8K VSR results given
real-world HD videos. Note that in the real-world scenario,
there is no ground-truth available for a quantitative compar-
ison. Fig. 7 shows the results. The pre-trained model does
not improve details of a real-world input, due to the domain
gap between real-world inputs and downsampled inputs (the
third column). However, the fine-tuned model shows much
higher fidelity results compared to the pre-trained model
(the last column), thanks to the adaptation stage that trains
the network to well adapt to real-world videos.

5.2. Comparison on RealMCVSR Dataset

In this section, we compare our method with previ-
ous state-of-the-art approaches: SRCNN [6], RCAN [31],
TTSR [29], DCSR [26], EDVR [27], BasicVSR [4], and
IconVSR [4]. SRCNN and RCAN are SISR models that
take only a single LR frame. TTSR and DCSR are RefSR
models fed with a pair of LR and Ref frames. EDVR is
a sliding window-based VSR model that takes multiple
frames in a local temporal window. BasicVSR and IconVSR
are VSR models with a bidirectional recurrent framework,
where each video frame is fed to a recurrent cell for each
time step. We train each model with the proposed RealM-
CVSR dataset and the code provided by the authors.
Quantitative Comparison Table 2 shows a quantitative
comparison, where ultra-wide HD frames and their 4×
downsampled ones are used as ground-truths and inputs, re-
spectively. For comparison, we use our model pre-trained
with Eq. 10 (Ours). Moreover, to consider the trade-off be-
tween the model size and SR quality, we show the results of
a smaller model with fewer parameters (Ours-small) and a
larger model (Ours-IR) attached with information-refill and
coupled propagation modules proposed in [4]. We also com-
pare our models trained only with the ℓ1 loss function (mod-
els indicated with -ℓ1), for a fair comparison with the previ-

Model PSNR↑ SSIM↑ Params (M)

SI
SR

Bicubic 26.65 0.800 -
SRGAN [13] 29.38 0.877 0.734
RCAN-ℓ1 [31] 31.07 0.915 15.89

R
ef

SR

TTSR [29] 30.31 0.905 6.730
TTSR-ℓ1 [29] 30.83 0.911 6.730
DCSR [26] 30.63 0.895 5.419
DCSR-ℓ1 [26] 32.43 0.933 5.419

V
SR

EDVR-M-ℓch [27] 33.26 0.946 3.317
EDVR-ℓch [27] 33.47 0.948 20.63
BasicVSR-ℓch [4] 33.66 0.951 4.851
IconVSR-ℓch [4] 33.80 0.951 7.255

R
ef

V
SR

Ours-small 31.63 0.912 1.052
Ours-small-ℓ1 33.88 0.951 1.052
Ours 31.68 0.914 4.277
Ours-ℓ1 34.74 0.958 4.277
Ours-IR 31.73 0.916 4.774
Ours-IR-ℓ1 34.86 0.959 4.774

Table 2. Quantitative evaluation on the RealMCVSR test set.

ous models trained with pixel-based losses, such as ℓ1, ℓ2,
and ℓch (Charbonnier loss [12]), which are known for hav-
ing an advantage in PSNR over perceptual-based loss [11].

In Table 2, while RefSR methods show a better perfor-
mance than SISR methods, our methods outperform all pre-
vious ones. Interestingly, VSR methods outperform RefSR
methods that are additionally fed with Ref frames. However,
this is not particularly true if we measure the performance
on the regions of the SR frame corresponding to different
FoV ranges. Table 3 shows the results. For comparison, we
measure the SR quality for the region inside the overlapped
FoV (0%–50%) between an ultra-wide SR and a wide-angle
Ref frames. For outside the overlapped FoV, we measure SR
performance for the banded regions at different FoV ranges
from the overlapped FoV (50%) to full FoV (100%). In the
table, DCSR [26] outperforms IconVSR [4] for the over-
lapped FoV (0%–50%) between an input and Ref frames,
while IconVSR outruns DCSR for the rest of the regions.
Our models exceed all models for all regions.

Note that in Table 3, our models show a perfor-
mance gap between regions inside (0%–50%) and outside
(50%–100%) the overlapped FoV. However, compared to
the PSNR/SSIM gap of DCSR (8.5% / 4.2%), our models
show much smaller gap (Ours-ℓ1 : 4.2% / 1.8% and Ours-IR-
ℓ1 : 4.2% / 1.6%). The result implies the proposed architec-
ture effectively utilizes neighboring Ref features for recov-
ering regions both inside and outside of the overlapped FoV.
Qualitative Comparison For the qualitative comparison,
we show 8K (4320×7280) 4×SR video results given real-
world HD (1080× 1920) videos. For the comparison, we
select the best models from each SISR, RefSR, and VSR
approaches: RCAN [31], DCSR [26], and IconVSR [4],
respectively, according to their quantitative performance
shown with the RealMCVSR test set. We train each model
with the proposed training strategy (Sec. 4).
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Model
PSNR / SSIM measured for regions in the indicated FoV range Params

(M)0%–50% 50%–60% 50%–70% 50%–80% 50%–90% 50%–100%

SISR Bicubic 25.38 / 0.757 26.30 / 0.785 26.42 / 0.789 26.71 / 0.798 26.99 / 0.801 27.29 / 0.815 -
RCAN-ℓ1 [31] 29.77 / 0.895 30.69 / 0.908 30.86 / 0.910 31.17 / 0.914 31.50 / 0.918 31.80 / 0.921 15.89

RefSR DCSR-ℓ1 [26] 34.90 / 0.963 31.96 / 0.927 31.61 / 0.921 31.58 / 0.919 31.81 / 0.921 31.93 / 0.923 5.419
VSR IconVSR-ℓch [4] 32.79 / 0.946 33.43 / 0.949 33.60 / 0.950 33.89 / 0.951 34.19 / 0.953 34.40 / 0.953 7.255

RefVSR Ours-ℓ1 36.02 / 0.971 34.59 / 0.958 34.31 / 0.956 34.23 / 0.954 34.40 / 0.955 34.50 / 0.954 4.277
Ours-IR-ℓ1 36.14 / 0.971 34.66 / 0.959 34.40 / 0.956 34.34 / 0.955 34.52 / 0.955 34.63 / 0.955 4.774

Table 3. Quantitative results measured with varying FoV range. The center 50% of FoV in an ultra-wide SR frame is overlapped with the
FoV of a wide-angle reference frame. Here, 0%–50% indicates the region inside the overlapped FoV, and 50%–100% is the region outside
the overlapped FoV. 50%–60% means the banded region between the center 50% and 60% of an ultra-wide SR frame.

LR↑ / Ref↓ (a) Bicubic (c) RCAN [31] (d) DCSR [26] (e) IconVSR [4] (f) Ours

Figure 8. Qualitative comparison on 8K 4×SR video results from real-world HD videos.

Fig. 8 shows a qualitative comparison for 8K 4×SR re-
sults from real-world HD videos. The results show that non-
reference-based SR methods, RCAN and IconVSR, tend to
over-exaggerate textures, while non-textured regions tend to
be overly smoothed out. The RefSR method, DCSR, shows
better fidelity than RCAN and IconVSR in the overlapped
FoV (red box). However, DCSR tends to smooth out re-
gions outside the overlapped FoV (green box). Our method
shows the best result compared to the previous ones. Com-
pared to DCSR, our model robustly reconstructs finer de-
tails with balanced fidelity between regions inside and out-
side the overlapped FoV. Moreover, the details and textures
reconstructed outside the FoV are more photo-realistic.

6. Conclusion

We proposed the first RefVSR framework with the prac-
tical focus on videos captured in an asymmetric multi-
camera setting. To efficiently utilize a Ref video sequence,
we adopted a bidirectional recurrent framework and pro-

posed the propagative temporal fusion module to fuse and
propagate Ref features well-matched to LR features. To
train and validate the network, we provided the RealM-
CVSR dataset consisting of real-world HD video triplets.
An adaptation training strategy is proposed to fully utilize
video triplets in the dataset. In the experiments, we verified
the effects of key components in our model, and our model
achieves the state-of-the-art 4×VSR performance.

Limitation As previous RefSR methods [26, 28, 29, 32],
our network consumes quite an amount of memory for ap-
plying global matching between real-world HD frames. We
plan to develop a memory-efficient RefVSR framework.
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